Filomat 36:3 (2022), 881–886 https://doi.org/10.2298/FIL2203881L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Remarks on *R***-Separability of Pixley–Roy Hyperspaces**

Zuquan Li^a

^aDepartment of Mathematics, Hangzhou Normal University, Hangzhou 311121, P.R.China

Abstract.

Let PR(X) denote the hyperspace of nonempty finite subsets of a topological space *X* with the Pixley– Roy topology. In this paper, motivated by [4], we introduced *cf*-covers and *rcf*-covers of *X* to establish the *R*-selective separability and the *M*-selective separability in PR(*X*) under the Pixley–Roy topology. We proved that the following statements are equivalent for a space *X*:

(1) PR(*X*) is *R*-separable (resp., *M*-separable);

(2) X satisfies $S_1(C_{rcf}, C_{rcf})$ (resp., $S_{fin}(C_{rcf}, C_{rcf})$);

(3) X is countable and each co-finite subset of X satisfies $S_1(C_{cf}, C_{cf})$ (resp., $S_{fin}(C_{cf}, C_{cf})$);

(4) X is countable and PR(X) has countable strong fan tightness (resp., PR(X) has countable fan tightness).

1. Introduction

Throughout the paper all spaces are assumed to be infinite and T_1 . N denotes the set of natural numbers. ω is the first infinite ordinal.

Let PR(X) be the family of all nonempty finite subsets of a space *X*. For $A \in PR(X)$ and an open set $U \subset X$, let

$$[A, U] = \{B \in PR(X) : A \subset B \subset U\}.$$

The family

 $\{[A, U] : A \in PR(X), U \text{ is open in } X\}$

is a base of PR(X) for the *Pixley–Roy topology* [11] on PR(X).

Let \mathcal{A} and \mathcal{B} be collections of sets of an infinite set *X*.

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{b_n : n \in \mathbb{N}\}$ such that $b_n \in A_n$ for each $n \in \mathbb{N}$ and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{B_n : n \in \mathbb{N}\}$ such that B_n is a finite subset of A_n for each $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

An open cover \mathcal{U} of a space *X* is called an *w*-cover of *X* if every finite subset of *X* is contained in a member of \mathcal{U} and *X* is not a member of \mathcal{U} . A family ξ of subsets of a space *X* is called a *π*-network of *X* if for each open set *U* of *X*, there exists $M \in \xi$ such that $M \subset U$.

Communicated by Ljubiša D.R. Kočinac

²⁰²⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54D20

Keywords. Pixley-Roy topology, R-separable, M-separable, co-finite set, cf-cover, rcf-cover

Received: 17 March 2021; Revised: 11 July 2021; Accepted: 12 July 2021

Email address: hzsdlzq@sina.com (Zuquan Li)

For a space *X*, we write

- Ω : the collection of *ω*-covers of *X*;
- Π_{ω} : the collection of π -networks of *X*;
- \mathcal{D} : the collection of dense subsets of *X*.

A space *X* is *R*-separable [1, 6] if for every sequence $\{D_n : n \in \mathbb{N}\}$ of dense subsets of *X*, there exists $x_n \in D_n$ such that $\{x_n : n \in \mathbb{N}\}$ is dense in *X*. So a space *X* is *R*-separable if and only if *X* satisfies $S_1(\mathcal{D}, \mathcal{D})$. A space *X* is *M*-separable [1, 2, 14] if for every sequence $\{D_n : n \in \mathbb{N}\}$ of dense subsets of *X*, there exists a finite subset $F_n \subset D_n$ for each $n \in \mathbb{N}$ such that $\bigcup_{n \in \mathbb{N}} F_n$ is dense in *X*. So a space *X* is *M*-separable if only if *X* satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$.

