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Abstract.
Let PR(X) denote the hyperspace of nonempty finite subsets of a topological space X with the Pixley–

Roy topology. In this paper, motivated by [4], we introduced c f -covers and rc f -covers of X to establish
the R-selective separability and the M-selective separability in PR(X) under the Pixley–Roy topology. We
proved that the following statements are equivalent for a space X:

(1) PR(X) is R-separable (resp., M-separable);
(2) X satisfies S1(Crc f ,Crc f ) (resp.,Sfin(Crc f ,Crc f ));
(3) X is countable and each co-finite subset of X satisfies S1(Cc f ,Cc f ) (resp.,Sfin(Cc f ,Cc f ));
(4) X is countable and PR(X) has countable strong fan tightness (resp., PR(X) has countable fan tightness).

1. Introduction

Throughout the paper all spaces are assumed to be infinite and T1. N denotes the set of natural numbers.
ω is the first infinite ordinal.

Let PR(X) be the family of all nonempty finite subsets of a space X. For A ∈ PR(X) and an open set
U ⊂ X, let

[A,U] = {B ∈ PR(X) : A ⊂ B ⊂ U}.

The family
{[A,U] : A ∈ PR(X),U is open in X}

is a base of PR(X) for the Pixley–Roy topology [11] on PR(X).
LetA and B be collections of sets of an infinite set X.
S1(A,B) denotes the selection principle: for each sequence {An : n ∈ N} of elements of A there is a

sequence {bn : n ∈N} such that bn ∈ An for each n ∈N and {bn : n ∈N} is an element of B.
Sfin(A,B) denotes the selection principle: for each sequence {An : n ∈ N} of elements of A there is a

sequence {Bn : n ∈N} such that Bn is a finite subset of An for each n ∈N and
⋃

n∈N Bn ∈ B.
An open cover U of a space X is called an ω-cover of X if every finite subset of X is contained in a

member ofU and X is not a member ofU. A family ξ of subsets of a space X is called a π-network of X if
for each open set U of X, there exists M ∈ ξ such that M ⊂ U.
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For a space X, we write

• Ω : the collection of ω-covers of X;
• Πω : the collection of π-networks of X;
• D : the collection of dense subsets of X.

A space X is R-separable [1, 6] if for every sequence {Dn : n ∈ N} of dense subsets of X, there exists
xn ∈ Dn such that {xn : n ∈ N} is dense in X. So a space X is R-separable if and only if X satisfies S1(D,D).
A space X is M-separable [1, 2, 14] if for every sequence {Dn : n ∈ N} of dense subsets of X, there exists a
finite subset Fn ⊂ Dn for each n ∈ N such that

⋃
n∈N Fn is dense in X. So a space X is M-separable if only if

X satisfies Sfin(D,D).
In the theory of selection principles, ω-covers play notable roles since they were introduced by J. Gerlits,

Zs. Nagy [5]. Some well-known dualities of selection principles between X and PR(X) were established
in terms of ω-covers. M. Scheepers obtained that [14, Corollaries 11 and 24] for a subset X of the real line,
PR(X) satisfies S1(D,D) (resp., Sfin(D,D)) if and only if X satisfies S1(Ω,Ω) (resp., Sfin(Ω,Ω)). By results of
M. Sakai [13], M. Bonanzinga, F. Cammaroto, B.A. Pansera, B. Tsaban [3, Theorem 2.21] pointed out that for
a countable space X, PR(X) satisfies S1(D,D) (resp., Sfin(D,D)) if and only if all finite powers of X satisfy
S1(Πω,Πω) (resp., Sfin(Πω,Πω)).

On the other hand, from several examples [Examples 2.9, 2.14 and Remark 2.15] of this paper, it shows
that ω-covers don’t characterize the dual properties of selection principles between a general space X and
its hyperspace PR(X). We should introduce new covers different from ω-covers of X [Examples 2.5 and 2.6]
to be dual to selection principles in the hyperspace PR(X). Thus the following question arises.

