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Abstract. In this study, we construct the difference sequence spaces `p

(
P∇

2
q

)
= (`p)

P∇2
q
, 1 ≤ p ≤ ∞, where

P = (%rs) is an infinite matrix of Padovan numbers %s defined by

%rs =

 %s
%r+5−2 0 ≤ s ≤ r,
0 s > r.

and∇2
q is a q-difference operator of second order. We obtain some inclusion relations, topological properties,

Schauder basis and α-, β- and γ-duals of the newly defined space. We characterize certain matrix classes
from the space `p

(
P∇

2
q

)
to any one of the space `1, c0, c or `∞. We examine some geometric properties and

give certain estimation for von-Neumann Jordan constant and James constant of the space `p(P). Finally,
we estimate upper bound for Hausdorff matrix as a mapping from `p to `p(P).

1. Introduction and Preliminaries

The construction of sequence space is an important study in the field of functional analysis. Sequence
space is defined as the vector subspace of ω, the set of all real-valued sequences. The set of all p-absolutely
summable sequences `p, bounded sequences `∞, null sequences c0 and convergent sequences c, are some of
the well-known examples of classical sequence spaces. A Banach space having continuous coordinates is
said to be a BK-space. The spaces `p and `∞ are BK-spaces accompanied by the norms

‖z‖`p
=

 ∞∑
r=0

|zr|
p


1/p

and ‖z‖`∞ = sup
r∈N0

|zr| .
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Here and in the rest of the paper, 1 ≤ p < ∞unless stated otherwise, andN0 denote the set of all non-negative
integers.

Let A = (ars) be an infinite matrix of real entries. Then A-transform of a sequence z is defined by the

sequence Az = {(Az)r}
∞

r=0 =

{
∞∑

s=0
arszs

}
. Furthermore, if for every sequence z = (zs) in the sequence space Z,

the A-transform of z belongs to the space Z′, then the matrix A is called a matrix mapping from sequence
space Z to Z′. A matrix A = (ars) is called a triangle if arr , 0 and ars = 0 for r < s. It is well known that the
set ZA defined by

ZA = {z = (zs) ∈ ω : Az ∈ Z} (1)

is a sequence space and is called the domain of the matrix A in the space Z. Moreover, if A is a triangle
and Z is a BK-space, then ZA is also a BK-space accompanied by the norm ‖z‖ZA

= ‖Az‖Z. We refer the
papers [2–6, 8–10, 14–17, 30, 34] and the monographs [7, 29] for studies related to theory of summability
and construction of BK-spaces using the domain of triangles in the classical spaces.

The number sequence 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, . . . is called Padovan numbers. This number sequence was
first discovered by Cordonnier in 1924 and independently rediscovered by Dom Hans Van der Laan [26]
in 1928. Then Richard Padovan studied Padovan number and its applications in architectural studies in
detail (cf. [31, 32]). In his honor, Stewart [36] designated this number sequence as “Padovan Sequence”
and provided geometrical illustration of Padovan sequences by presenting a spiraling system of conjoined
triangles in comparison to the spiraling system of golden rectangles as in the case of Fibonacci sequences.
If (%r) denote the sequence of Padovan numbers, then

%r = %r−2 + %r−3 with %0 = %1 = %2 = 1.

Padovan numbers exhibit following interesting properties:

ρ = lim
r→∞

%r+1

%r
= 1.3247179572 . . . ( Plastic number)

r∑
s=0

%s = %r+5 − 2.

r∑
s=0

%s+n = %r+n+5 − %n+4 (n ∈N0).

Padovan numbers have a great application in the field of architecture, engineering, music, etc. For more
interesting research papers concerning Padovan numbers, we refer to [19, 27, 28, 35, 44].

The operators ∆ and ∇ defined by (∆z)r = zr − zr+1 and (∇z)r = zr − zr−1 for all r ∈ N0, are known as
forward and backward difference operators of first order, respectively, we assumed that zr = 0 for r < 0. The
domains `∞(∆), c(∆) and c0(∆) are studied by Kızmaz [25]. Later on, the operators ∆ and ∇ were extended
to ∆2 and ∇2 defined by (∆2z)r = (∆z)r − (∆z)r+1 and (∇2z)r = (∇z)r − (∇z)r−1, respectively (cf. [13, 18]).
Introduction of difference operators has a great impact in the study of summability theory. For instances,
the sequence z = (s)∞s=0 is not convergent in the ordinary sense. In fact it diverges to ∞. However, the
sequences ∆z = (−1,−1,−1, . . .) and ∆2z = (0, 0, 0, . . .) converge to −1 and 0, respectively.