In the theory of selection principles, ω -covers play notable roles since they were introduced by J. Gerlits, Zs. Nagy [5]. Some well-known dualities of selection principles between X and PR(X) were established in terms of ω -covers. M. Scheepers obtained that [14, Corollaries 11 and 24] for a subset X of the real line, PR(X) satisfies $S_1(\mathcal{D}, \mathcal{D})$ (resp., $S_{fin}(\mathcal{D}, \mathcal{D})$) if and only if X satisfies $S_1(\Omega, \Omega)$ (resp., $S_{fin}(\Omega, \Omega)$). By results of M. Sakai [13], M. Bonanzinga, F. Cammaroto, B.A. Pansera, B. Tsaban [3, Theorem 2.21] pointed out that for a countable space X, PR(X) satisfies $S_1(\mathcal{D}, \mathcal{D})$ (resp., $S_{fin}(\mathcal{D}, \mathcal{D})$) if and only if all finite powers of X satisfy $S_1(\Pi_{\omega}, \Pi_{\omega})$ (resp., $S_{fin}(\Pi_{\omega}, \Pi_{\omega})$).

On the other hand, from several examples [Examples 2.9, 2.14 and Remark 2.15] of this paper, it shows that ω -covers don't characterize the dual properties of selection principles between a general space X and its hyperspace PR(X). We should introduce new covers different from ω -covers of X [Examples 2.5 and 2.6] to be dual to selection principles in the hyperspace PR(X). Thus the following question arises.

Problem 1.1. For a space X, find the collections \mathcal{A} and \mathcal{B} of X such that:

PR(X) is R-separable $\iff X$ satisfies S_1 and PR(X) is M-separable $\iff X$ satisfies S_{fin}

G.Di Maio, Lj.D.R. Kočinac and E. Meccariello [4] investigated $S_1(\mathcal{A}, \mathcal{A})$ and $S_{fin}(\mathcal{B}, \mathcal{B})$ in 2^X under cocompact topology F^+ and co-finite topology Z^+ when \mathcal{A} is the collection of ω -covers and \mathcal{B} is the collection of *k*-covers of *X*, and Lj.D.R. Kočinac [8] studied selection principles of Pixley–Roy topology. More information about Fell topology, the Vietoris topology and function spaces issues can be found in [9, 10].

In this paper, motivated by these co-subset ideas, we introduced *cf*-covers and *rcf*-covers of *X* to study $S_1(\mathcal{D}, \mathcal{D})$ and $S_{fin}(\mathcal{D}, \mathcal{D})$ in PR(*X*).

2. Main results

Definition 2.1. A subset *U* of *X* is called a co-finite subset of *X* if $0 < |X - U| < \omega$. A family \mathcal{U} consisting of co-finite subsets of *X* is said to be a co-finite family of *X*.

Definition 2.2. Let *X* be a topological space. A co-finite family \mathcal{U} of *X* is called a regular co-finite cover (briefly, *rcf*-cover) of *X*, if for any closed set *C* and any nonempty finite set *F* with $F \cap C = \emptyset$, there exists $U \in \mathcal{U}$ such that $C \subset U$ and $F \cap U = \emptyset$.

Definition 2.3. Let $Y \subsetneq X$. A subset *U* of *Y* is called a co-finite subset of *Y* if $0 \le |Y - U| < \omega$. A family \mathcal{U} consisting of co-finite subsets of *Y* is called a co-finite family of *Y*.

Definition 2.4. Let $Y \subsetneq X$. A co-finite family \mathcal{U} of Y is called a co-finite cover (briefly, *cf*-cover) of Y, if for every $C \subseteq Y$ closed in X, there exists $U \in \mathcal{U}$ such that $C \subseteq U$.

For a space *X*, we write

- C_{rcf} : the collection of *rcf*-covers of *X*;
- C_{cf} : the collection of *cf*-covers of each $Y \subsetneq X$.

Obviously, we have

 $C_{rcf} \subsetneq \Omega$ and $C_{cf} \subsetneq \Omega$ for each $Y \subsetneq X$.

