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Abstract. In this article, we introduce a new geometrical structure which is the hybrid of cone metric space
over Banach algebra and extended b-metric space. We prove analogues of Banach, Kannan and Reich type
fixed point theorems in our introduced space. We also furnish with various concrete examples to establish
the validity of our results. The obtained results generalize many well-known results in literature, especially
the main results due to Vujakovic et al., Hussain et al., Huang, Radenovic, Xu become special cases of our
results.

1. Introduction

In 2007, Huang and Zhang [2] initiated the concept of cone metric space over a Banach space as the
generalization of metric spaces. They used ordered Banach space E instead of R as the range set of metric
ρ, i.e. they used ρ : X × X→ E. They also discussed Banach type contraction and proved some fixed point
results. After that, many researcher concentrated to investigate such spaces and proved a number of fixed
point theorems. According to imperfect statistics, by using cone metric spaces, more than six hundred
articles have been published [3]. But recently some scholars obtained the equivalent results of usual metric
space (X, d∗) and that of cone metric space (X, ρ). They defined the real valued metric function d∗ as the
non-linear scalarization function ξ [4, 5]. However, this circumstances changed when Liu and Xu [6] in
2013 introduced cone metric space by using a real Banach algebra instead of Banach space and defined
generalized Lipschitz mapping. They presented an example which furnish that results of fixed point in
metric spaces are not equivalent to that of results in cone metric spaces over Banach algebras. Later on
in 2016, Huang and Radenovic [7] extended the idea of cone metric space over Banach algebras to cone
b-metric spaces over Banach algebras. They proved Banach and Kannan type theorems for such spaces.
In 1993, Czerwik [8] introduced the notion of a b-metric space by replacing the triangular property of a
metric space with ρ(p, t) ≤ b[ρ(p, q) + ρ(q, t)], where b ≥ 1. Later on, in 2017 Kamran et al. [9] further
extended the concept of b-metric space by introducing extended b-metric spaces. They introduce a function
θ : X×X→ [1,∞) instead of b in triangular inequality condition. They established a Banach like contraction
and proved some fixed point results in such spaces. This shows that the class of such type of spaces is much
more larger than the class of b-metric spaces and the class of metric spaces. In this context by using the
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generalized triangle inequality, several authors have published a number of papers in different direction
(see e.g [10–14]). In 1971, Reich [15] introduced a new type of contraction which we call Reich contraction.
It generalizes the two eminent contractions (i.e. Banach contraction and Kannan contraction). On the other
hand, Samet et al. in 2012 initiated the idea of α-admissible mapping in metric spaces. Recently in 2015 and
2017, Malhotra et al. [16, 17] used the idea of α-admissibility in cone metric spaces by using Banach algebras
and proved Banach and Kannan type theorems. Later on in 2017, Hussain et al. [18] used the concept of
α-admissible mapping in cone b-metric spaces over Banach algebras and proved the Banach type results
for such spaces.
In this article, we presented the definition of an extended cone b-metric space over Banach algebra and then
proved some fixed point results in such spaces. We also furnish with an example to show the validity of
our obtained results. The last section of this paper consists of some important consequences of our results
and application in the existence of solution of integral equations. Throughout the paper, we used only real
Banach algebras with identity e.

2. Preliminaries

Let A be a real Banach algebra with zero element ϑ. A cone K in A is a nonempty closed subset of A
such that KAp(−K ) = ϑ, K +K ⊆ K , K · K ⊆ K and µK ⊆ K for all µ ≥ 0. If the interior of K denoted
by intK is nonempty, then the cone K is called a solid cone . If we define a relation � on A by ς � $ iff
$ − ς ∈ K , then � is a partial order onA. We write ς � c$ iff $ − ς ∈ K and ς , $. Define another partial
order� onA by ς� $ iff $ − ς ∈ intK . A cone K inA is said to be a normal cone if for all ς, $ ∈ A with
ϑ � ς � $, there exists a real number M > 0 such that ||ς|| ≤ M||$||. The normal constant of K is the least
positive constant M for which the above inequality holds.
Consider a unital Banach algebra A with identity element e. An element ς in A is said to be invertible if
there exists $ inA such that ς$ = $ς = e. A complex number µ ∈ C is said to be spectral value of $ ∈ A if
$− µe is non-invertible inA. The set of all spectral values of $ ∈ A denoted by σ($) is called the spectrum
of $. The number rσ($) (or r($)) defined by rσ($) = sup{|µ| : µ ∈ σ($)} is called the spectral radius of
$ ∈ A.

Lemma 2.1. ([1]) LetA be a Banach algebra with identity e. Then the spectral radius r($) of $ ∈ A satisfies:

r($) = lim
n→∞
||$n
||

1/n. (1)

Furthermore, if r($) < |µ| for some $ ∈ A, then (µe − $) is invertible,

(µe − $)−1 =

∞∑
i=0

$i

µi+1
and r[(µe − $)−1] ≤

1
|µ| − r($)

.

Lemma 2.2. [1] LetA be a Banach algebra and $1, $2 ∈ A. If $1 and $2 commute, then

r($1 + $2) ≤ r($1) + r($2) r($1$2) ≤ r($1)r($2).

Definition 2.3. ([19]) LetA be a Banach algebra with solid coneK . A c-sequence is a sequence {$i} inK such that
for every c ∈ A with c� ϑ, there exists K ∈N such that $i � c for all i ≥ K.

Lemma 2.4. ([7]) Let α, β ∈ K be any two arbitrary vectors and {un}, {qn} be two c-sequences in a solid coneK of a
Banach algebraA. Then {αun + βqn} is a c-sequence.

Lemma 2.5. ([20]) Let K be a cone in a Banach algebra A (not necessary a normal cone). Then the following
assertions hold:

(u1) If for each c with c� ϑ and ϑ � $� c, implies that $ = ϑ.