Recently, Yaying et al. [41] defined a generalized difference matrix Pα =
(
%αrs

)
involving Padovan

numbers by

%αrs =


s∑

v=r
(−1)v−s Γ(α + 1)

(v − s)!Γ(α − v + s + 1)
%v

%r+5 − 2
, 0 ≤ s ≤ r,

0 , s > r,

and studied its domain `p(Pα) = (`p)Pα and `∞(Pα) = (`∞)Pα . It is clear that when α = 0, 1 and 2,Pα contracts
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to the matrices P, P∇ and P∇2, respectively, where P =
(
%rs

)
is defined by

%rs =


%s

%r+5 − 2
, 0 ≤ s ≤ r,

0 , s > r,

In this paper, by the aid of a generalized difference matrix ∇2
q , (0 < q < 1), we construct Padovan difference

matrix P∇2
q , and construct Padovan difference sequence spaces `p

(
P∇

2
q

)
and `∞

(
P∇

2
q

)
, investigate their

topological properties, inclusion relations, and form Schauder basis of the space `p

(
P∇

2
q

)
. In section 3, we

determine α-, β- and γ-duals of these spaces. In section 4, some characterization results concerning class of
matrix mappings from the spaces `p

(
P∇

2
q

)
and `∞

(
P∇

2
q

)
to anyone of the spaces `1, c0, c or `∞ are examined.

In section 5, we focus on the space `p(P) which is the special case of the space `p

(
P
α
)

when α = 0, and exhibit
certain geometric properties, compute von-Neumann Jordan constant and James constant of this space. In
the final section, we provide an estimation for the upper bound of the Hausdorff matrix as a mapping from
`p to `p(P).

2. Padovan Difference Sequence Spaces `p
(
P∇

2
q
)

and `∞
(
P∇

2
q
)

We need the following notations and definitions for our study.
Let 0 < q < 1. Then

r(q) =


1 − qr

1 − q
, r > 0,

0 , r = 0.

Clearly 1(q) = 1, 2(q) = 1 + q, 3(q) = 1 + q + q2, and so on. We further emphasize that r(q) = r when q → 1.
An interesting property of the q-numbers that differs it from ordinary numbers is that the sequence (s)∞s=0 of
ordinary numbers diverges to +∞, whereas, on the contrary, the sequence (s(q))∞s=0 of q-numbers converges

to
1

1 − q
.

Definition 2.1. ([21]) The q-binomial coefficient
(
r
s

)
q

is defined by

(
r
s

)
q

=


r(q)!

(r − s)(q)!s(q)!
, r ≥ s,

0 , s > r,

where q-factorial r(q)! of r is given by

r(q)! = r(q)(r − 1)(q) · · · 2(q)1(q).

In particular
(
0
0

)
q

=

(
r
0

)
q

=

(
r
r

)
q

= 1 and
(

r
r − s

)
q

=

(
r
s

)
q
. We strictly refer to [21] for detailed studies in

q-numbers and q-binomial coefficients and [42, 43] for sequence spaces involving q-numbers.
Define the difference operator ∇2

q : ω→ ω by

(∇2
qz)r = zr − (1 + q)zr−1 + qzr−2,

where r ∈N0. It is presumed that zr = 0 for r < 0. The operator ∇2
q = (δ2;q

rs ) can be represented in the form of
a triangle as

δ2;q
rs =

 (−1)r−sq(r−s
2 )

(
2

r − s

)
q
, 0 ≤ s ≤ r,

0 , s > r,
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for all r, s ∈N0. With some elementary calculations, the inverse ∇−2
q =

(
δ−2;q

rs

)
of the triangle ∇2

q is computed
as

δ−2;q
rs =

{ (r−s+1
r−s

)
q , 0 ≤ s ≤ r,

0 , s > r.

By combining Padovan matrix P and difference matrix ∇2
q , we introduce generalized Padovan difference

matrix Q = P∇2
q = (%̃rs) defined by

%̃rs =


r∑

v=s
(−1)v−sq(v−s

2 )
(

2
v − s

)
q

%v

%r+5 − 2
, 0 ≤ s ≤ r,

0 , s > r.

SinceP and∇2
q are triangles, their product Q is also a triangle. Hence the inverse Q−1 =

(
P∇

2
q

)−1
= ∇−2

q P
−1 =(

%̃−1
rs

)
exists (for P−1 see [41]) and is unique. It is computed as

%̃−1
rs =


s+1∑
v=s

(−1)v−s

(
r − v + 1

r − v

)
q

%s+5 − 2
%v

, 0 ≤ s ≤ r,

0 , s > r,

The sequence t = (tr) defined by

tr = (Qz)r =

r∑
s=0

r∑
v=s

(−1)v−sq(v−s
2 )

(
2

v − s

)
q

%v

%r+5 − 2
zs, r ∈N0 (2)

is called Q-transform of the sequence z = (zr). Now in view of (1), we define Padovan difference sequence
spaces `p

(
Q
)

and `∞
(
Q
)

by

`p

(
Q
)

= (`p)Q and `∞
(
Q
)

= (`∞)Q.