Problem 1.1. For a space X, find the collectionsA and B of X such that:

PR(X) is R-separable⇐⇒ X satisfies S1 and PR(X) is M-separable⇐⇒ X satisfies Sfin

G.Di Maio, Lj.D.R. Kočinac and E. Meccariello [4] investigated S1(A,A) and Sfin(B,B) in 2X under co-
compact topology F+ and co-finite topology Z+ whenA is the collection ofω-covers andB is the collection of
k-covers of X, and Lj.D.R. Kočinac [8] studied selection principles of Pixley–Roy topology. More information
about Fell topology, the Vietoris topology and function spaces issues can be found in [9, 10].

In this paper, motivated by these co-subset ideas, we introduced c f -covers and rc f -covers of X to study
S1(D,D) and Sfin(D,D) in PR(X).

2. Main results

Definition 2.1. A subset U of X is called a co-finite subset of X if 0 < |X −U| < ω. A familyU consisting of
co-finite subsets of X is said to be a co-finite family of X.

Definition 2.2. Let X be a topological space. A co-finite family U of X is called a regular co-finite cover
(briefly, rc f -cover) of X, if for any closed set C and any nonempty finite set F with F ∩ C = ∅, there exists
U ∈ U such that C ⊂ U and F ∩U = ∅.

Definition 2.3. Let Y ( X. A subset U of Y is called a co-finite subset of Y if 0 ≤ |Y − U| < ω. A familyU
consisting of co-finite subsets of Y is called a co-finite family of Y.

Definition 2.4. Let Y ( X. A co-finite familyU of Y is called a co-finite cover (briefly, c f -cover) of Y, if for
every C ⊂ Y closed in X, there exists U ∈ U such that C ⊂ U.

For a space X, we write

• Crc f : the collection of rc f -covers of X;
• Cc f : the collection of c f -covers of each Y ( X.

Obviously, we have
Crc f ( Ω and Cc f ( Ω for each Y ( X.
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Example 2.5. Let R be the set of real numbers. PutU = {R − { 1
n } : n ∈N}. ThenU is a co-finite ω-cover of

R. Let C = { 1
n : n ∈ N} ∪ {0} and F = {2}, then C is closed and F is nonempty finite with F ∩ C = ∅. There is

no U ∈ U such that C ⊂ U and F ∩U = ∅. SoU is not an rc f -cover of R.

Example 2.6. Let Y = [0, 1] ⊂ R and C the Cantor set of Y closed in R. PutU = {Y − {x} : x ∈ C}. ThenU is
a co-finite ω-cover of Y. There is no U ∈ U such that C ⊂ U. SoU is not a c f -cover of Y.

For a subset U ⊂ X and a familyU of subsets of X, we write:

Uc = X −U andUc = {Uc : U ∈ U}.

Theorem 2.7. For a space X, the following are equivalent:
(1) PR(X) satisfies S1(D,D);
(2) X satisfies S1(Crc f ,Crc f ).

Proof. (1)⇒(2) Let {Un : n ∈ N} be a sequence of rc f -covers of X. For each n ∈ N, Uc
n is a dense subset of

PR(X). Indeed, let [A,V] be a basic open subset of PR(X), then X−V is closed and A is nonempty finite with
A∩ (X−V) = ∅. There exists U ∈ Un such that X−V ⊂ U and A∩U = ∅. Thus A ⊂ Uc

⊂ V, i.e., Uc
∈ [A,V].

Since PR(X) satisfies S1(D,D), there exists Un ∈ Un for each n ∈ N such that {Uc
n : n ∈N} = PR(X). We

show that {Un : n ∈ N} is an rc f -cover of X. In fact, let C be a closed set and let F be a nonempty finite
set with C ∩ F = ∅. Then [F,X − C] is an open subset of PR(X). Thus [F,X − C] ∩ {Uc

n : n ∈ N} , ∅. Let
Uc

k ∈ [F,X − C]. Then C ⊂ Uk and F ∩Uk = ∅. So X satisfies S1(Crc f ,Crc f ).
(2)⇒(1) Let {Dn : n ∈N} be a sequence of dense subsets of PR(X). For each n ∈N,Dc

n is an rc f -cover of
X. Indeed, fix n ∈N. For a closed set C and a nonempty finite set F with C∩F = ∅, then [F,X−C] is an open
subset of PR(X). There exists D ∈ Dn such that D ∈ [F,X − C]. Thus C ⊂ Dc and F ∩ Dc = ∅. By (2), there
exists Dn ∈ Dn for each n ∈ N such that {Dc

n : n ∈ N} is an rc f -cover of X. Hence {Dn : n ∈N} = PR(X). So
PR(X) satisfies S1(D,D).