(u2) If $ ∈ K is such that r($) < 1, then ||$ j
|| → 0 as j→∞.



W. Ullah et al. / Filomat 36:3 (2022), 853–868 855

(u3) Let c ∈ intK and $ j → ϑ inA as j→∞. Then there exists M ∈N such that for all j ≥M, $ j � c.

(u4) If $ � $k, where $, k ∈ K and r(k) < 1, then $ = ϑ.

Definition 2.6. [7] For a nonempty set X and a constant b ≥ 1. A mapping db : X×X→A is called a cone b-metric
over a Banach algebraA if the following axioms hold:

B1 : ∀ η, ξ ∈ X, db(η, ξ) � ϑ and db(η, ξ) = ϑ iff η = ξ;

B2 : ∀ η, ξ ∈ X, db(η, ξ) = db(ξ, η);

B3 : ∀ η, ξ, ζ ∈ X, db(η, ζ) � b[db(η, ξ) + db(ξ, ζ)].

The pair (X, db) is called a cone b-metric space over a Banach algebraA (in short CbMS overA).

Remark 2.7. If b = 1, then we say that d1 is a cone metric over a Banach algebraA. So we can say that cone b-metric
is the generalization of a cone metric.

Example 2.8. Consider the Banach algebra A = C([0, 1]) with unit element e(t) = 1 and supremum norm where
multiplication is defined point wise. Let X = R andK = { f ∈ A : f (h) ≥ 0 ;∀h ∈ [0, 1]}. Define db : X × X→A by

db(η, ξ)($) = |η − ξ|ae$ ∀η, ξ ∈ X & a > 1.

Then db is a CbMS over A with b = 2a−1 but it is not a cone metric on X.

Definition 2.9. ([7]) Let {$k} be a sequence in X where (X, db) is a CbMS over A. Then {$k} is said to be:

(i) a convergent sequence which converges to $ ∈ X if for every c ∈ intK (i.e.ϑ� c), there exists a natural number
N such that db($k, $)� c for all k ≥ N;

(ii) a Cauchy sequence if for every c ∈ intK (i.e.ϑ � c), there exists a natural number N such that db($k, $i) � c
for all k, i ≥ N.

If every Cauchy sequence in X is convergent in X, then the space (X, db) is called a complete CbMS over A.

Remark 2.10. [8, 21] 1. If {$n} converges to $ in X, then {db($k, $)} and {db($k, $k+i)} are c-sequences for any
i ∈N.
2. If ||$k|| → 0 as k→∞, then for any c� ϑ, there exists N ∈N such that for all n > N we have $k � c.

Definition 2.11. [9] Let X be a non empty set and s : X × X→ [1,∞). A function ds : X × X→ [0,∞) is called an
extended b-metric if for all η, ζ, ξ ∈ X it satisfies:

(i) ds(η, ζ) = 0 iff η = ζ;

(ii) ds(η, ζ) = ds(ζ, η);

(iii) ds(η, ξ) ≤ s(η, ξ)[ds(η, ζ) + ds(ζ, ξ)].

An extended b-metric space is the pair (X, ds) with ds an extended b-metric on X.

Remark 2.12. If ∀η, ξ ∈ X, s(η, ξ) = b for some b ≥ 1, then the Definition 2.11 coincides with the definition of a
b-metric space.

Theorem 2.13. [9] Let (X, ds) be a complete extended b-metric space with ds continuous. Let z be a self-map on X
which satisfy

ds(zη, zξ) ≤ κds(η, ξ) for all η, ξ ∈ X, (2)

where κ ∈ [0, 1) be such that for each t0 ∈ X, lim j,i→∞ s(t j+1, ti) < 1
κ , here t j = z jt0, j = 1, 2, · · · . Then z has precisely

one fixed point %. Moreover for each y ∈ X, the iterative sequence z jy converges to %.
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Now we want to recall the definition of generalized α-admissible, α-regular and generalized Reich type
mapping in the setting of cone b-metric spaces over Banach algebras.

Definition 2.14. [21] Let (X, db) be a CbMS over A with K an underlying solid cone. Let α : X × X→ [0,∞) and
z be a self-map on X. Then:

(i) z is said to be a generalized α-admissible mapping if for η, ξ ∈ X, α(η, ξ) ≥ b implies that α(zη, zξ) ≥ b;

(ii) (X, db) is said to be α-regular if any sequence {$k} ∈ X with α($k, $k+1) ≥ b for all k ∈ N and $k → $ implies
that α($k, $) ≥ b.

Definition 2.15. [21] Let A be a Banach algebra with underlying solid cone K , (X, db) a CbMS over A with
coefficient b, and α : X×X→ [0,∞) be a mapping. Then the map z on X is called a generalized Reich type contraction
if there exists $1, $2, $3 ∈ K such that ∀ η, ξ ∈ X with α(η, ξ) ≥ b:

(i) 2br($1) + (b + 1)r($2 + $3) < 2;

(ii) d(zη, zξ) � $1d(η, ξ) + $2d(η, zη) + $3d(ξ, zξ).

Remark 2.16. We noted in [21] that Vujakovic et al. used the idea of α-admissible mapping α : X × X → A by
α(p, q) � b =⇒ α(zp, zq) � b for b ≥ 1. But this is possible only when we take the Banach algebra with identity
element 1 ∈ R. Otherwise α(x, y) � b does not make sense, because α(x, y) ∈ A and b ∈ R.

3. Main results

In the following, we introduce a new type of metric space over a real Banach algebra which we call
an extended cone b-metric space over a Banach algebra. By using such spaces we prove some fixed point
theorems for generalized Reich type contraction and generalized Lipschitz mapping.