Example 2.5. Let \mathbb{R} be the set of real numbers. Put $\mathcal{U} = {\mathbb{R} - {\frac{1}{n}} : n \in \mathbb{N}}$. Then \mathcal{U} is a co-finite ω -cover of \mathbb{R} . Let $C = {\frac{1}{n} : n \in \mathbb{N}} \cup {0}$ and $F = {2}$, then *C* is closed and *F* is nonempty finite with $F \cap C = \emptyset$. There is no $U \in \mathcal{U}$ such that $C \subset U$ and $F \cap U = \emptyset$. So \mathcal{U} is not an *rcf*-cover of \mathbb{R} .

Example 2.6. Let $Y = [0,1] \subset \mathbb{R}$ and *C* the Cantor set of *Y* closed in \mathbb{R} . Put $\mathcal{U} = \{Y - \{x\} : x \in C\}$. Then \mathcal{U} is a co-finite ω -cover of *Y*. There is no $U \in \mathcal{U}$ such that $C \subset U$. So \mathcal{U} is not a *cf*-cover of *Y*.

For a subset $U \subset X$ and a family \mathcal{U} of subsets of X, we write:

$$U^c = X - U$$
 and $\mathcal{U}^c = \{U^c : U \in \mathcal{U}\}.$

Theorem 2.7. *For a space X, the following are equivalent:*

(1) PR(X) satisfies $S_1(\mathcal{D}, \mathcal{D})$;

(2) X satisfies $S_1(C_{rcf}, C_{rcf})$.

Proof. (1)⇒(2) Let { $\mathcal{U}_n : n \in \mathbb{N}$ } be a sequence of *rcf*-covers of *X*. For each $n \in \mathbb{N}$, \mathcal{U}_n^c is a dense subset of PR(*X*). Indeed, let [*A*, *V*] be a basic open subset of PR(*X*), then *X* − *V* is closed and *A* is nonempty finite with $A \cap (X - V) = \emptyset$. There exists $U \in \mathcal{U}_n$ such that $X - V \subset U$ and $A \cap U = \emptyset$. Thus $A \subset U^c \subset V$, i.e., $U^c \in [A, V]$. Since PR(*X*) satisfies $S_1(\mathcal{D}, \mathcal{D})$, there exists $U_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $\overline{\{U_n^c : n \in \mathbb{N}\}} = PR(X)$. We show that $\{U_n : n \in \mathbb{N}\}$ is an *rcf*-cover of *X*. In fact, let *C* be a closed set and let *F* be a nonempty finite set with $C \cap F = \emptyset$. Then [F, X - C] is an open subset of PR(*X*). Thus $[F, X - C] \cap \{U_n^c : n \in \mathbb{N}\} \neq \emptyset$. Let $U_k^c \in [F, X - C]$. Then $C \subset U_k$ and $F \cap U_k = \emptyset$. So *X* satisfies $S_1(\mathcal{C}_{rcf}, \mathcal{C}_{rcf})$.

(2)⇒(1) Let { $\mathcal{D}_n : n \in \mathbb{N}$ } be a sequence of dense subsets of PR(X). For each $n \in \mathbb{N}$, \mathcal{D}_n^c is an *rcf*-cover of X. Indeed, fix $n \in \mathbb{N}$. For a closed set C and a nonempty finite set F with $C \cap F = \emptyset$, then [F, X – C] is an open subset of PR(X). There exists $D \in \mathcal{D}_n$ such that $D \in [F, X - C]$. Thus $C \subset D^c$ and $F \cap D^c = \emptyset$. By (2), there exists $D_n \in \mathcal{D}_n$ for each $n \in \mathbb{N}$ such that { $D_n^c : n \in \mathbb{N}$ } is an *rcf*-cover of X. Hence { $\overline{D_n : n \in \mathbb{N}}$ } = PR(X). So PR(X) satisfies $S_1(\mathcal{D}, \mathcal{D})$. □

Theorem 2.8. For a space *X*, the following are equivalent:

(2) X is countable and each co-finite subset of X satisfies $S_1(C_{cf}, C_{cf})$.