Here and in the sequel 1 ≤ p < ∞, unless stated. Equivalently

`p(Q) = {z = (zr) ∈ ω : t = Qz ∈ `p},

`∞(Q) = {z = (zr) ∈ ω : t = Qz ∈ `∞}.

We emphasize that the spaces `p

(
Q
)

and `∞
(
Q
)

contract to `p

(
P∇

2
)

and `∞
(
P∇

2
)
, respectively, when q→ 1.

In the rest of the paper, the sequences z and t are interrelated by (2). We begin with the following
theorem:

Theorem 2.2. The spaces `p

(
Q
)

and `∞
(
Q
)

are BK-spaces equipped with the norms defined by

‖z‖
`p

(
Q
) =

 ∞∑
r=0

|(Qz)r|
p


1/p

(3)

and

‖z‖
`∞

(
Q
) = sup

r∈N0

|(Qz)r| . (4)

Proof. The proof is easy and hence details omitted.

Theorem 2.3. `p

(
Q
)
� `p and `∞

(
Q
)
� `∞.
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Proof. We provide the proof for the space `p

(
Q
)
. Define the mapping π : `p

(
Q
)
→ `p by z 7→ t = πz = Qz.

We notice that π is linear and injective.
Let t = (tr) ∈ `p and define the sequence z = (zs) by

zr =

r∑
s=0

s+1∑
v=s

(−1)s−v
(
r − v + 1

r − v

)
q

%s+5 − 2
%v

ts (s ∈N0). (5)

Then

‖z‖
`p

(
Q
) =

 ∞∑
r=0

∣∣∣∣(Qz
)

r

∣∣∣∣p
1/p

=

 ∞∑
r=0

∣∣∣∣∣∣∣
r∑

s=0

r∑
v=s

(−1)v−sq(v−s
2 )

(
2

v − s

)
q

%v

%r+5 − 2
zs

∣∣∣∣∣∣∣
p

1/p

=

( ∞∑
r=0

∣∣∣∣∣∣ r∑
s=0

r∑
v=s

(−1)v−sq(v−s
2 )

(
2

v − s

)
q

%v

%r+5 − 2 s∑
u=0

u+1∑
w=u

(−1)u−w
(
s − w + 1

s − w

)
q

%u+5 − 2
%w

tu


∣∣∣∣∣∣
p)1/p

=

 ∞∑
r=0

|tr|
p


1/p

= ‖t‖`p
< ∞.

Thus z ∈ `p

(
Q
)
. Hence, π is surjective and norm preserving. Consequently `p

(
Q
)
� `p. The later part of the

theorem can be established analogously. This completes the proof.

Theorem 2.4. The inclusion `p ⊂ `p(Q) holds for 1 ≤ p ≤ ∞.

Proof. It is easy to see that the space `p ⊂ `p

(
Q
)
. To prove the strictness part, we consider the sequence

f =
(
qs
)∞

s=0
for 0 < q < 1. Clearly f is not a sequence in `p. However

Q f = P∇2
q f =

( %0

%5 − 2
,
%0 − %1

%6 − 2
,

q(%1 − %2)
%7 − 2

,
q(%1 − %2)
%8 − 2

, . . .
)

= (1, 0, 0, 0, . . .)

is a sequence in `p.
Again, we take another sequence 1 = (s)∞s=0. Then 1 < `∞. But

Q1 = P∇2
q1 =

(
0,

%1

%6 − 2
,
%1 + (1 − q)%2

%7 − 2
,
%1 + (1 − q)%2 + (1 − q)%3

%8 − 2
, . . .

)
.

Thus Q1 is the sequence whose rth (r ≥ 2) entry is given by
r∑

s=2

%1 + %s(1 − q)
%r+5 − 2

with the first two entries 0 and

1
2
. Since %r+5 >

r∑
s=2

%s

%r+5 − 2
for r ≥ 2, it is evident that the sequence Q1 is convergent and so bounded. Thus

the result is proved.

Theorem 2.5. The inclusion `p

(
Q
)
⊂ `∞

(
Q
)

strictly holds.

Proof. Since the inclusion `p ⊂ `∞ holds strictly, the inclusion part is easy to prove. Consider a sequence
1 = (1s) ∈ `∞ \ `p and define a sequence f = ( fs) in terms of the sequence 1 = (1s) by

fr =

r∑
s=0

s+1∑
v=s

(−1)s−v
(
r − v + 1

r − v

)
q

%s+5 − 2
%v

1s
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for all r = 0, 1, 2, · · · . Then, we deduce that Q f = P∇2
q f = 1 ∈ `∞ \`p. This confirms that f ∈ `∞

(
Q
)
\`p

(
Q
)
.

Theorem 2.6. If 1 ≤ p < m, then `p(Q) ⊂ `m(Q).

Proof. This is similar to the proof of Theorem 2.5. So details are omitted.

Before proceeding to the next result, we present the following definition.