Definition 3.1. Let A be a real Banach algebra with cone K , X be a non empty set and s : X × X → [1,∞) be a
mapping. An extended cone b-metric on X overA is a function ds : X × X→A such that:

(E1) ds(η, ξ) � ϑ and ds(η, ξ) = ϑ iff η = ξ for all η, ξ ∈ X;

(E2) ds(η, ξ) = ds(ξ, η) for all η, ξ ∈ X;

(E3) ds(η, ζ) � s(η, ζ)[ds(η, ξ) + ds(ξ, ζ)] for all η, ξ, ζ ∈ X.

The pair(X, ds) is then called an extended CbMS over A.

Remark 3.2. It is clear that the class of extended cone b-metric space over a Banach algebra A is larger than the
classes of b-metric spaces and metric spaces over Banach algebras.
The definition of Cauchy sequences, convergent sequences and completeness for extended cone b-metric space over a
Banach algebra are similar to that of cone b-metric spaces over Banach algebras defined in the Definition 2.9.
In general ds is not necessarily a continuous function but in this paper, ds will always mean a continuous function
ds : X × X→A.

Example 3.3. Let s : X × X → [1,∞) be defined as s(p, q) = 1 + p + q for X = {1, 2, 3}. Consider the real Banach
algebraA = R2 with solid coneK = {(a, b) ∈ R2 : a, b ≥ 0}. If we define ds : X × X→A by:

ds(1, 2) = ds(2, 1) = (80, 80);
ds(1, 3) = ds(3, 1) = (1000, 1000);
ds(3, 2) = ds(2, 3) = (600, 600);
ds(1, 1) = ds(2, 2) = ds(3, 3) = (0, 0) = ϑ.
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Clearly the first and second conditions of an extended CbMS over A are satisfied. For the third condition we have:

s(1, 2)[ds(1, 3) + ds(3, 2)] − ds(1, 2) = 4[(1000, 1000) + (600, 600)] − (80, 80) = (6320, 6320) ∈ K ;

s(1, 3)[ds(1, 2) + ds2, 3)] − ds(1, 3) = 5[(80, 80) + (600, 600)] − (1000, 1000) = (2400, 2400) ∈ K ;

s(2, 3)[ds(2, 1) + ds1, 3)] − ds(2, 3) = 6[(80, 80) + (1000, 1000)] − (600, 600) = (5880, 5880) ∈ K .

Hence for all η, ξ, ζ ∈ X,
ds(η, ξ) � s(η, ξ)[ds(η, ζ) + ds(ζ, ξ)].

Thus (X, ds) is an extended CbMS over A = R2.

Remark 3.4. Let (X, ds) be an extended CbMS over A with s : X × X → [1,∞). If A = R and K = [0,∞), then
(X, ds) is an extended b-metric space.

We now define generalizedα-admissible mapping andα-regular space in term of extended cone b-metric
spaces over Banach algebras.

Definition 3.5. Consider (X, ds) an extended CbMS over A with K an underlying solid cone in A. Let z be a
self-map on X and α : X × X→ [0,∞). Then:

(i) z is said to be a generalized α-admissible mapping if for η, ξ ∈ X, α(η, ξ) ≥ s(η, ξ) implies that α(zη, zξ) ≥
s(zη, zξ);

(ii) (X, ds) is said to be α-regular if any sequence {$k} ∈ X with α($k, $k+1) ≥ s($k, $k+1) for all k ∈N and $k → $
implies that α($k, $) ≥ s($k, $).

We are now in a position to define a generalized Reich type contraction by using the extended cone
b-metric spaces over Banach algebras.

Definition 3.6. Let (X, ds) be an extended CbMS over A with K an underlying solid cone and α : X × X→ [0,∞)
be a mapping. Then a self-map z on X is called a generalized Reich type contraction if there exists three vectors
$1, $2, $3 inK such that for all η, ξ ∈ X with α(η, ξ) ≥ s(η, ξ):

(i) 2s(η, ξ)r($1) + (s(η, ξ) + 1)r($2 + $3) < 2 and for each u0 ∈ X with u j = z ju0,

lim
k,i→∞

s(u j+1,ui) <
1
||κ||

where κ = (2e − $)−1(2$1 + $) for $ = $2 + $3;

(ii) ds(zη, zξ) � $1ds(η, ξ) + $2ds(η, zη) + $3ds(ξ, zξ).

The main result of our paper is given as follows:

Theorem 3.7. Let (X, ds) be a complete extended CbMS over A with α : X × X → [0,∞) be a mapping and K
an underlying solid cone. Suppose that the self-map z on X is a generalized Reich type contraction with vectors
v1, v2, v3 ∈ K such that:

1. z is a generalized α-admissible;

2. there exists an element u0 ∈ X such that α(u0, zu0) ≥ s(u0, zu0);

3. (X, ds) is regular or z is continuous.

Then there exists a point % in X which is fixed under the map z.
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Proof. Let u0 be a point in X such that α(u0, zu0) ≥ s(u0, zu0). For u0 ∈ X, if we define u1 = zu0, u2 = zu1 =
z(zu0) = T2u0, · · · , un+1 = zun = zn+1u0, then

α(u0,u1) ≥ s(u0,u1).

But z is generalized α-admissible, so

α(zu0, zu1) = α(u1,u2) ≥ s(u1,u2),

and so by induction we get

α(un,un+1) ≥ s(un,un+1).

By using Definition 3.6, we have

ds(un,un+1) = ds(zun−1, zun)
� v1ds(un−1,un) + v2ds(un−1, zun−1) + v3ds(un, zun), i.e.

(e − v3)ds(un,un+1) � (v1 + v2)ds(un−1,un). (3)

Similarly

ds(un+1,un) = ds(zun, zun−1)
� v1ds(un,un−1) + v2ds(un, zun) + v3ds(un−1, zun−1), i.e.

(e − v2)ds(un+1,un) � (v1 + v3)ds(un−1,un). (4)

Adding (3) and (4), we obtain

(2e − v2 − v3)ds(un,un+1) � (2v1 + v2 + v3)ds(un−1,un).

