Filomat 36:3 (2022), 843–851 https://doi.org/10.2298/FIL2203843Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Characterizations of Strongly Partial Isometry Elements in Rings with Involutions

Shiyin Zhao^{a,b}, Junchao Wei^b

^a School of Mathematical Sciences, Suqian College, Suqian, Jiangsu 223800, P. R. China ^b School of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China

Abstract. In this paper, we study an element which is both group invertible and Moore Penrose invertible to be EP, partial isometry and strongly EP by discussing the existence of solutions in a definite set of some given constructive equations. Mainly, let $a \in R^{\#} \cap R^+$. Then we firstly show that an element $a \in R^{EP}$ if and only if and Equation : $axa^+ + a^+ax = 2x$ has at least one solution in $\chi_a = \{a, a^{\#}, a^+, a^*, (a^{\#})^*, (a^+)^*\}$. Next, $a \in R^{SEP}$ if and only if Equation: $axa^* + a^+ax = 2x$ has at least one solution in χ_a . Finally, $a \in R^{PI}$ if and only if Equation: $aya^*x = xy$ has at least one solution in ρ_a^2 , where $\rho_a = \{a, a^{\#}, a^+, (a^{\#})^*, (a^+)^*\}$.

1. Introduction

Throughout this paper, *R* will denote a unital ring with identity 1. An involution $* : a \mapsto a^*$ in a ring *R* is an anti-isomorphism of degree 2, that is,

$$(a^*)^* = a, (ab)^* = b^*a^*, (a+b)^* = a^* + b^*.$$

The notion of Moore-Penrose invertible (or MP-invertible) has been investigated by many authors (see, for example, [13, 15, 16]). We say that $b = a^{\dagger}$ is the Moore-Penrose invertible of $a \in R$, if the following conditions hold:

$$aba = a, bab = b, (ab)^* = ab, (ba)^* = ba.$$

There is at most one *b* such that the above conditions hold. We write R^+ for the set of all MP-invertibles of *R*. $a \in R$ is said to be group invertible if there is $a^{\#} \in R$ such that $aa^{\#}a = a; a^{\#}aa^{\#} = a^{\#}; aa^{\#} = a^{\#}a$. $a^{\#}$ is called a group inverse of *a* and it is uniquely determined by these equations. Denote by $R^{\#}$ the set of all group invertible elements of *R*.

An element $a \in R$ is said to be an *EP* element if $a \in R^{\dagger} \cap R^{\#}$ and $a^{\dagger} = a^{\#}$ [10]. The set of all *EP* elements of *R* will be denoted by R^{EP} . Mosić et al. in [1, Theorem 2.1] gave several equivalent conditions under which an element in *R* is an *EP* element. Patrćio and Puystjens in [7, Proposition 2] proved that for an element $a \in R$, $a \in R^{EP}$ if and only if $aR = a^*R$ or $aa^{\dagger} = a^{\dagger}a$. It is known by [17, Theorem 7.3] that $a \in R$ is EP if

Keywords. partial isometry, EP element, solutions of equation.

²⁰²⁰ Mathematics Subject Classification. 15A09; 16U99; 16W10

Received: 04 March 2021; Revised: 12 October 2021; Accepted: 16 October 2021

Communicated by Dijana Mosić

Corresponding author: Junchao Wei

Research supported by the National Natural Science Foundation of China (11471282) and SuQian Sci&Tech Program (Grant No. Z2019096)

Email addresses: 52660078@qq.com (Shiyin Zhao), jcweiyz@126.com (Junchao Wei)

and only if *a* is group invertible and $aa^{\#}$ is symmetric. More results on *EP* elements can also be found in [6, 9, 11, 12, 14, 19].

Motivated by these results, this paper is intended to provide, by using certain equations admitting solutions in a definite set, further equivalent conditions for an element in a ring with involution to be a partial isometry. Since there are close connections between partial isometries, EP elements and normal elements in rings with involution [2, 5], we present also several characterizations of the latter two kinds of elements.