Definition 2.7. A sequence z = (zs) is called a Schauder basis of a normed space (Z, ‖·‖) if for every z′ ∈ Z
there exists a unique sequence of scalars (as) such that

lim
r→∞

∥∥∥∥∥∥∥z′ −
r∑

s=0

aszs

∥∥∥∥∥∥∥ = 0.

We are well aware that a normed space Z has a Schauder basis if and only if the domain ZA of the matrix
A in the space Z has a Schauder basis. Thus we have the following result.

Theorem 2.8. The sequence φ(s) = (φ(s)
r ), s ∈N0, defined by

φ(s)
r =


s+1∑
v=s

(−1)v−s

(
r − v + 1

r − v

)
q

%s+5 − 2
%v

, s ≤ r,

0 , s > r,

forms a Schauder basis for the sequence space `p

(
Q
)

and every z ∈ `p

(
Q
)

can be expressed uniquely as z =
∑
∞

s=0 tsφ(s).

Corollary 2.9. `p

(
Q
)

is a separable space.

Proof. Theorems 2.2 and 2.8 immediately establish the result.

3. α-, β- and γ-Duals

For the sequence spaces Z and Z′, the set µ(Z,Z′) is called the multiplier space of Z and Z′ and is defined
by

µ(Z,Z′) = {d = (ds) ∈ ω : dz = (dszs) ∈ Z′, ∀z = (zs) ∈ Z} .

Then the α-, β- and γ-duals of Z are defined by

Zα = µ(Z, `1), Zβ = µ(Z, cs), Zγ = µ(Z, bs)

respectively, where cs and bs represent the spaces of all convergent series and bounded series, respectively.
We need the following lemmas due to Stielglitz and Tietz [37] for our investigations. In the rest of the

paper, 1
p + 1

p′ = 1 andN denote the family of all finite subsets ofN0.

Lemma 3.1. A = (ars) ∈ (`p, `1) if and only if

sup
s∈N0

∞∑
r=0

|ars| < ∞, in the case p = 1; (6)

sup
R∈N

∞∑
s=0

∣∣∣∣∣∣∣∑r∈R ars

∣∣∣∣∣∣∣
p′

< ∞, in the case 1 < p < ∞; (7)

sup
R∈N

∞∑
s=0

∣∣∣∣∣∣∣∑r∈R ars

∣∣∣∣∣∣∣ < ∞, in the case p = ∞. (8)



T. Yaying et al. / Filomat 36:3 (2022), 905–919 911

Lemma 3.2. A = (ars) ∈ (`p, c) if and only if

∃αs ∈ C 3 lim
r→∞

ars = αs for each s ∈N0; (9)

sup
r,s
|ars| < ∞, in the case p = 1; (10)

sup
r∈N0

∞∑
s=0

|ars|
p′ < ∞, in the case 1 < p < ∞; (11)

lim
r→∞

∞∑
s=0

|ars| =

∞∑
s=0

∣∣∣∣lim
r→∞

ars

∣∣∣∣ , in the case p = ∞. (12)

Lemma 3.3. A = (ars) ∈ (`p, `∞) if and only if (10) holds in the case p = 1; (11) holds in the case 1 < p < ∞ and
(11) holds with p′ = 1 in the case p = ∞.

Theorem 3.4. Define the sets δ1 and δ(p′)
1 by

δ1 =

d = (ds) ∈ ω : sup
s∈N0

∞∑
r=0

∣∣∣∣∣∣∣
s+1∑
v=s

(−1)v−s
(
r − v + 1

r − v

)
q

%s+5 − 2
%v

dr

∣∣∣∣∣∣∣ < ∞
 ;

δ(p′)
1 =

d = (ds) ∈ ω : sup
R∈N

∞∑
s=0

∣∣∣∣∣∣∣∑r∈R
s+1∑
v=s

(−1)v−s
(
r − v + 1

r − v

)
q

%s+5 − 2
%v

dr

∣∣∣∣∣∣∣
p′

< ∞

 .
Then [

`1

(
Q
)]α

= δ1,
[
`p

(
Q)

]α
= δ(p′)

1 , 1 < p < ∞, and
[
`∞

(
Q)

]α
= δ(1)

1 .

Proof. Let d = (ds) ∈ ω and z = (zs) is defined as in (5), then we have

drzr =

r∑
s=0

s+1∑
v=s

(−1)v−s
(
r − v + 1

r − v

)
q

%s+5 − 2
%v

drts = (Ct)r (13)

for each r ∈N0, where C = (crs) is defined by

crs =


s+1∑
v=s

(−1)v−s

(
r − v + 1

r − v

)
q

%s+5 − 2
%v

dr , 0 ≤ s ≤ r,

0 , s > r,

for all r, s ∈N0.
Thus, we deduce from (13) that dz = (drzr) ∈ `1 whenever z ∈ `p(Qq) if only if Ct ∈ `1 whenever t ∈ `p. This

yields that d = (dr) ∈
[
`p(Q)

]α
if and only if C ∈ (`p, `1).