If we take v = v2 + v3, then we obtain

(2e − v)ds(un+1,un) � (2v1 + v)ds(un−1,un). (5)

Note that
2r(v) ≤ (s(un,un+1) + 1)r(v) ≤ 2r(v1) + (s(un,un+1) + 1)r(v) < 2.

Hence r(v) < 1 < 2 =⇒ r(v) < 2. Thus by using Lemma 2.1, we presume that 2e − v is invertible and
(2e − v)−1 =

∑
∞

n=0
vn

2n+1 , r((2e − v)−1) < 1
2−r(v) .

Hence (5) becomes

ds(un,un+1) � κds(un−1,un), (6)

where κ = (2e − v)−1(2v1 + v). The inequality (6) then implies that for all n ∈N

ds(un,un+1) � κds(un−1,un)

� κ2ds(un−1,un)
...

� κnds(u0,u1). (7)
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Now if we take m > n, then by using (7) and Definition 3.1, (iii) we have

ds(un,um) � s(un,un+1)ds(un,un+1) + s(un,un+1)s(un+1,un+2)ds(un+1,un+2) + · · ·+

s(un,un+1)s(un+1,un+2) . . . s(um−1,um)(ds(um−1,um))

� s(un,um)κnds(u0,u1) + s(un,um)s(un+1,um)κn+1ds(u0,u1) + · · ·+

s(un,um)s(un+1,um)s(un+2,um)...s(um−2,um)s(um−1,um)κm−1ds(u0,u1)

� ds(u0,u1)
[
s(u1,um)s(u2,um) . . . s(un−1,um)s(un,um)κn+

s(u1,um)s(u2,um) . . . s(un,um)s(un+1,um)κn+1 + · · ·+

{s(u1,um)s(u2,um) . . . s(un,um)s(un+1,um) . . . s(um−2,um)s(um−1,um)}κm−1
]

= ds(u0,u1)
[
κn

n∏
j=1

s(u j,um) + κn+1
n+1∏
j=1

s(u j,um) + · · · + κm−1
m−1∏
j=1

s(u j,um)
]
.

Let an = κn ∏n
j=1 s(u j,um) and S =

∑
∞

n=1 an.
Since by Definition 3.6, ||κ|| limn,m→∞ s(un+1,um) < 1, so the series S converges absolutely. Because by using
ratio test we have

lim
n→∞

||an+1||

||an||
≤ lim

n→∞

||κ||||κn
||s(un+1,um)
||κn||

= ||κ|| lim
n,m→∞

s(un+1,um) < 1.

ButA is a Banach algebra and the series S is absolutely convergent, so it converges inA. Thus Sm−1 − Sn =[
κn ∏n

j=1 s(u j,um) + · · · + κm−1 ∏m−1
j=1 s(u j,um)

]
→ ϑ as n,m→∞ and so is ds(u0,u1)(Sm−1 − Sn). By Lemma 2.5,

for every c� ϑ, there exists a natural number n0 such that for all n ≥ n0, ds(un,um)� c. Thus by Definition
2.9 {un} is a Cauchy sequence in X. But X is complete so there exists % ∈ X such that un → % as n → ∞. We
show that % is fixed under the map z.
Suppose that z is continuous. It follows that un+1 = zun → z% as n→∞. But limit of a sequence is unique,
so we must have z% = %. Hence % is fixed under the map z in this case.
However, if (X, ds) is α-regular, then by Definition 3.5 we have

α(un, %) ≥ s(un, %), for all n ∈N.

ds(%, z%) � s(%, z%)
[
ds(%, zun) + ds(zun, z%)

]
� s(%, z%)ds(%, zun) + s(%, z%)

[
v1ds(un, %) + v2ds(un, zun) + v3ds(%, z%)

]
� s(%, z%)ds(%, zun) + s(%, z%)v1ds(un, %) + s(%, z%)v3ds(%, z%)

+ s(%, z%)s(un,un+1)v2

[
ds(un, %) + ds(%,un+1)

]
= s(%, z%)(e + s(un,un+1)v2)ds(%,un+1) + s(%, z%)v3ds(%, z%)

+ s(%, z%)(v1 + s(un,un+1)v2)ds(un, %),

which further implies that

(e − s(%, z%)v3)ds(%, z%) � s(%, z%)(e + s(un,un+1)v2)ds(un+1, %) + s(%, z%)(v1 + s(un,un+1)v2)ds(un, %) (8)



W. Ullah et al. / Filomat 36:3 (2022), 853–868 860

Similarly,

ds(%, z%) � s(%, z%)
[
ds(%, zun) + ds(zun, z%)

]
= s(%, z%)ds(%, zun) + s(%, z%)ds(z%, zun)

� s(%, z%)ds(%, zun) + s(%, z%)
[
v1ds(%,un) + v2ds(%, z%) + v3ds(un, zun)

]
� s(%, z%)ds(%, zun) + s(%, z%)v1ds(%,un) + s(%, z%)v2ds(%, z%)

+ s(%, z%)s(un,un+1)v3

[
ds(un, %) + ds(%,un+1)

]
= s(%, z%)(e + s(un,un+1)v3)ds(%,un+1) + s(%, z%)v2ds(%, z%)

+ s(%, z%)(v1 + s(un,un+1)v3)ds(un, %),

which further implies that

(e − s(%, z%)v2)ds(%, z%) � s(%, z%)(e + s(un,un+1)v3)ds(un+1, %) + s(%, z%)(v1 + s(un,un+1)v3)ds(un, %) (9)

Therefore, by combining (8) and (9), we get

(2e − s(%, z%)v2 − s(%, z%)v3)ds(%, z%) � s(%, z%)(2e + s(%, z%)v2 + s(%, z%)v3)ds(un+1, %)
+ s(%, z%)(2v1 + s(%, z%)v2 + s(%, z%)v3)ds(un, %), i.e.