2. Results

Lemma 2.1. ([2, Lemma 1.1 and Theorem 1.2])Let $a \in R^{\#} \cap R^{+}$. Then the following conditions are equavilent: 1) $a \in R^{EP}$;

2) $a^+a = aa^+;$ 3) $a^+a = a^{\#}a;$ 4) $aa^+ = aa^{\#}.$

Observing the conditions 2) and 4) of Lemma 2.1, we obtain the following lemma.

Lemma 2.2. Let $a \in R^{\#} \cap R^{+}$. Then the following conditions are equavilent:

1) $a \in \mathbb{R}^{EP}$; 2) $a^+a^{m+1} = a^m$ for some $m \ge 1$; 3) $a^m = a^{m+1}a^+$ for some $m \ge 1$.

Change the condition 2) of Lemma 2.1, we have the following lemma.

Lemma 2.3. Let $a \in R^{\#} \cap R^{+}$. Then the following conditions are equavilent:

1) $a \in R^{EP}$; 2) $aa^+a^+ = a^+$; 3) $a^+a^+a = a^+$.

Lemma 2.4. ([2, Theorem 1.1]; [4]; [18]) (1) If $a \in R^+$, then $a^+aa^* = a^*aa^+$. (2) If $a \in R^{\#} \cap R^+$, then $a^{\#}a^+a = a^{\#} = aa^+a^{\#}$.

Substituting a^* for $a^{\#}$ in the left of condition 1) of Lemma 2.4, one obtains the following lemma.

Lemma 2.5. Let $a \in R^{\#} \cap R^{+}$. If $a^{*} = a^{+}aa^{\#}$, then $a \in R^{EP}$ and $a^{+} = a^{*}$.

Proof. Since $a^* = a^+aa^\#$, we have $a^*a = a^+aa^\#a = a^+a$. Hence $a^* = a^+$ by [5, Theorem 2.1]. Consequently, $a^+ = a^* = a^+aa^\#$, one obtains $a \in R^{EP}$ by [1, Theorem 2.1(xxii)]. \Box

Let $a \in R^{\#} \cap R^{+}$. Then $a^{*} = a^{+}aa^{\#}$ if and only if $aa^{*} = aa^{\#}$. Hence Lemma 2.5 leads to the following corollary.

Corollary 2.6. Let $a \in R^{\#} \cap R^{+}$. Then the following conditions are equavilent:

1) $a \in R^{EP}$ and $a^+ = a^*$; 2) $aa^* = aa^{\#}$; 3) $a^*a = a^{\#}a;$ 4) $a^* = a^{\#}aa^+$; 5) $a^* = a^+aa^{\#}$.

Let $a \in R^{\#} \cap R^+$. If $a^{\#} = a^+ = a^*$, then *a* is called a strongly *EP* element of *R*. We write by R^{SEP} to denote the set of all strongly *EP* elements of *R*.

Let $a \in R^{EP}$. Then we have $a^2a^+ + a^+a^2 = 2a$. Hence we can construct the following equation:

 $axa^+ + a^+ax = 2x.$

Using the equation (1), we can characterize strongly *EP* elements as follows.

(1)

Theorem 2.7. Suppose $a \in R^{\#} \cap R^+$, then $a \in R^{EP}$ if and only if Equation (1) has at least one solution in $\chi_a = \{a, a^{\#}, a^+, a^*, (a^{\#})^*, (a^+)^*\}.$

Proof. " \Rightarrow " Assume $a \in R^{EP}$, then $a^2a^+ + a^+a^2 = 2a$ by [1, Theorem 2.1(xxx)]. Hence x = a is a solution to the equation.