Thus by using Lemma 3.1, we conclude that[
`1

(
Q
)]α

= δ1,
[
`p

(
Q)

]α
= δ(p′)

1 , 1 < p < ∞, and
[
`∞

(
Q)

]α
= δ(1)

1 .
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Theorem 3.5. Define the sets δ(p′)
2 , δ3 and δ4 by

δ2 =

d = (ds) ∈ ω : lim
r→∞

r∑
v=s

 s+1∑
l=s

(−1)v−s
(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 dv exists

 ;

δ3 =

d = (ds) ∈ ω : sup
r,s∈N0

∣∣∣∣∣∣∣
r∑

v=s

 s+1∑
l=s

(−1)v−s
(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 dv

∣∣∣∣∣∣∣ < ∞
 ;

δ(p′)
4 =

d = (ds) ∈ ω : sup
r∈N0

∞∑
s=0

∣∣∣∣∣∣∣
r∑

v=s

 s+1∑
l=s

(−1)v−s
(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 dv

∣∣∣∣∣∣∣
p′

< ∞

 ;

δ5 =

{
d = (ds) ∈ ω : lim

r→∞

∞∑
s=0

∣∣∣∣∣∣∣
r∑

v=s

 s+1∑
l=s

(−1)v−s
(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 dv

∣∣∣∣∣∣∣
=

∞∑
s=0

∣∣∣∣∣∣∣limr→∞

r∑
v=s

 s+1∑
l=s

(−1)v−s
(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 dv

∣∣∣∣∣∣∣
}
.

Then,
[
`1

(
Q
)]β

= δ2 ∩ δ3,
[
`p

(
Q)

]β
= δ2 ∩ δ

(p′)
4 and

[
`∞

(
Q
)]β

= δ2 ∩ δ5, where 1 < p < ∞.

Proof. Let d = (ds) ∈ ω and z = (zs) is defined as in (5). Consider the equality

r∑
s=0

dszs =

r∑
s=0

ds

 s∑
v=0

v+1∑
l=v

(−1)l−v
(
s − l + 1

s − l

)
q

%v+5 − 2
%l

tv


=

r∑
s=0

 r∑
v=s

 s+1∑
l=s

(−1)v−s
(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 dv

 ts

= (C̃t)r, for each r ∈N0, (14)

where the matrix C̃ = (c̃rs) is defined by

c̃rs =


r∑

v=s

s+1∑
l=s

(−1)v−s

(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 dv , 0 ≤ s ≤ r,

0 , s > r,

for all r, s ∈N0.
We noticed from (14) that dz = (dszs) ∈ cs whenever z = (zs) ∈ `p

(
Q
)

if only if C̃t ∈ c whenever t = (ts) ∈ `p.

This implies that d = (ds) ∈
[
`p

(
Q
)]β

if and only if C̃ ∈ (`p, c).
Thus, by using Lemma 3.2, we deduce that

lim
r→∞

c̃rs exists for all s ∈N0 and

sup
r,s
|c̃rs| < ∞, in the case p = 1;

sup
r∈N0

∞∑
s=0

|c̃rs|
p′ < ∞, in the case 1 < p < ∞;

lim
r→∞

∞∑
s=0

|c̃rs| =

∞∑
s=0

∣∣∣∣lim
r→∞

c̃rs

∣∣∣∣ , in the case p = ∞.

This gives us the required result.
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In the similar way, one can obtain the γ-dual of the space `p

(
Q
)
, 1 ≤ p ≤ ∞, by using Lemma 3.3. Hence

we avoid the proof and state the result only.

Theorem 3.6. Let 1 < p < ∞. Then
[
`1

(
Q
)]γ

= δ3,
[
`p

(
Q
)]γ

= δ(p′)
4 and

[
`p

(
Q
)]γ

= δ(1)
4 .

4. Matrix Mappings on the Sequence Space `p
(
Q
)

In this section certain results concerning characterization of matrix mappings from the space `p

(
Q
)

to
any one of the space `1, c0, c or `∞, are investigated.

The following result is the base for our examinations which is a direct consequence of [24, Theorem 4.1].

Theorem 4.1. Let 1 ≤ p ≤ ∞ and Z be any one of the sequence space `1, c0, c or `∞. Then, A = (ars) ∈ (`p

(
Q
)
,Z) if

and only if B(r) =
(
b(r)

ms

)
∈ (`p, c) for all r ∈N0 and B = (brs) ∈ (`p,Z), where

b(r)
ms =


m∑

v=s

∑s+1
l=s (−1)v−s

(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 arv , 0 ≤ s ≤ m

0 , s > m,

brs =

∞∑
v=s

 s+1∑
l=s

(−1)v−s
(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 arv

for all r,m, s = 0, 1, 2, 3, · · · .