(2e − s(%, z%)v)ds(%, z%) � s(%, z%)(2e + s(%, z%)v)ds(un+1, %)
+ s(%, z%)(2v1 + s(%, z%)v)ds(un, %) (10)

We also note that
r(s(%, z%)v) = s(%, z%)r(v) ≤ 2s(%, z%)r(v1) + (s(%, z%) + 1)r(v) < 2

Thus by Lemma 2.1, 2e − s(%, z%)v is invertible and so (10) implies that

ds(%, z%) � (2e − s(%, z%)v)−1
[
s(%, z%)(2e + s(%, z%)v)ds(un+1, %)

+ s(%, z%)(2v1 + s(%, z%)v)ds(un, %)
]

(11)

By using Remark 2.10 the sequences {ds(un+1, %)} and {ds(un, %)} are c-sequences. Hence by Lemma 2.4,
the sequence {τ1ds(un+1, %) + τ2ds(un, %)} is a c-sequence (where τ1 = (2e − s(%, z%)v)−1s(%, z%)(2e + s(%, z%)v)
and τ2 = (2e− s(%, z%)v)−1s(%, z%)(2v1 + s(%, z%)v)). Therefore, for any c ∈ int(K ), there exists n0 ∈N such that

ds(%, z%) � τ1ds(un+1, %) + τ2ds(un, %)� c.

Which further implies by using Lemma 2.5 that ds(%, z%) = ϑ. Therefore, z% = % and this complete the
proof.

Example 3.8. LetA = C1
R

[0, 1] and || f || = || f ||∞ + || f ′ ||∞. If we define point wise multiplication of functions onA,
thenA becomes a real Banach algebra with identity e(t) = 1. If we take K = { f ∈ A : f (t) ≥ 0, t ∈ [0, 1]}, then K
is a non-normal cone (see [3]). Let X = [0,∞) and s : X × X→ [1,∞) be defined as

s(x, y) =

p + q + 2 if p, q ∈ [0, 1];
2 elsewhere.

Define ds : X × X→A by
ds(p, q)(t) = (p − q)2et.

Then ds is an extended CbMS over A. Also note that X is complete with respect to ds. Define two maps α : X × X→
[0,∞) and z : X→ X by:
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α(x, y) =

s(p, q) if p, q ∈ [0, 1];
0 elsewhere.

z(p) =


√

5
3 p if p ∈ [0, 1];

p − 1 if p > 1

Note that for every p ∈ [0, 1], zp ∈ [0, 1]. By choosing v1(t) = 1
36 + 1

36 t, v2(t) = 1
18 + 1

18 t and v3(t) = 1
24 + 1

24 t we
obtain that r(v1) = 2

9 , r(v) = r(v2 + v3) = 7
36 . Simple calculations show that 2(2 + 2)r(v1) + (2 + 2 + 1)r(v) = 51

36 < 2
and so z is a generalized Reich type contraction as;

2s(x, y)r(v1) + (s(x, y) + 1)r(v) ≤ 2(2 + 2)r(v1) + (2 + 2 + 1)r(v) =
51
36

< 2.

Also for each u0 ∈ X, the limit limn,m→∞ s(un+1,um) = 2 and ||κ|| = ||(2e − v)−1(2v1 + v)|| ≤
(

72
130

)(
46
72

)
= 23

65 <
1
2 =

1
limn,m→∞ s(un+1,um) . Similarly by easily calculation one can show that

ds(zp, zq) � v1ds(p, q) + v2ds(p, zp) + v3ds(q, zq).

Next we show that there is a point u0 in X such that α(u0, zu0) ≥ s(u0, zu0). Indeed, for u0 = 1, we have

α(1, z1) = α(1,

√
5

3
) ≥ s(1,

√
5

3
) = s(1, z1).

Next we show that z is a generalized α-admissible mapping. In fact, if p, q ∈ X are such that α(p, q) ≥ s(p, q), then by
definition of α, the points p, q is in [0, 1]. Therefore, zp, zq ∈ [0, 1] and so

α(zp, zq) ≥ s(zp, zq).

Finally we show that (X, ds) is α-regular. If we assume a sequence {pn} in X such that α(pn, pn+1) ≥ s(pn, pn+1) for
all n ∈ N and pn → q ∈ X (as n → ∞), then {pn} ⊆ [0, 1]. But [0, 1] is closed, so q ∈ [0, 1]. This implies that
α(pn, q) ≥ s(pn, q) for all n ∈ N. Hence all the conditions of Theorem 3.7 are satisfied, so there is a point % = 0 (say)
which is fixed under the map z.

Theorem 3.9. Let K be a solid cone in a Banach algebraA. Let (X, ds) be a complete extended CbMS over A with
α : X×X→ [0,∞) a mapping. Suppose that the self-map z on X is a generalized Reich type contraction with vectors
v1, v2, v3 inK such that v1 commutes with v2 + v3 and:

1. z is a generalized α-admissible;

2. there exists u0 ∈ X such that α(u0, zu0) ≥ s(u0, zu0);

3. z is continuous or (X, ds) is regular;

4. for any two fixed points $, ζ of z, there exists z in X such that α($, z) ≥ s($, z) and α(ζ, z) ≥ s(ζ, z).

Then there exists a unique point % in X which is fixed under the map z.