Theorem 2.8. For a space X, the following are equivalent:
(1) X satisfies S1(Crc f ,Crc f );
(2) X is countable and each co-finite subset of X satisfies S1(Cc f ,Cc f ).

Proof. (1)⇒(2) Suppose that |X| > ω. For each n ∈ N, letUn = {X − A : A ∈ [X]<ω\{∅}}, where [X]<ω = {A ⊂
X : A is finite}. Then {Un : n ∈ N} is a sequence of rc f -covers of X. There exists X − An ∈ Un for each
n ∈ N such that {X − An : n ∈ N} is an rc f -cover of X. Take x ∈ X −

⋃
n∈N An and put F = {x}. There is no

X − Ak ∈ {X − An : n ∈N} such that F ∩ (X − Ak) = ∅, a contradiction.
Let Y be a co-finite subset of X and {Un : n ∈ N} a sequence of c f -covers of Y. For each n ∈ N, put

W
′
n = {U − B : U ∈ Un,B ∈ [Y]<ω}. Let

Wn =W′

n

⋃
{(Y − F(1)) ∪ F(2) : F(1)

∈ [Y]<ω, F(2)
∈ [Yc]<ω\{∅}}\{X}.

ThenWn is an rc f -cover of X. Indeed, let C be a closed set and F a nonempty finite set with F ∩ C = ∅. Let
F = F1 ∪ F2, where F1 ⊂ Y and F2 ⊂ Yc.

Case 1. If C ⊂ Y, take U ∈ Un such that C ⊂ U since Un is a c f -cover of Y. Then U − F1 ∈ W
′
n ⊂ Wn

such that
C ⊂ U − F1 and F ∩ (U − F1) = ∅.

Case 2. If C−Y , ∅, then Yc
−F2 , ∅ since F2∩C = ∅. Let F(1) = F1, F(2) = Yc

−F2, then (Y−F(1))∪F(2)
∈ Wn

such that
C ⊂ (Y − F(1)) ∪ F(2) and F ∩ [(Y − F(1)) ∪ F(2)] = ∅.

By (1), there exists Wn ∈ Wn for each n ∈ N such that {Wn : n ∈ N} is an rc f -cover of X. Arrange
{Wn : n ∈N} into

{W′

n : n ∈N1} ∪ {W′′

n : n ∈N2},
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where

W′

n = Un − Bn ∈ W
′

n (n ∈N1), W′′

n = (Y − F(1)
n ) ∪ F(2)

n (n ∈N2), N1 ∪N2 =N andN1 ∩N2 = ∅.

For each n ∈ N, if n ∈ N1, take Un ∈ Un such that Un − Bn = W′
n ∈ W

′
n; if n ∈ N2, take any Un ∈ Un. Then

{Un : n ∈ N} is a c f -cover of Y. In fact, let C ⊂ Y be closed in X, there exists k ∈ N1 such that C ⊂ W′

k and
W′

k ∩ Yc = ∅ since {W′
n : n ∈N1} ∪ {W′′

n : n ∈N2} is an rc f -cover of X and W′′
n ∩ Yc , ∅ for any n ∈N2. Thus

C ⊂W′

k = Uk − Bk ⊂ Uk.
(2)⇒(1) Put [X]<ω\{∅} = {Am : m ∈N} since X is countable. Let {Un : n ∈N} be a sequence of rc f -covers

of X. Rearrange {Un : n ∈N} as {Un,m : n,m ∈N}. For each n,m ∈N, let

Wn,m = {U ∈ Un,m : U ∩ Am = ∅}.

Then {Wn,m : n ∈N} is a sequence of c f -covers of X−Am. There exists Un,m ∈ Wn,m such that {Un,m : n ∈N}
is a c f -cover of X−Am. It is clear that each Un,m ∈ Un,m. We show that {Un,m : n,m ∈N} is an rc f -cover of X.
Let C be a closed set and F a nonempty finite set with C ∩ F = ∅, there is Am ∈ [X]<ω\{∅} such that F = Am;
moreover, C ⊂ X − Am. There exists Uk,m ∈ {Un,m : n ∈ N} ⊂ {Un,m : n,m ∈ N} such that C ⊂ Uk,m. Thus
C ⊂ Uk,m and Am ∩Uk,m = ∅. So X satisfies S1(Crc f ,Crc f ).