Proof. Let 1 ≤ p ≤ ∞ and A ∈ (`p

(
Q
)
,Z). Assume that z ∈ `p

(
Q
)
. Then, proceeding in the same way as in the

proof of Theorem 3.5, we deduce the following equality

m∑
s=0

arszs =

m∑
s=0

s∑
v=0

v+1∑
l=v

(−1)l−v
(
s − l + 1

s − l

)
q

%v+5 − 2
%l

tvars

=

m∑
s=0

 m∑
v=s

 s+1∑
l=s

(−1)v−s
(
v − l + 1

v − l

)
q

%s+5 − 2
%s

 arv

 ts

=

m∑
s=0

b(r)
msts

(15)

for all m, r = 0, 1, 2, · · · . Since Az exists, so B(r)
∈ (`p, c). Again passing the limit as m→∞ in (15), we obtain

Az = Bt. Since Az ∈ Z, so Bt ∈ Z which leads us to the fact that B ∈ (`p,Z).

Conversely, assume that B(r) =
(
b(r)

ms

)
∈ (`p, c) for all r = 0, 1, 2, · · · , and B = (brs) ∈ (`p,Z). Let z ∈ `p

(
Q
)
.

Then, for each r ∈ N0,
(
brs

)
s∈N0
∈ `

β
p which in turn implies the fact that

(
ars

)
s∈N0
∈

[
`p

(
Q
)]β

for each r ∈ N.

Hence Az exists. Again from (15), Az = Bt as m → ∞. This implies that A ∈ (`p

(
Q
)
,Z). This completes the

proof.

As a direct consequence of Theorem 4.1, we provide characterization of certain matrix classes from
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`1

(
Q
)
, `p

(
Q
)

and `∞
(
Q
)

to Z′ ∈ {`1, c0, c, `∞}. Before proceeding, we list certain conditions:

lim
m→∞

b(r)
ms exists for each r, s ∈N0; (16)

sup
m,s

∣∣∣b(r)
ms

∣∣∣ < ∞; (17)

sup
m

m∑
s=0

∣∣∣b(r)
ms

∣∣∣p′ < ∞ for each r ∈N0; (18)

lim
m→∞

m∑
s=0

b(r)
ms exists for each r ∈N0; (19)

lim
m→∞

m∑
s=0

∣∣∣b(r)
ms

∣∣∣ =

m∑
s=0

|brs| for each r ∈N0. (20)

lim
r→∞

∞∑
s=0

|brs| = 0. (21)

Corollary 4.2. Assume that 1 < p < ∞.Then, the necessary and sufficient condition that a matrix A = (ars) ∈ (Z,Z′),
where Z ∈

{
`1

(
Q
)
, `p

(
Q
)
, `∞

(
Q
)}

and Z′ ∈ {`1, c0, c, `∞} can be read from Table 1, where

A. (16) and (17) B. (16) and (18)
C. (16) and (20) D. (8) with znk instead of hnk
E. (9) with αs = 0 ∀s and brs instead of ars F. (9) with brs instead of ars
G. (11) with p′ = 1 and brs instead of ars H. (21)
I. (12) with brs instead of ars J. (11) with brs instead of ars
K. (6) with brs instead of ars L. (7) with brs instead of ars
M. (10) with brs instead of ars

From\ To `1 c0 c `∞
`1

(
Q
)

A & K A, E & M A, F & M A & M

`p

(
Q
)

B & L B, E & J B, F & J B & J

`∞
(
Q
)

C & D C & H C, F & I C & G

Table 1: Characterization of the matrix class (Z,Z′), where Z ∈
{
`1

(
Q
)
, `p

(
Q
)
, `∞

(
Q
)}

and Z′ ∈ {`1, c0, c, `∞}

5. Some Geometric Properties of the Space `p(P)

In this section, we consider the sequence space `p(P) = (`p)P, which is a particular case of the sequence
space `p(Pα) (when α = 0) studied in [41]. We recall some geometric notions and definitions that are
required for our examination.

Definition 5.1. ([12, Definition 1]) A Banach space Z is said to be uniformly convex if for each ς, 0 < ς ≤ 2,

there corresponds a δ(ς) > 0 such that ‖z‖ = 1 = ‖z′‖ , ‖z − z′‖ ≥ ς imply
∥∥∥∥∥z + z′

2

∥∥∥∥∥ ≤ 1 − δ(ς).

Definition 5.2. ([20]) A Banach space Z is said to be uniformly non-square if there exists a δ > 0 such that∥∥∥∥∥z + z′

2

∥∥∥∥∥ ≤ 1 − δ whenever
∥∥∥∥∥z − z′

2

∥∥∥∥∥ > 1 − δ, for z, z′ ∈ B(Z), where B(Z) denotes the unit ball in Z.
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Definition 5.3. ([23, pp. 92]) A normed linear space Z is said to be strictly convex if for z, z′ ∈ Z such that

z , z′, ‖z‖ = ‖z′‖ = 1, we have
∥∥∥∥∥z + z′

2

∥∥∥∥∥ < 1.