Proof. Using Theorem 3.7 and the first three given condition we can say that there exists a point % ∈ Xwhich
is fixed under the map z. We show that this point is unique and for this let ζ ∈ Fix(z) such that % , ζ. Then
by using condition 4, there exists z ∈ Xwith

α(%, z) ≥ s(%, z) and α(ζ, z) ≥ s(ζ, z) (12)
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Since z is a generalized α-admissible mapping and %, ζ ∈ Fix(z) so by (12) we get

α(%, ziz) ≥ s(%, ziz) and α(ζ, ziz) ≥ s(ζ, ziz) , for all i ∈N. (13)

By using Definition 3.6 and (13) we obtain

ds(%, ziz) = ds(z%, z(zi−1z))

� v1ds(%, zi−1z) + v2ds(%, z%) + v3ds(zi−1z, ziz)

� v1ds(%, zi−1z) + v3s(zi−1z, ziz)[ds(zi−1z, %) + ds(%, ziz)]

which further implies that

(e − s(zi−1z, ziz)v3)ds(%, ziz) � (v1 + s(zi−1z, ziz))v3)ds(%, zi−1z). (14)

Similarly,

ds(ziz, %) = ds(z(zi−1z), z%)

� v1ds(zi−1z, %) + v2ds(zi−1z), ziz)) + v3ds(%, z%)

� v1ds(zi−1z, %) + v2s(zi−1z, ziz)[ds(zi−1z, %) + ds(%, ziz)]

which further implies that

(e − s(zi−1z, ziz)v2)ds(ziz, %) � (v1 + s(zi−1z, ziz))v2)ds(zi−1z, %). (15)

Adding (14) and (15) we have

(2e − s(zi−1z, ziz)v2 − s(zi−1z, ziz)v3)ds(%, ziz) � (2v1 + s(zi−1z, ziz)v2 + s(zi−1z, ziz)v3)ds(%, zi−1z)

(2e − s(zi−1z, ziz)v)ds(%, ziz) � (2v1 + s(zi−1z, ziz)v)ds(%, zi−1z).

Note that 2r(s(zi−1z, ziz)v) ≤ (s(un,un+1) + 1)r(s(zi−1z, ziz)v) ≤ 2r(v1) + (s(un,un+1) + 1)r(s(zi−1z, ziz)v) < 2.
Which implies that r(s(zi−1z, ziz)v) < 1 < 2. Thus by Lemma 2.1, we can say that 2e−s(zi−1z, ziz)v is invertible
and (2e − s(zi−1z, ziz)v)−1 =

∑
∞

n=0
(s(zi−1z,ziz)v)n

2n+1 ,
r((2e − s(zi−1z, ziz)v)−1) < 1

2−r(s(zi−1z,ziz)v) . Thus we have

ds(%, ziz) � (2e − s(zi−1z, ziz)v)−1(2v1 + s(zi−1z, ziz)v)ds(%, zi−1z) , i.e.

ds(%, ziz) � τds(%, zi−1z) (16)

where τ = (2e − s(zi−1z, ziz)v)−1(2v1 + s(zi−1z, ziz)v). Therefore, we have

ds(%, ziz) � τds(%, zi−1z)

� τ2ds(%, zi−2z)
...

� τids(%, z) for all i ∈N.
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Since v1 commutes with v2 + v3 = v, so

(2e − s(zi−1z, ziz)v)−1(2v1 + s(zi−1z, ziz)v) =
( ∞∑

n=0

(s(zi−1z, ziz)v)n

2n+1

)
(2v1 + s(zi−1z, ziz)v)

= 2v1

( ∞∑
n=0

(s(zi−1z, ziz)v)n

2n+1

)
+ s(zi−1z, ziz)v

( ∞∑
n=0

(s(zi−1z, ziz)v)n

2n+1

)
= (2v1 + s(zi−1z, ziz)v)(2e − s(zi−1z, ziz)v)−1.

Which shows that (2e − s(zi−1z, ziz)v)−1 commutes with (2v1 + s(zi−1z, ziz)v). Hence by applying Lemma 2.1
and Lemma 2.2 we obtain that;

r(τ) = r((2e − s(zi−1z, ziz)v)−1(2v1 + s(zi−1z, ziz)v))

≤ r((2e − s(zi−1z, ziz)v)−1) · r((2v1 + s(zi−1z, ziz)v))

≤
1

2 − r(s(zi−1z, ziz)v)
(2r(v1) + r(s(zi−1z, ziz)v))

<
1

s(un,un+1)
< 1

By Lemma 2.5 it follows that ||τi
|| → 0 as i→∞ and so

||τids(%, z)|| ≤ ||τi
||||ds(%, z)|| → 0 (i→∞).

By Remark 2.10 we conclude that for any c ∈ Awith c� ϑ, there exists a natural number M such that

ds(%, ziz) � τids(%, z) � c ∀ i ≥M.

Thus by Lemma 2.5 ziz → % as i → ∞. Similarly we obtain that ziz → ζ as i → ∞. Now by uniqueness of
limit, we conclude that % = ζ.

Theorem 3.10. Let (X, ds) be a complete extended CbMS over AwithK an associated cone inA. Let z be a self-map
on X such that for all p, q ∈ X;

ds(zp, zq) � κds(p, q) (17)

where κ ∈ K be such that r(κ) < 1 and for each u0 ∈ X, limn,m→∞ s(un+1,um) <
1
||κ||

. Then there exists a unique

point % ∈ X which is fixed under the map z. Furthermore for each u0 ∈ X, the iterative sequence un = z(un−1) = znu0
converges to %.

Proof. If we take v1 = κ, v2 = v3 = ϑ and α(p, q) = s(p, q), then all the conditions of Theorem 3.7 are satisfied,
i.e. z satisfies the condition of Definition 3.6, z is generalized α-admissible, (X, ds) is regular and for every
u0 ∈ X α(u0, zu0) � s(u0, zu0). Hence there exists % in Xwhich is fixed under the map z. Now it remains only
to show that this fixed point is unique. For this, let there is ζ in X such that zζ = ζ. Then we have;

ds(%, ζ) = ds(z%, zζ) � κds(%, ζ)

But r(κ) < 1, so by Lemma 2.1, e − κ is invertible. Thus by Lemma 2.5 ds(%, ζ) = ϑ.

Theorem 3.11. Let (X, ds) be a complete extended CbMS over A and K be the associated cone in A. Let z be a
self-map on X satisfies the generalized Lipschitz condition, i.e. for all p, q ∈ X;

ds(zp, zq) � κ[ds(zp, p) + ds(zq, q)] (18)

where κ ∈ K be such that r(κ) <
1

s(p, q) + 1
and for each u0 ∈ X, limn,m→∞ s(un+1,um) <

1
||τ||

with τ = (e − κ)−1κ.