Example 2.9. The following two examples show that S1(Ω,Ω) , S1(Crc f ,Crc f ).
1. Let Sω = N2⋃

{0} be the sequential fan, where each (n,m) ∈ N2 is isolated in Sω and a basic open
neighbourhood of 0 is the form

⋃
n∈N{(n, k) : k ≥ mn}

⋃
{0}, where mn ∈ N. Obviously, Sω satisfies S1(Ω,Ω)

since Sω is countable. Let Y = N2, then Y is a co-finite subset of Sω. Let Un = {Y − {(n,m)} : m ∈ N}, then
{Un : n ∈N} is a sequence of c f -covers of Y. Take any Y − {(n,mn)} ∈ Un and put C = {(n,mn) : n ∈N}, then
C ⊂ Y is closed in X. There is no Y − {(k,mk)} ∈ {Y − {(n,mn)} : n ∈ N} such that C ⊂ Y − {(k,mk)}. So Y does
not satisfy S1(Cc f ,Cc f ). By Theorem 2.8, Sω does not satisfy S1(Crc f ,Crc f ).

2. Assuming CH, let L be the Lusin set of Theorem 2.13 in [7]. Then L satisfies S1(Ω,Ω). By Theorem
2.8, L does not satisfy S1(Crc f ,Crc f ) since it is uncountable. So S1(Ω,Ω) , S1(Crc f ,Crc f ).

A space X is said to have countable strong fan tightness [13], if for each x ∈ X and each sequence {An}n∈N

of X with x ∈
⋂

n∈N An, there exists xn ∈ An such that x ∈ {xn : n ∈N}.

Theorem 2.10. For a space X, the following are equivalent:
(1) PR(X) has countable strong fan tightness;
(2) Each co-finite subset of X satisfies S1(Cc f ,Cc f ).

Proof. (1)⇒(2) Let Y be a co-finite subset of X and {Un : n ∈N} a sequence of c f -covers of Y, then {Uc
n : n ∈N}

is a sequence of subsets of PR(X) and Yc
∈ Uc

n for each n ∈ N. In fact, let [A,V] be a neighbourhood of Yc,
then X − V ⊂ Y ⊂ X − A. There exists U ∈ Un such that X − V ⊂ U ⊂ Y. Thus Uc

∈ [A,V]. Since PR(X) has
countable strong fan tightness, there exists Un ∈ Un for each n ∈ N such that Yc

∈ {Uc
n : n ∈N}. Let C ⊂ Y

be a closed set in X, then [Yc,X − C] is a neighbourhood of Yc. Thus [Yc,X − C] ∩ {Uc
n : n ∈ N} , ∅. Take

Uc
k ∈ [Yc,X − C], then C ⊂ Uk. So {Un : n ∈N} is a c f -cover of Y.

(2)⇒(1) Let {An : n ∈N} be a sequence of subsets of PR(X) and A ∈ An ∩ PR(X) for each n ∈N. Denote
Bn = {B ∈ An : A ⊂ B}, then Bc

n is a c f -cover of Ac. Indeed, let C ⊂ Ac be closed in X, then [A,X − C] is a
neighbourhood of A. There exists B ∈ An such that B ∈ [A,X − C]. Thus B ∈ Bn such that C ⊂ Bc

⊂ Ac. By
(2), there exists Bn ∈ Bn such that {Bc

n : n ∈ N} is a c f -cover of Ac. Hence A ∈ {Bn : n ∈N}. So PR(X) has
countable strong fan tightness.

From Theorems 2.7, 2.8 and 2.10, we have

Corollary 2.11. For a space X, the following are equivalent:
(1) PR(X) is R-separable;
(2) X satisfies S1(Crc f ,Crc f );
(3) X is countable and each co-finite subset of X satisfies S1(Cc f ,Cc f );
(4) X is countable and PR(X) has countable strong fan tightness.
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Theorem 2.12. For a space X, the following are equivalent:
(1) PR(X) satisfies Sfin(D,D);
(2) X satisfies Sfin(Crc f ,Crc f ).