" \leftarrow "1) If x = a is a solution, then $a^2a^+ + a^+a^2 = 2a$, this gives $a \in R^{EP}$ by [1, Theorem 2.1(XXX)];

2) If $x = a^{\#}$ is a solution, then one has $aa^{\#}a^{+} + a^{+}aa^{\#} = 2a^{\#}$. Post-multiply it by a, we have $a^{\#}a + a^{+}a = 2a^{\#}a$ by Lemma 2.4(2), thus $a^{+}a = a^{\#}a$. We can deduce that $a \in R^{EP}$ by Lemma 2.1;

3) If $x = a^+$ is a solution, then $aa^+a^+ + a^+aa^+ = 2a^+$, that is, $a^+ = aa^+a^+$. By Lemma 2.3, $a \in \mathbb{R}^{EP}$;

4) If $x = a^*$ is a solution, then $aa^*a^+ + a^+aa^* = 2a^*$, which implies that $a^* = aa^*a^+$. Pre-multiplying it by $1 - aa^+$, we get $(1 - aa^+)a^* = (1 - aa^+)aa^*a^+ = 0$. Applying the involution on the last equality, it turns out to be $a(1 - aa^+) = 0$, so $a = a^2a^+$. This means $a \in R^{EP}$ by Lemma 2.2;

5) If $x = (a^{\#})^*$ is a solution, one deduces that

$$a(a^{\#})^*a^+ + a^+a(a^{\#})^* = 2(a^{\#})^*.$$

Note that $a^+a(a^{\#})^* = (a^{\#}a^+a)^* = (a^{\#})^*$. Accordingly, (2) turns into $(a^{\#})^* = a(a^{\#})^*a^+$. Pre-multiply this equality by $1 - aa^+$, then we obtain $(1 - aa^+)(a^{\#})^* = (1 - aa^+)a(a^{\#})^*a^+ = 0$. Applying the involution on the equality, we get $a^{\#}(1 - aa^+) = 0$, Morever, pre-multiplying it by a^2 , we get $a = a^2a^+$, which implies that $a \in R^{EP}$ by Lemma 2.2;

6) If $x = (a^+)^*$ is a solution, then

$$a(a^{+})^{*}a^{+} + a^{+}a(a^{+})^{*} = 2(a^{+})^{*}.$$
(3)

Since $aa^+(a^+)^* = (a^+aa^+)^* = (a^+)^*$, we can pre-multiply (3) by $1-aa^+$, and get $(1-aa^+)a^+a(a^+)^* = 0$. Multiplying it on the right by a^* , we arrive at $(1 - aa^+)a^+aaa^+ = 0$. In addition, post-multiplying this equality by $aa^{\#}$, we can see that $(1 - aa^+)a^+a = 0$, so $a^+a = aa^+a^+a$. According to the proof of Lemma 2.2, we know that $a \in R^{EP}$, as required. \Box

Modify Equation (1) to

 $axa^* + a^+ax = 2x.$

Theorem 2.8. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{SEP}$ if and only if Equation (4) has at least one solution in χ_{a} .

Proof. " \Rightarrow " Obviously $x = a^+ = a^\# = a^*$ is a solution.

" \leftarrow " 1) If x = a is a solution, then $a^2a^* + a^+a^2 = 2a$. Multiplying the equality on the left by a, we have $a^3a^* = a^2$. Hence $a \in R^{SEP}$ by [2, Theorem 2.2(xvii)];

2) If $x = a^{\#}$ is a solution, one has that $aa^{\#}a^* + a^+aa^{\#} = 2a^{\#}$. Hence $a \in \mathbb{R}^{SEP}$ by [2, Theorem 2.2(iv)];

3) If $x = a^+$ is a solution, then $aa^+a^* + a^+aa^+ = 2a^+$. It can be concluded that $aa^+a^* = a^+$. Then postmultiply the equality by a, and we have $aa^+a^*a = a^+a$. Applying the involution on the last equality, one has $a^+a = a^*a^2a^+$. Multiplying the equality on the right by $aa^{\#}$, we arrive at $a^+a = a^*a$. Hence $a^* = a^+$, it follows that $a^* = a^+ = aa^+a^*$. So, $a = a^2a^+$, one obtains $a \in R^{EP}$. Thus $a \in R^{SEP}$;