Then there exists a unique point % ∈ X which is fixed under the map z.
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Proof. If we take v1 = ϑ, v2 = v3 = κ and α(p, q) = s(p, q), then all the condition of Theorem 3.7 are satisfied.
Hence there exists % in Xwhich is fixed under the map z. Finally we show that % is a unique point which is
fixed under the map z. For this if ζ is another fixed point of z, then

ds(%, ζ) = ds(z%, zζ) � κ[ds(%, z%) + ds(ζ, zζ) = ϑ.

Therefore, % = ζ.

Following is the result of generalized Lipschitz mappings on CbMS over Banach algebras [7] which can
be directly proved by using our results, Theorem 3.10 and Theorem 3.11 when we define s(η, ξ) = b for
some b ≥ 1.

Theorem 3.12. [7] Let (X, d) be a complete CbMS over A with coefficient b ≥ 1 and K be the associated solid cone
(not necessary normal) in A. Suppose that z is a self-map on X such that for all p, q ∈ X one of the following
conditions hold:

(i) d(zp, zq) � κd(p, q) where κ ∈ K be such that r(κ) <
1
b
.

(ii) d(zp, zq) � κ(d(zp, p) + d(zq, q)) where κ ∈ K be such that r(κ) <
1

1 + b
.

Then there exists a unique point % ∈ X which is fixed under the mapz.

Corollary 3.13. LetK be the associated cone in a Banach algebraA and (X, ds) be a complete cone metric space over
A. Let z be a self-map on X such that for all p, q ∈ X;

ds(zp, zq) � κds(p, q) (19)

where κ ∈ K be such that r(κ) < 1. Then for every u0 ∈ X, the iterative sequence un = z(un−1) = znu0 converges to a
unique fixed point of z.

Proof. Take b = 1 in Theorem 3.12, we get the required result.

Remark 3.14. 1. If we take s(x, y) = b for some b ≥ 1 in Theorem 3.10 and in Theorem 3.11, we get the main results
of [7] for cone b-metric spaces over Banach algebras.
2. By using Remark 3.4, we obtain Theorem 2.13 as a corollary of our Theorem 3.10.
3. If we take s(x, y) = b for some b ≥ 1 in Theorem 3.7 and in Theorem 3.9, we get the main results of [21] for cone
b-metric spaces over Banach algebra.

4. Consequences

In this section, we have listed some important consequences of our results which generalizes the results
of Hussain et al. [18], Xu and Radenovic [20], Malhotra et al. [16], Malhotra et al. [17] and the results of Liu
and Xu [6].

Definition 4.1. Let X be a non-empty set and α : X × X→ [0,∞) be a function. A mapping z : X→ X is said to be
an α-admissible mapping if α(η, ξ) ≥ 1 =⇒ α(zη, zξ) ≥ 1.

Definition 4.2. Let (X, ds) be a complete extended CbMS over A and K be the underlying solid cone in A. A
self-map z on X is said to be generalized α-Lipschitz contraction if for all η, ξ ∈ X with α(η, ξ) ≥ 1 satisfies the
following:

ds(zη, zξ) � κds(η, ξ),

where κ ∈ K is such that r(κ) < 1
s(η,ξ) and for each $0 ∈ X, limn,m→∞ s($n+1, $m) <

1
||κ||

.
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The following theorem becomes special case of Theorem 3.7 if we define α : X × X → [0,∞) by α(η, ξ) =
s(η, ξ) ≥ 1 for all η, ξ ∈ X and take κ = $1, $2 = $3 = ϑ.

Theorem 4.3. Let (X, ds) be a complete extended CbMS over A and K be the associated solid cone. Let z : X → X
satisfies the generalized α-Lipschitz contraction with Lipschitz constant κ such that:

1. z is α-admissible;

2. there exists $0 ∈ X such that α($0, z$0) ≥ 1;

3. z is continuous or if a sequence {$n} ∈ X with α($n, $n+1) ≥ 1 for all n ∈ N and $n → $ implies that for every
n ∈N, α($n, $) ≥ 1.

Then there is a point % in X which is fixed under the map z.

For uniqueness of this point, we use the following extra condition:

∀%, ζ ∈ Fix(z), there exists η ∈ X such that α(%, η) ≥ 1 and α(ζ, η) ≥ 1. (20)

Theorem 4.4. If we add the condition (20) in the assumption of Theorem 4.3, then the fixed point is unique.

Proof. The assertion follows simply by using Theorem 4.3 and Theorem 3.9.

Remark 4.5. 1. If we take s(η, ξ) = b for some b ≥ 1, then we obtain the main results due to Hussain et al. [18,
Theorems 3.1 and 3.2].
2. Results due to in Malhotra et al. [16, Theorems 3.1, 3.2 and 3.5] become special cases of Theorems 4.3 and 4.4 for
s(η, ξ) = 1, $1 = 1 and $2 = $3 = ϑ.
3. Results due to Malhotra et al. [17, Theorems 3.1, 3.2 and 3.3] become special cases of Theorems 4.3 and 4.4 for
s(η, ξ) = 1, $1 = ϑ and $2 = $3.

If the given extended CbMS over A is a partially ordered, then we can use the following theorem.