Remark 5.4. ([23, Proposition 7.1.1]) Every Hilbert space is uniformly convex.

Definition 5.5. ([33]) Let Z be a Banach space, Z† be its adjoint, and X†† be the adjoint of Z†. Then the space
Z is said to be reflexive if for each Z0 ∈ Z†† there exists z0 ∈ Z such that Z0(z′) = z′(z0) holds for all z′ ∈ Z†.

Lemma 5.6. ([33]) Let Z be a uniformly convex Banach space. Then Z is reflexive.

Definition 5.7. ([22]) The constant

J(Z) = sup{min(‖z + z′‖ , ‖z − z′‖) : z, z′ ∈ B(Z)}

is called non-square or James constant of Z.

Definition 5.8. ([11]) The von-Neuman Jordan constant of a Banach space Z,denoted by CNJZ, is the smallest
constant K satisfying

1
K
≤
‖z + z′‖2 + ‖z − z′‖2

2(‖z‖2 + ‖z′‖2)
≤ K

for all z, z′ ∈ B(Z) with ‖z‖2 + ‖z′‖2 , 0.

The following are some well known properties determined by James constant and von-Neumann Jordan
constant:

(a)
√

2 ≤ J(Z) ≤ 2; Z is a Hilbert space =⇒ J(Z) =
√

2.
(b) Z is uniformly non-square if and only if J(Z) < 2.
(c) 1 ≤ CNJ(Z) ≤ 2. Also Z is a Hilbert space if and only if CNJ(Z) = 1.
(d) Z is uniformly non-square if and only if CNJ(Z) < 2.
(e) Z is uniformly convex then CNJ(Z) < 2.
(f) CNJ(Z) = 2 if and only if Z is not uniformly non-square.
(g) CNJ(Z) = J(Z) if and only if Z is not uniformly non-square.

Lemma 5.9. ([40, Lemma 2.2]) Let Z be a Banach space ‖z + z′‖2 + ‖z − z′‖2 ≤ 4 + J(Z)2 for any z, z′ ∈ Z.

Lemma 5.10. ([22, Theorem 1]) For any Banach space Z

1
2

J(Z)2
≤ CNJ(Z) ≤

J(Z)2

(J(Z) − 1)2 + 1
.

Theorem 5.11. The space `p(P) does not exhibit absolute property.

Proof. Let z = (zs) = (1,−1, 0, 0, . . .). Then

Pz = (1, 0, 0, 0, . . .) and P|z| =
(
1, 1,

2
3
,

2
5
, . . .

)
implying the fact that

‖z‖`p(P) , ‖|z|‖`p(P) ,

where |z| = (|zs|) for all s ∈N0.
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Theorem 5.12. The spaces `1(P) and `∞(P) are not uniformly convex. In fact, they are not even strictly convex.

Proof. Consider z = (zr) = (1,−1, 0, 0, . . .) and z′ = (z′r) = (0,−2, 2, 0, . . .). Clearly z, z′ ∈ `1(P) and ‖z‖`1(P) =

‖z′‖`1(P) = 1, ‖z − z′‖`1(P) = 2. But
∥∥∥ z+z′

2

∥∥∥
`1(P)

= 1. Thus, `1(P) is not uniformly convex and strictly convex.
Similarly, `∞(P) is not uniformly convex and strictly convex.

Lemma 5.13. `p(P) is not a Hilbert space, except for p = 2.

Proof. We take the sequences z = (zs) = (1, 1,−2, 0, . . .) and z′ = (z′s) = (1,−3, 2, 0, . . .). Then, we have
Pz = (1, 1, 0, 0, . . .) and Pz′ = (1,−1, 0, 0, . . .). Thus, one can easily verify that

‖z + z′‖2`p(P) + ‖z − z′‖2`p(P) = 8 , 4
(
22/p

)
= 2

(
‖z‖2`p(P) + ‖z′‖2`p(P)

)
, p , 2.

Hence, the norm ‖z‖`p(P) with p , 2 violates the parallelogram identity. Consequently `p(P) is not a Hilbert
space except for p = 2.

Theorem 5.14. The space `2(P) is uniformly convex. Also CNJ(`2(P)) = 1 and J(`2(P)) =
√

2.

Proof. The proof immediately follows from Lemma 5.13 and Remark 5.4. Since uniform convex implies
strict convex, therefore, `2(P) is strictly convex as well. The second part is obvious. Moreover, `2(P) is
uniformly non-square and super reflexive.

Corollary 5.15. The space `2(P) is strictly convex, reflexive and possesses uniform normal structure and fixed point
property.

Theorem 5.16. The spaces `1(P) and `∞(P) are not uniformly non-square.