Proof. (1) \Rightarrow (2) Suppose that $|X| > \omega$. For each $n \in \mathbb{N}$, let $\mathcal{U}_n = \{X - A : A \in [X]^{<\omega} \setminus \{\emptyset\}\}$, where $[X]^{<\omega} = \{A \subset X : A \text{ is finite}\}$. Then $\{\mathcal{U}_n : n \in \mathbb{N}\}$ is a sequence of *rcf*-covers of *X*. There exists $X - A_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $\{X - A_n : n \in \mathbb{N}\}$ is an *rcf*-cover of *X*. Take $x \in X - \bigcup_{n \in \mathbb{N}} A_n$ and put $F = \{x\}$. There is no $X - A_k \in \{X - A_n : n \in \mathbb{N}\}$ such that $F \cap (X - A_k) = \emptyset$, a contradiction.

Let *Y* be a co-finite subset of *X* and $\{\mathcal{U}_n : n \in \mathbb{N}\}$ a sequence of *cf*-covers of *Y*. For each $n \in \mathbb{N}$, put $\mathcal{W}'_n = \{U - B : U \in \mathcal{U}_n, B \in [Y]^{<\omega}\}$. Let

$$\mathcal{W}_n = \mathcal{W}'_n \bigcup \{ (Y - F^{(1)}) \cup F^{(2)} : F^{(1)} \in [Y]^{<\omega}, \ F^{(2)} \in [Y^c]^{<\omega} \setminus \{\emptyset\} \} \setminus \{X\}.$$

Then W_n is an *rcf*-cover of X. Indeed, let C be a closed set and F a nonempty finite set with $F \cap C = \emptyset$. Let $F = F_1 \cup F_2$, where $F_1 \subset Y$ and $F_2 \subset Y^c$.

Case 1. If $C \subset Y$, take $U \in \mathcal{U}_n$ such that $C \subset U$ since \mathcal{U}_n is a *cf*-cover of *Y*. Then $U - F_1 \in \mathcal{W}'_n \subset \mathcal{W}_n$ such that

$$C \subset U - F_1$$
 and $F \cap (U - F_1) = \emptyset$.

Case 2. If $C - Y \neq \emptyset$, then $Y^c - F_2 \neq \emptyset$ since $F_2 \cap C = \emptyset$. Let $F^{(1)} = F_1$, $F^{(2)} = Y^c - F_2$, then $(Y - F^{(1)}) \cup F^{(2)} \in \mathcal{W}_n$ such that

$$C \subset (Y - F^{(1)}) \cup F^{(2)}$$
 and $F \cap [(Y - F^{(1)}) \cup F^{(2)}] = \emptyset$

By (1), there exists $W_n \in W_n$ for each $n \in \mathbb{N}$ such that $\{W_n : n \in \mathbb{N}\}$ is an *rcf*-cover of X. Arrange $\{W_n : n \in \mathbb{N}\}$ into

$$\{W'_n:n\in\mathbb{N}_1\}\cup\{W''_n:n\in\mathbb{N}_2\},\$$

⁽¹⁾ X satisfies $S_1(C_{rcf}, C_{rcf})$;

where

$$W'_n = U_n - B_n \in \mathcal{W}'_n \ (n \in \mathbb{N}_1), \ W''_n = (Y - F_n^{(1)}) \cup F_n^{(2)} \ (n \in \mathbb{N}_2), \ \mathbb{N}_1 \cup \mathbb{N}_2 = \mathbb{N} \text{ and } \mathbb{N}_1 \cap \mathbb{N}_2 = \emptyset.$$