Theorem 4.6. Let s : X × X→ [1,∞) be a map for a partially ordered set (X,D). Let (X, ds) be a complete extended
CbMS over A with underlying solid cone K . Assume a self-map z on X which is non-decreasing with respect to D
and satisfies the following conditions:

(1) there exists vectors$1, $2, $3 ∈ K such that 2s(η, ξ)r($1)+(s(η, ξ)+1)r($2 +$3) < 2, ds(zη, zξ) � $1ds(η, ξ)+
$2ds(η, zη) + $3ds(ξ, zξ) for all η, ξ ∈ X with η D ξ and for each u0 ∈ X with un = znu0,

lim
n,m→∞

s(un+1, xm) <
1
||κ||

where κ = (2e − $)−1(2$1 + $) for $ = $2 + $3;

(2) ∃ $0 ∈ X such that $0 D z$0;

(3) z is continuous or if {$n} is a non-decreasing sequence in Xwith respect to D such that$n → $ ∈ X as (n→∞),
then $n D $ for all n ∈N.

Then there exists a point % in X which is fixed under the map z.

Proof. Define a function α : X × X→ [0,∞) by

α(η, ξ) =

s(η, ξ) if η D ξ;
0 elsewhere.

By condition (1), The mapping z is a generalized Reich type contraction. Since z is non-decreasing mapping,
so z is a generalized α-admissible mapping. Definition of α and condition (2) implies that there exists$0 ∈ X

such that α($0, z$0) = s($0, z$0). By condition (3) we can see that either z is continuous or (X, ds) is regular.
It follows that all the necessary conditions of Theorem 3.7 are satisfied, so we conclude that there exists a
point in Xwhich is fixed under the map z.



W. Ullah et al. / Filomat 36:3 (2022), 853–868 866

Corollary 4.7. Let (X,D) be a partially ordered set and s : X × X → [1,∞). Let (X, ds) be a complete extended
CbMS over A with underlying solid coneK . Let z be a self-map on X which is non-decreasing with respect to D and
the following assumptions hold:

(1) there exists vectors κ ∈ K such that r(κ) < 1
s(η,ξ) , ds(zη, zξ) � κds(η, ξ) for all η, ξ ∈ X with η D ξ and for each

u0 ∈ X with un = znu0,

lim
n,m→∞

s(un+1, xm) <
1
||κ||

;

(2) there exists $0 ∈ X such that $0 D z$0;

(3) z is continuous or if {$n} is a non-decreasing sequence in Xwith respect to D such that$n → $ ∈ X as (n→∞),
then $n D $ for all n ∈N.

Then there exists a unique point % in X which is fixed under the map z.

Proof. The assertion follows directly if we take $1 = κ and $2 = $3 = ϑ in Theorem 4.6.

Remark 4.8. 1. Theorem 4.6 reduces the main result due to Vujakovic [21, Theorem 3.6] for s(p, q) = b and b ≥ 1.
2. Corollary 4.7 reduces to the main results due to Hussain et al. [18, Theorems 4.2 and 4.3 ] for s(p, q) = b and b ≥ 1.
3. Corollary 4.7 reduces to the results due to Nieto and Rodreguez-Lopez [22, Theorems 2.1 and 2.2] for s(p, q) = 1
andA = R.

5. Applications

Following is given a lemma which is proved for cone b-metric spaces in [23] and the proof for extended
cone b-metric spaces over Banach algebras are same.

Lemma 5.1. Let Ψ be a Lebesgue measurable function defined on [0, 1] with k ≥ 1. Then we have∣∣∣∣∣∣
∫ 1

0
Ψ(s)ds

∣∣∣∣∣∣
k

≤

∫ 1

0
|Ψ(s)|kds.

Example 5.2. LetA = X = C1
R

[0, 1] be the space of all real valued differentiable functions with continuous derivative
defined on [0, 1]. If we take K = {h ∈ A : h(a) ≥ 0 : ∀a ∈ [0, 1]}, then K is a cone in A. Define a map
ds : X × X→A by:

ds(η, ξ)(t) = ||η − ξ||p∞et.

Then ds is an extended cone b-metric overAwith s : X×X→ [1,∞) defined as s(η, ξ)(t) = max |η(t)|+max |ξ(t)|+2p.

Consider the following nonlinear integral equation

f (t) =

∫ 1

0
F(t, f (η))ds, (21)

where F satisfies the following:

(a) F : [0, 1] ×R→ R is continuous;

(b) there exists a constant M ∈ [0, 1
2 ) such that for each f0 ∈ Xwe have that: Mp < 1

limn,m→∞ s( fn+1, fm) and for all
t ∈ [0, 1] and η, ξ ∈ R, |F(t, η) − F(t, ξ)| ≤M|η − ξ|.

Theorem 5.3. The equation (21) has a unique solution in X = C1
R

.
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Proof. To show that (21) has a unique solution, define z : X→ X by

z( f )(t) =

∫ 1

0
F(t, f (s))ds.

By using Lemma 5.1 we have

ds(z( f ), z(1))(t) = et
||z( f ) − z(1)||p∞

= et max
0≤x≤1

|z( f )(x) − z(1)(x)|p

= et max
0≤x≤1

∣∣∣∣∣∣
∫ 1

0
F(x, f (s))ds −

∫ 1

0
F(x, 1(s))ds

∣∣∣∣∣∣
p

= et max
0≤x≤1

∣∣∣∣∣∣
∫ 1

0

(
F(x, f (s)) − F(x, 1(s))

)
ds

∣∣∣∣∣∣
p

≤ et max
0≤x≤1

∫ 1

0

∣∣∣F(x, f (s)) − F(x, 1(s))
∣∣∣p ds

≤ et
∫ 1

0
(M

∣∣∣ f (s) − 1(s)
∣∣∣)pds

= etMp
∫ 1

0

∣∣∣ f (s) − 1(s)
∣∣∣p ds

≤ etMp max
0≤s≤1

∣∣∣ f (s) − 1(s)
∣∣∣p ds

= Mpds( f , 1).

If we take κ = Mpe, then r(κ) ≤ ||Mpe|| = Mp < 1
limn,m→∞ s( fn+1, fm) . So all the conditions of Theorem 3.10 and

thus there is a unique point in X which is fixed under the map z. Equivalently, 21 has a unique solution in
X = C1

R
.
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