4) If $x = a^*$ is a solution, one concludes that $aa^*a^* + a^+aa^* = 2a^*$, which forces that $aa^*a^* = a^*$. Taking the involution on the equality, we get $a = a^2a^*$. Hence $a \in R^{SEP}$ by [2, Theorem 2.2(xvii)];

5) If $x = (a^{\#})^*$ is a solution, then $a(a^{\#})^*a^* + a^+a(a^{\#})^* = 2(a^{\#})^*$. This leads to $a(aa^{\#})^* = (a^{\#})^*$. Consequently, $a^{\#} = aa^{\#}a^*$. Furthermore, pre-multiply it by a^3 , and we obtain $a^2 = a^3a^*$. In the light of the proof of 1), $a \in R^{SEP}$;

6) If $x = (a^+)^*$ is a solution, we have $a(a^+)^*a^* + a^+a(a^+)^* = 2(a^+)^*$. Taking the involution on the equality, one has that $aa^+a^* + a^+a^+a = 2a^+$. Pre-multiply the equality by $1 - a^+a$, it turns out to be $(1 - a^+a)aa^+a^* = 0$. Again applying the involution on the last equality, we get $a^2a^+(1 - a^+a) = 0$. Furthermore, multiplying it on the left by $a^+a^\#$, we obtain $a^+(1 - a^+a) = 0$, giving that $a^+ = a^+a^+a$. By Lemma 2.3, we have $a \in \mathbb{R}^{EP}$, this gives $2a^+ = aa^+a^* + a^+a^+a = a^+aa^* + a^+aa^+ = a^* + a^+$, it follows that $a^* = a^+$. Hence $a \in \mathbb{R}^{SEP}$, as required. \Box

(2)

(4)

We modify the equation (1) to

$$axa^+ + a^*ax = 2x. \tag{5}$$

Theorem 2.9. Let $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{+}$. Then $a \in \mathbb{R}^{SEP}$ if and only if Equation (5) has at least one solution in $\{a, a^{\#}, a^{+}\}$.

Proof. " \Rightarrow " Obviously $x = a^+ = a^\# = a^*$ is a solution.

" \leftarrow " 1) If x = a is a solution, then $a^2a^+ + a^*a^2 = 2a$. Multiplying the equality on the right by a, we have $a^*a^3 = a^2$. Hence $a \in R^{SEP}$ by [2, Theorem 2.2(xvi)];

2) If $x = a^{\#}$ is a solution, one has that $aa^{\#}a^{+} + a^{*}aa^{\#} = 2a^{\#}$. Multiplying the equality on the right by a, one has $aa^{\#} = a^{*}a$. Hence $a \in R^{SEP}$ by [2, Theorem 2.2(v)];

3) If $x = a^+$ is a solution, then $aa^+a^+ + a^*aa^+ = 2a^+$, that is, $aa^+a^+ + a^* = 2a^+$. Pre-multiply the equality by $1 - a^+a$, and we have $(1 - a^+a)aa^+a^+a = 0$. Applying the involution on the last equality, one obtains that $a^+a^2a^+(1-a^+a) = 0$. Multiplying it on the left by $a^+a^{\#}a$, one has $a^+(1-a^+a) = 0$. Hence $a \in \mathbb{R}^{EP}$ by Lemma 2.3, this gives $a^{\#} = a^+$, it follows that $2a^+ = aa^+a^+ + a^* = aa^+a^{\#} + a^* = a^{\#} + a^* = a^+ + a^*$. Thus $a^+ = a^*$, this implies $a \in \mathbb{R}^{SEP}$. \Box

If we use $a^{\#}$ in place of a^{+} in Equation (1), one has the following equation.

$$axa^{\#} + a^+ax = 2x. \tag{6}$$

Theorem 2.10. Suppose $a \in R^{\#} \cap R^+$, then $a \in R^{EP}$ if and only if Equation (6) has at least one solution in χ_a .