For each $n \in \mathbb{N}$, if $n \in \mathbb{N}_1$, take $U_n \in \mathcal{U}_n$ such that $U_n - B_n = W'_n \in \mathcal{W}'_n$; if $n \in \mathbb{N}_2$, take any $U_n \in \mathcal{U}_n$. Then $\{U_n : n \in \mathbb{N}\}$ is a *cf*-cover of Y. In fact, let $C \subset Y$ be closed in X, there exists $k \in \mathbb{N}_1$ such that $C \subset W'_k$ and $W'_k \cap Y^c = \emptyset$ since $\{W'_n : n \in \mathbb{N}_1\} \cup \{W''_n : n \in \mathbb{N}_2\}$ is an *rcf*-cover of X and $W''_n \cap Y^c \neq \emptyset$ for any $n \in \mathbb{N}_2$. Thus $C \subset W'_k = U_k - B_k \subset U_k$.

(2) \Rightarrow (1) Put $[X]^{<\omega} \setminus \{\emptyset\} = \{A_m : m \in \mathbb{N}\}$ since X is countable. Let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of *rcf*-covers of X. Rearrange $\{\mathcal{U}_n : n \in \mathbb{N}\}$ as $\{\mathcal{U}_{n,m} : n, m \in \mathbb{N}\}$. For each $n, m \in \mathbb{N}$, let

$$\mathcal{W}_{n,m} = \{ U \in \mathcal{U}_{n,m} : U \cap A_m = \emptyset \}.$$

Then $\{W_{n,m} : n \in \mathbb{N}\}$ is a sequence of cf-covers of $X - A_m$. There exists $U_{n,m} \in W_{n,m}$ such that $\{U_{n,m} : n \in \mathbb{N}\}$ is a cf-cover of $X - A_m$. It is clear that each $U_{n,m} \in \mathcal{U}_{n,m}$. We show that $\{U_{n,m} : n, m \in \mathbb{N}\}$ is an rcf-cover of X. Let C be a closed set and F a nonempty finite set with $C \cap F = \emptyset$, there is $A_m \in [X]^{<\omega} \setminus \{\emptyset\}$ such that $F = A_m$; moreover, $C \subset X - A_m$. There exists $U_{k,m} \in \{U_{n,m} : n \in \mathbb{N}\} \subset \{U_{n,m} : n, m \in \mathbb{N}\}$ such that $C \subset U_{k,m}$. Thus $C \subset U_{k,m}$ and $A_m \cap U_{k,m} = \emptyset$. So X satisfies $S_1(C_{rcf}, C_{rcf})$. \Box

Example 2.9. The following two examples show that $S_1(\Omega, \Omega) \neq S_1(C_{rcf}, C_{rcf})$.

1. Let $S_{\omega} = \mathbb{N}^2 \bigcup \{0\}$ be the sequential fan, where each $(n, m) \in \mathbb{N}^2$ is isolated in S_{ω} and a basic open neighbourhood of 0 is the form $\bigcup_{n \in \mathbb{N}} \{(n, k) : k \ge m_n\} \bigcup \{0\}$, where $m_n \in \mathbb{N}$. Obviously, S_{ω} satisfies $S_1(\Omega, \Omega)$ since S_{ω} is countable. Let $Y = \mathbb{N}^2$, then Y is a co-finite subset of S_{ω} . Let $\mathcal{U}_n = \{Y - \{(n, m)\} : m \in \mathbb{N}\}$, then $\{\mathcal{U}_n : n \in \mathbb{N}\}$ is a sequence of *cf*-covers of Y. Take any $Y - \{(n, m_n)\} \in \mathcal{U}_n$ and put $C = \{(n, m_n) : n \in \mathbb{N}\}$, then $C \subset Y$ is closed in X. There is no $Y - \{(k, m_k)\} \in \{Y - \{(n, m_n)\} : n \in \mathbb{N}\}$ such that $C \subset Y - \{(k, m_k)\}$. So Y does not satisfy $S_1(C_{cf}, C_{cf})$. By Theorem 2.8, S_{ω} does not satisfy $S_1(C_{ref}, C_{ref})$.