Proof. We shall establish the result for the space `1(P). Similar proof can be given for the space `∞(P).
Consider the sequences z = (1,−1, 0, 0, . . .) and z′ = (0,−2, 2, 0 . . .). It is clear that z, z′ ∈ `1(P) and

‖z‖`1(P) = 1, ‖z′‖`1(P) = 1 such that ‖z‖2`1(P) + ‖z′‖2`1(P) = 2.

Therefore by applying Lemma 5.9, we obtain that J(`1(P)) ≥ 2. But
√

2 ≤ J(Z) ≤ 2 for any Banach space
Z. Thus, J(`1(P)) ≥ 2. Again, by using Lemma 5.10, we get that CNJ(`1(P)) = 2. That is J(`1(P)) = CNJ(`1(P)).

Thus by recalling [39, Corollary 7], we get that `1(P) is not uniformly non-square.

6. Upper Bound for HausdorffMatrix Operators

Let dν be the Borel probability measure on [0, 1] and Hν = Hν(α) = (hrs(α)) be the Hausdorff matrix
associated with dν defined by

hrs =


(r

s
) ∫ 1

0 α
p(1 − α)r−sdν(α) (s ≤ r),

0 (s > r).

One can also express the entries of Hausdorff matrix by hrs =
(r

s
)
∆r−sνs for 0 ≤ s ≤ r, and ν = (ν0, ν1, . . .) is a

sequence of real numbers with ν0 = 1 and

νs =

∫ 1

0
αsdν(α), s = 0, 1, 2 . . .

and ∆νs = νs − νs+1.
The Hausdorff matrix is reduced to the following classes of matrices in the special case of dν(α):

(a) Taking dν(α) = a(1 − α)a−1dα gives Cesàro matrix of order a.
(b) Taking dν(α) = point evaluation at α = a gives Euler matrix of order a.
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(c) Taking dν(α) =
|logα|

a−1

Γ(a) dα gives Hölder matrix of order a.

(d) Taking dν(α) = aαa−1dα gives Gamma matrix of order a.

When a > 0, then the Cesàro, Hölder and Gamma matrices have non negative entries, and when 0 < a < 1
then the Euler matrix has non-negative entries.

Lemma 6.1. ([38, Lemma 3.1]) Let 1 < p < ∞ and z be a non-negative sequence. Then

∞∑
r=0

 r∑
s=0

hrszs


p

<

(∫ 1

0
α
−1
p dν(α)

)p ∞∑
s=0

zp
s .

Theorem 6.2. Let 1 < p < ∞ and z = (zs) be a non-negative sequence of real numbers. Then the Hausdorff matrix
Hν maps `p to `p(P) and

‖Hν‖`p,`pP
≤

sup
s∈N0

∞∑
r=s

%s

%r+5 − 2

1/p ∫ 1

0
α
−1
p dν(α).

Proof. Let z = (zr) be a non negative sequence of real numbers in `p. By applying Hölder’s inequality and
Lemma 6.1, we have

‖Hν‖
p
`p,`p(P) =

∞∑
r=0

 r∑
s=0

%s

%r+5 − 2

s∑
v=0

hsvzv


p

≤

∞∑
r=0

r∑
s=0

%s

%r+5 − 2

 s∑
v=0

hsvzv


p  r∑

s=0

%s

%r+5 − 2


k−1

=

∞∑
r=0

r∑
s=0

%s

%r+5 − 2

 s∑
v=0

hsvzv


p

=

∞∑
s=0

 s∑
v=0

hsvzv


p
∞∑

r=s

%s

%r+5 − 2

≤ sup
s∈N0

∞∑
r=s

%s

%r+5 − 2

∞∑
s=0

 s∑
v=0

hsvzv


p

= sup
s∈N0

∞∑
r=s

%s

%r+5 − 2

(∫ 1

0
α
−1
p dν(α)

)p

‖z‖p`p
.

This concludes that

‖Hν‖`p,`p(P) ≤

sup
s∈N0

∞∑
r=s

%s

%r+5 − 2

1/p ∫ 1

0
α
−1
p dν(α).

This completes the proof.

Corollary 6.3. Let 1 < p < ∞, and S = sup
s∈N0

∞∑
r=s

%s

%r+5−2 . Then Cesàro, Hölder, Gamma and Euler matrices map `p to
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`p(P) and

‖C(a)‖`p,`p(P) ≤ S1/p
Γ(a + 1)Γ

(
1
p′

)
Γ
(
a + 1

p′

) , a > 0;

‖H(a)‖`p,`p(P) ≤
S1/p

Γ(a)

∫ 1

0
α
−1
p
∣∣∣logα

∣∣∣a−1
dα, a > 0;

‖Γ(a)‖`p,`p(P) ≤ S1/p ap
a − 1

, ap > 1;

‖E(a)‖`p,`p(P) ≤ S1/pa
−1
p , 0 < a < 1.
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