Proof. " \Rightarrow " Assume $a \in R^{EP}$, then x = a is a solution to the equation.

" \leftarrow " 1) If x = a is a solution, then $a^2a^{\#} + a^+a^2 = 2a$, this gives $a = a^+a^2$. Hence $a \in R^{EP}$ by Lemma 2.2; 2) If $x = a^{\#}$ is a solution, then one has $aa^{\#}a^{\#} + a^+aa^{\#} = 2a^{\#}$, that is $a^+aa^{\#} = a^{\#}$. Post-multiply it by a, we have $a^+a = a^{\#}a$. Hence $a \in R^{EP}$ by Lemma 2.1;

3) If $x = a^+$ is a solution, then $aa^+a^\# + a^+aa^+ = 2a^+$, that is, $a^+ = aa^+a^\# = a^\#$ by Lemma 2.4. Hence $a \in R^{EP}$; 4) If $x = a^*$ is a solution, then $aa^*a^\# + a^+aa^* = 2a^*$, which implies that $a^* = aa^*a^\#$. Post-multiplying it by $1 - a^+a$, we get $a^*(1 - a^+a) = aa^*a^\#(1 - a^+a) = 0$. Applying the involution on the last equality, it turns out to be $(1 - a^+a)a = 0$, so $a = a^+a^2$. This means $a \in R^{EP}$ by Lemma 2.2;

5) If $x = (a^{\#})^*$ is a solution, one deduces that

...

$$a(a^{\#})^* a^{\#} + a^+ a(a^{\#})^* = 2(a^{\#})^*.$$
⁽⁷⁾

This implies $(a^{\#})^* = a(a^{\#})^*a^{\#}$. Post-multiply this equality by $1 - a^+a$, then we obtain $(a^{\#})^*(1 - a^+a) = 0$. Applying the involution on the equality, we get $(1 - a^+a)a^{\#} = 0$. According to the proof of (2), we get $a \in \mathbb{R}^{EP}$; 6) If $x = (a^+)^*$ is a solution, then

 $a(a^{+})^{*}a^{\#} + a^{+}a(a^{+})^{*} = 2(a^{+})^{*}.$ (8)

Similar to the proof of 6) in Theorem 2.1, we have $a \in R^{EP}$, as required. \Box

Pre-multiplying Equation (6) by *a*, we have the following equation.

$$a^2 x a^\# = a x. \tag{9}$$

Change the left sided of Equation (9) as follows.

 $xa^2a^+ = ax. (10)$

846

Theorem 2.11. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{EP}$ if and only if the equation (10) has at least one solution in χ_{a} .

Proof. " \Rightarrow " Assume that $a \in R^{EP}$, then x = a is a solution to the equation (10). " \Leftarrow " 1) If x = a is a solution, then $a^3a^+ = a^2$. Hence $a \in R^{EP}$ by Lemma 2.2;

2) If $x = a^{\#}$ is a solution, then one has $a^{\#}a^{2}a^{+} = aa^{\#}$, that is $aa^{+} = aa^{\#}$. Hence $a \in R^{EP}$;

3) If $x = a^+$ is a solution, then $a^+a^2a^+ = aa^+$, this infers that $a = a^+a^2$ by multiplying the equality on the right by *a*. Hence $a \in R^{EP}$ by Lemma 2.2;

4) If $x = a^*$ is a solution, then $a^*a^2a^+ = aa^*$, which implies that $aR = a^*R$ by [3, Lemma 2.3, Lemma 2.4]. This means $a \in R^{EP}$;