2. Assuming CH, let *L* be the Lusin set of Theorem 2.13 in [7]. Then *L* satisfies $S_1(\Omega, \Omega)$. By Theorem 2.8, *L* does not satisfy $S_1(C_{rcf}, C_{rcf})$ since it is uncountable. So $S_1(\Omega, \Omega) \neq S_1(C_{rcf}, C_{rcf})$.

A space *X* is said to have *countable strong fan tightness* [13], if for each $x \in X$ and each sequence $\{A_n\}_{n \in \mathbb{N}}$ of *X* with $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$, there exists $x_n \in A_n$ such that $x \in \overline{\{x_n : n \in \mathbb{N}\}}$.

Theorem 2.10. *For a space X, the following are equivalent:*

(1) PR(X) has countable strong fan tightness;

(2) Each co-finite subset of X satisfies $S_1(C_{cf}, C_{cf})$.

Proof. (1)=>(2) Let *Y* be a co-finite subset of *X* and $\{\mathcal{U}_n : n \in \mathbb{N}\}$ a sequence of *cf*-covers of *Y*, then $\{\mathcal{U}_n^c : n \in \mathbb{N}\}$ is a sequence of subsets of PR(*X*) and $Y^c \in \overline{\mathcal{U}_n^c}$ for each $n \in \mathbb{N}$. In fact, let [A, V] be a neighbourhood of Y^c , then $X - V \subset Y \subset X - A$. There exists $U \in \mathcal{U}_n$ such that $X - V \subset U \subset Y$. Thus $U^c \in [A, V]$. Since PR(*X*) has countable strong fan tightness, there exists $U_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $Y^c \in \overline{\{U_n^c : n \in \mathbb{N}\}}$. Let $C \subset Y$ be a closed set in *X*, then $[Y^c, X - C]$ is a neighbourhood of Y^c . Thus $[Y^c, X - C] \cap \{U_n^c : n \in \mathbb{N}\} \neq \emptyset$. Take $U_k^c \in [Y^c, X - C]$, then $C \subset U_k$. So $\{U_n : n \in \mathbb{N}\}$ is a *cf*-cover of *Y*.

 $(2) \Rightarrow (1)$ Let $\{\mathcal{A}_n : n \in \mathbb{N}\}$ be a sequence of subsets of PR(X) and $A \in \overline{\mathcal{A}_n} \cap PR(X)$ for each $n \in \mathbb{N}$. Denote $\mathcal{B}_n = \{B \in \mathcal{A}_n : A \subset B\}$, then \mathcal{B}_n^c is a *cf*-cover of A^c . Indeed, let $C \subset A^c$ be closed in X, then [A, X - C] is a neighbourhood of A. There exists $B \in \mathcal{A}_n$ such that $B \in [A, X - C]$. Thus $B \in \mathcal{B}_n$ such that $C \subset B^c \subset A^c$. By (2), there exists $B_n \in \mathcal{B}_n$ such that $\{B_n^c : n \in \mathbb{N}\}$ is a *cf*-cover of A^c . Hence $A \in \{\overline{B_n : n \in \mathbb{N}}\}$. So PR(X) has countable strong fan tightness. \Box

From Theorems 2.7, 2.8 and 2.10, we have

Corollary 2.11. *For a space X, the following are equivalent:*

- (1) PR(X) is *R*-separable;
- (2) X satisfies $S_1(C_{rcf}, C_{rcf})$;
- (3) X is countable and each co-finite subset of X satisfies $S_1(C_{cf}, C_{cf})$;
- (4) X is countable and PR(X) has countable strong fan tightness.

Theorem 2.12. For a space X, the following are equivalent:

(1) PR(X) satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$;

(2) X satisfies $S_{fin}(C_{rcf}, C_{rcf})$.