Proof. (1)⇒(2) Let {Un : n ∈ N} be a sequence of rc f -covers of X. For each n ∈ N, Uc
n is a dense subset

of PR(X). By (1), there is a finite subset Vn ⊂ Un such that
⋃

n∈NV
c
n = PR(X). Let C be a closed set, F a

nonempty finite set with F∩C = ∅. Then [F,X−C] is an open subset of PR(X). Thus [F,X−C]∩(
⋃

n∈NV
c
n) , ∅.

Let Uc
∈ [F,X − C] ∩ (

⋃
n∈NV

c
n). Then U ∈

⋃
n∈NVn such that C ⊂ U and F ∩ U = ∅. So

⋃
n∈NVn is an

rc f -cover of X.
(2)⇒(1) Let {Dn : n ∈N} be a sequence of dense subsets of PR(X), then {Dc

n : n ∈N} is a sequence of rc f -
covers of X. There is a finite subsetBn ⊂ Dn such that

⋃
n∈NB

c
n is an rc f -cover of X. Thus

⋃
n∈NBn = PR(X).

So PR(X) satisfies Sfin(D,D).

In a similar way as in Theorem 2.8, we obtain

Theorem 2.13. For a space X, the following are equivalent:
(1) X satisfies Sfin(Crc f ,Crc f );
(2) X is countable and each co-finite subset of X satisfies Sfin(Cc f ,Cc f ).

We shall now give two examples of Sfin(Ω,Ω) , Sfin(Crc f ,Crc f ).

Example 2.14. R is σ-compact and βN is compact. By Theorem 2.2 in [7], R and βN satisfy Sfin(Ω,Ω).
By Theorem 2.13, R and βN do not satisfy Sfin(Crc f ,Crc f ) since they are uncountable. So Sfin(Ω,Ω) ,
Sfin(Crc f ,Crc f ).

Remark 2.15. From Theorems 2.7, 2.8, 2.12 and 2.13, it implies that ”X has property S1(Ω,Ω) (resp.,
Sfin(Ω,Ω))” and ”PR(X) has property S1(D,D) (resp., Sfin(D,D))” are not equivalent. So (2) and (9) of
Corollaries 11 and 24 in [14] are not equivalent for general spaces.

A space X is said to have countable fan tightness if for each sequence {An}n∈N of subsets of X and
x ∈
⋂

n∈N An, there exists a finite subset Bn ⊂ An such that x ∈
⋃

n∈N Bn.

Theorem 2.16. For a space X, the following are equivalent:
(1) PR(X) has countable fan tightness;
(2) Each co-finite subset of X satisfies Sfin(Cc f ,Cc f ).

Proof. (1)⇒(2) Let Y be a co-finite subset of X and {Un : n ∈ N} a sequence of c f -covers of Y. Then
{U

c
n : n ∈ N} is a sequence of subsets of PR(X) and Yc

∈ Uc
n for each n ∈ N. Since PR(X) has countable

fan tightness, there is a finite subset Vn ⊂ Un such that Yc
∈
⋃

n∈NV
c
n. Let C ⊂ Y be closed in X, then

[Yc,X − C] is a neighbourhood of Yc. Thus [Yc,X − C] ∩ (
⋃

n∈NV
c
n) , ∅. Let Uc

∈ [Yc,X − C] ∩ (
⋃

n∈NV
c
n),

then U ∈
⋃

n∈NVn such that C ⊂ U. So
⋃

n∈NVn is a c f -cover of Y.
(2)⇒(1) Let {An : n ∈ N} be a sequence of subsets of PR(X) and A ∈ An ∩ PR(X) for all n ∈ N. Denote

Bn = {B ∈ An : A ⊂ B}, then {Bc
n : n ∈ N} is a sequence of c f -covers of Ac. By (2), there exists a finite

subset Cn ⊂ Bn ⊂ An such that
⋃

n∈N C
c
n is a c f -cover of Ac. Thus A ∈

⋃
n∈N Cn. So PR(X) has countable fan

tightness.

Combining Theorems 2.12, 2.13 and 2.16, we have

Corollary 2.17. For a space X, the following are equivalent:
(1) PR(X) is M-separable;
(2) X satisfies Sfin(Crc f ,Crc f );
(3) X is countable and each co-finite subset of X satisfies Sfin(Cc f ,Cc f );
(4) X is countable and PR(X) has countable fan tightness.
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