5) If $x = (a^{\#})^*$ is a solution, one deduces that $(a^{\#})^*a^2a^+ = a(a^{\#})^*$. Then, by [3, Lemma 2.2, Lemma 2.3], we have $aR \subseteq a^*R$, this implies $(1 - a^+a)aR \subseteq (1 - a^+a)a^*R = 0$. Hence we get $a \in R^{EP}$ by Lemma 2.2;

6) If $x = (a^+)^*$ is a solution, then $(a^+)^* a^2 a^+ = a(a^+)^*$, by [3, Lemma 2.1, Lemma 2.4], one has $Ra^+ = a(a^+)^* a^2 a^+ = a(a^+)^* a^2 a^+$ $R(a^{+})^{*}a^{2}a^{+} = Ra(a^{+})^{*} \subseteq R(a^{+})^{*} = Ra$, it infers that $Ra^{+}(1 - a^{+}a) = Ra(1 - a^{+}a) = 0$. Hence $a \in R^{EP}$ by Lemma 2.3. □

Applying the involution on the equation (10), one obtains the following equation.

$$aa^+a^*x = xa^*$$
.

Since $a \in R^{EP}$ if and only if $a^* \in R^{EP}$ and $\chi_a = \chi_{a^*}$, Theorem 2.5 implies the following corollary.

Corollary 2.12. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{EP}$ if and only if the equation (11) has at least one solution in χ_{a} .

Using a^* in place of *a* in the equation (11), one has the following equation.

$$a^+a^2x = xa. (12)$$

Hence Corollary 2.2 implies the following corollary.

Corollary 2.13. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{EP}$ if and only if the equation (12) has at least one solution in χ_{a} .

Using a^+ in place of a^* in the right of Equation (11), one has the following equation.

$$aa^+a^*x = xa^+$$
.

Theorem 2.14. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{SEP}$ if and only if Equation (13) has at least one solution in χ_{a} .

Proof. " \Rightarrow " Obviously $x = a^+ = a^\# = a^*$ is a solution.

 $\ddot{x} \leftarrow \ddot{x}$ 1) If x = a is a solution, then $aa^+a^*a = aa^+$. Applying the involution on the equality, one has $aa^+ = a^*a^2a^+$. Multiplying the last equality on the right by $aa^{\#}$, we have $aa^{\#} = a^*a$, this implies $a \in R^{SEP}$ by Corollary 2.1;

2) If $x = a^{\#}$ is a solution, one has that $aa^{+}a^{*}a^{\#} = a^{\#}a^{+}$. Multiplying the equality on the right by $a^{+}a$, we have $a^{\#}a^{+} = a^{\#}a^{+}a^{+}a$ by Lemma 2.4, this gives $aa^{+} = aa^{+}a^{+}a$ by pre-multiplying a^{2} . Hence $a \in R^{EP}$ by Lemma 2.3, this gives $aa^{+} = a^{\#}a^{+}a^{2} = aa^{+}a^{*}a^{\#}a^{2} = aa^{+}a^{*}a$. Hence $a \in R^{SEP}$ by 1);

3) If $x = a^+$ is a solution, then $aa^+a^*a^+ = a^+a^+$. Hence $aR = aa^+R = (a^+)^*a^*R = (a^+)^*a^*a^*R = (a^2a^+)^*R = (a^$ one obtains $a \in R^{SEP}$ by 2);

(13)

(11)

4) If $x = a^*$ is a solution, one concludes that $aa^+a^*a^* = a^*a^+$, which forces that $a^3a^+ = (a^+)^*a$ by applying the involution on the equality. Noting that $Ra^3 = Ra$ and $R(a^+)^* = Ra$. Then $Ra^+ = Raa^+ = Ra^3a^+ = R(a^+)^*a = Ra^2 = Ra$, which implies $a \in R^{EP}$. It follows that $a^2 = a^3a^+ = (a^+)^*a$. Pre-multiplying the last equality by a^* , we get $a^*a^2 = a$. Hence $a \in R^{SEP}$ by [2, Theorem 2.2(xvii)];