Proof. (1)=>(2) Let { $\mathcal{U}_n : n \in \mathbb{N}$ } be a sequence of *rcf*-covers of *X*. For each $n \in \mathbb{N}$, \mathcal{U}_n^c is a dense subset of PR(*X*). By (1), there is a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n^c = PR(X)$. Let *C* be a closed set, *F* a nonempty finite set with $F \cap C = \emptyset$. Then [*F*, *X*-*C*] is an open subset of PR(*X*). Thus [*F*, *X*-*C*] $\cap (\bigcup_{n \in \mathbb{N}} \mathcal{V}_n^c) \neq \emptyset$. Let $U^c \in [F, X - C] \cap (\bigcup_{n \in \mathbb{N}} \mathcal{V}_n^c)$. Then $U \in \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ such that $C \subset U$ and $F \cap U = \emptyset$. So $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is an *rcf*-cover of *X*.

 $(2) \Rightarrow (1)$ Let $\{\mathcal{D}_n : n \in \mathbb{N}\}$ be a sequence of dense subsets of PR(X), then $\{\mathcal{D}_n^c : n \in \mathbb{N}\}$ is a sequence of *rcf*-covers of *X*. There is a finite subset $\mathcal{B}_n \subset \mathcal{D}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{B}_n^c$ is an *rcf*-cover of *X*. Thus $\overline{\bigcup_{n \in \mathbb{N}} \mathcal{B}_n} = PR(X)$. So PR(X) satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$. \Box

In a similar way as in Theorem 2.8, we obtain

Theorem 2.13. For a space *X*, the following are equivalent:

(1) X satisfies $S_{fin}(C_{rcf}, C_{rcf})$;

(2) X is countable and each co-finite subset of X satisfies $S_{fin}(C_{cf}, C_{cf})$.

We shall now give two examples of $S_{fin}(\Omega, \Omega) \neq S_{fin}(C_{rcf}, C_{rcf})$.

Example 2.14. \mathbb{R} is σ -compact and $\beta \mathbb{N}$ is compact. By Theorem 2.2 in [7], \mathbb{R} and $\beta \mathbb{N}$ satisfy $S_{fin}(\Omega, \Omega)$. By Theorem 2.13, \mathbb{R} and $\beta \mathbb{N}$ do not satisfy $S_{fin}(C_{rcf}, C_{rcf})$ since they are uncountable. So $S_{fin}(\Omega, \Omega) \neq S_{fin}(C_{rcf}, C_{rcf})$.

Remark 2.15. From Theorems 2.7, 2.8, 2.12 and 2.13, it implies that "*X* has property $S_1(\Omega, \Omega)$ (resp., $S_{fin}(\Omega, \Omega)$)" and "PR(*X*) has property $S_1(\mathcal{D}, \mathcal{D})$ (resp., $S_{fin}(\mathcal{D}, \mathcal{D})$)" are not equivalent. So (2) and (9) of Corollaries 11 and 24 in [14] are not equivalent for general spaces.

A space *X* is said to have *countable fan tightness* if for each sequence $\{A_n\}_{n \in \mathbb{N}}$ of subsets of *X* and $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$, there exists a finite subset $B_n \subset A_n$ such that $x \in \bigcup_{n \in \mathbb{N}} \overline{B_n}$.

Theorem 2.16. *For a space X, the following are equivalent:*

(1) PR(X) has countable fan tightness;

(2) Each co-finite subset of X satisfies $S_{fin}(C_{cf}, C_{cf})$.

Proof. (1)=>(2) Let *Y* be a co-finite subset of *X* and $\{\mathcal{U}_n : n \in \mathbb{N}\}$ a sequence of *cf*-covers of *Y*. Then $\{\mathcal{U}_n^c : n \in \mathbb{N}\}$ is a sequence of subsets of PR(*X*) and $Y^c \in \overline{\mathcal{U}_n^c}$ for each $n \in \mathbb{N}$. Since PR(*X*) has countable fan tightness, there is a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ such that $Y^c \in \overline{\bigcup_{n \in \mathbb{N}} \mathcal{V}_n^c}$. Let $C \subset Y$ be closed in *X*, then $[Y^c, X - C]$ is a neighbourhood of Y^c . Thus $[Y^c, X - C] \cap (\bigcup_{n \in \mathbb{N}} \mathcal{V}_n^c) \neq \emptyset$. Let $U^c \in [Y^c, X - C] \cap (\bigcup_{n \in \mathbb{N}} \mathcal{V}_n^c)$, then $U \in \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ such that $C \subset U$. So $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is a *cf*-cover of *Y*.

 $(2) \Rightarrow (1)$ Let $\{\mathcal{A}_n : n \in \mathbb{N}\}$ be a sequence of subsets of PR(X) and $A \in \overline{\mathcal{A}_n} \cap \text{PR}(X)$ for all $n \in \mathbb{N}$. Denote $\mathcal{B}_n = \{B \in \mathcal{A}_n : A \subset B\}$, then $\{\mathcal{B}_n^c : n \in \mathbb{N}\}$ is a sequence of *cf*-covers of A^c . By (2), there exists a finite subset $C_n \subset \mathcal{B}_n \subset \mathcal{A}_n$ such that $\bigcup_{n \in \mathbb{N}} C_n^c$ is a *cf*-cover of A^c . Thus $A \in \overline{\bigcup_{n \in \mathbb{N}} C_n}$. So PR(X) has countable fan tightness. \Box

Combining Theorems 2.12, 2.13 and 2.16, we have

Corollary 2.17. *For a space X, the following are equivalent:*

(1) PR(X) is M-separable;

(2) X satisfies $S_{fin}(C_{rcf}, C_{rcf})$;

(3) X is countable and each co-finite subset of X satisfies $S_{fin}(C_{cf}, C_{cf})$;

(4) X is countable and PR(X) has countable fan tightness.

References

- [1] A. Bella, M. Bonanzinga, M.V. Matveev, Variations of selective separability, Topol. Appl. 156 (2009) 1241–1252.
- A. Bella, M. Bonanzinga, M.V. Matveev, V. Tkachuk, Selective separability: General facts and behavior in countable spaces, Topol. [2] Proc. 32 (2008) 15-32.
- [3] M. Bonanzinga, F. Cammaroto, B.A. Pansera, B. Tsaban, Diagonalizations of dense families, Topol. Appl. 165 (2014) 12–25.
- [4] G. Di Maio, Lj.D.R. Kočinac, E. Meccariello, Selection principles and hyperspace topologies, Topol. Appl. 153 (2005) 912–923. [5] J. Gerlits, Zs. Nagy, Some properties of C(X). I, Topol. Appl. 14 (1982) 151–161.
- [6] G. Gruenhage, M. Sakai, Selective separability and its variations, Topol. Appl. 158 (2011) 1352–1359.
- [7] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, Combinatorics of open covers II, Topol. Appl. 73 (1996) 241–266.
- [8] Lj.D.R. Kočinac, The Pixley-Roy topology and selection principles, Quest. Answers Gen. Topology 19 (2001) 219-225.
- [9] Z. Li, Selection principles of the Fell topology and the Vietoris topology, Topol. Appl. 212 (2016) 90–104.
- [10] A.V. Osipov, Selectors for sequences of subsets of hyperspaces, Topol. Appl. 275 (2020) 10700.
- [11] C. Pixley, P. Roy, Uncompletable Moore spaces, in: Proc. Auburn Topology Conf. (1969) 75-85.
- [12] M. Sakai, Property C" and function spaces, Proc. Amer. Math. Soc. 104 (1988) 917-919.
- [13] M. Sakai, Selective separability of Pixley-Roy hyperspaces, Topol. Appl. 159 (2012) 1591–1598.
- [14] M. Scheepers, Combinatorics of open covers (V): Pixley–Roy spaces of sets of real, and ω -covers, Topol. Appl. 102 (2000) 13–31.