5) If $x = (a^{\#})^*$ is a solution, then $aa^+a^*(a^{\#})^* = (a^{\#})^*a^+$. Taking the involution on the equality, one has $aa^+ = (a^+)^*a^{\#}$, which implies $a^* = a^*aa^+ = a^*(a^+)^*a^{\#} = a^+aa^{\#}$. Hence $a \in R^{SEP}$ by Lemma 2.5;

6) If $x = (a^+)^*$ is a solution, we have $aa^+a^*(a^+)^* = (a^+)^*a^+$, that is, $aa^+a^+a = (a^+)^*a^+$. Per-multiplying the equality by a^* , one has $a^*a^+a = a^+$, it follows that $Ra^+ = Ra^*a^+a = Ra^*(a^+a)^* = Ra^*a^*(a^+)^* = Ra^*(a^+)^* = Ra^+a = Ra$. Hence $a \in R^{EP}$. It follows that $aa^+ = aa^+a^+a = (a^+)^*a^+$ and $a^* = a^*aa^+ = a^*(a^+)^*a^+ = a^+$. Therefore $a \in R^{SEP}$. \Box

If we modify the equation (13) as follows.

$$aa^*a^+x = xa^+. ag{14}$$

Then we have the following problem.

Problem 2.15. Let $a \in R^{\#} \cap R^{+}$. If Equation (14) has at least one solution in χ_{a} , is $a \in R^{SEP}$?

For this problem, we have studied the conclusions of three cases, and other cases need to be further reached. The details are as follows:

(1) If x = a is a solution, then $aa^*a^+a = aa^+$, this gives $a^+ = a^*a^+a$. By [5], $a \in \mathbb{R}^{SEP}$.

(3) If $x = a^+$ is a solution, then $aa^*a^+a^+ = a^+a^+$. By [19, Lemma 2.11], we have $aa^*a^+ = a^+$. Hence $a \in R^{SEP}$ by [5].

Unfortunately, we haven't yet reached whether $a \in R^{SEP}$ when $x = a^*$, $(a^+)^*$ or $(a^{\#})^*$. Also, Equation (13) can be changed as follows.

$$aa^+xa^* = xa^+. ag{15}$$

Let $a \in R$. *a* is said to be partial isometry if $a^* = a^+$. We denote the set of all partial isometry elements of *R* by R^{PI} .

Theorem 2.16. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if Equation (15) has at least one solution in χ_{a} .

Proof. " \Rightarrow " Obviously x = a is a solution.

" \leftarrow " 1) If x = a is a solution, then $aa^+aa^* = aa^+$, this gives $aa^* = aa^+$. Hence $a \in R^{PI}$ by [2, Theorem 2.1(i)]; 2) If $x = a^{\#}$ is a solution, one has that $aa^+a^{\#}a^* = a^{\#}a^+$. It follows that $a^{\#}a^* = a^{\#}a^+$ from Lemma 2.4, this gives $aa^* = aa^+$ by pre-multiplying a^2 . Hence $a \in R^{PI}$ by 1);

4) If $x = a^*$ is a solution, one concludes that $aa^+a^*a^* = a^*a^+$. Hence $a \in R^{PI}$ by the proof of 4) of Theorem 2.6;

5) If $x = (a^{\#})^*$ is a solution, then $aa^+(a^{\#})^*a^* = (a^{\#})^*a^+$. Taking the involution on the equality, one has $aa^{\#}aa^+ = (a^+)^*a^{\#}$, which implies $aa^+ = (a^+)^*a^{\#}$. Post-multiplying a^2 , we have $a^2 = (a^+)^*a$, pre-multiplying a^* , one has $a^*a^2 = a^+a^2$. Hence $a \in \mathbb{R}^{PI}$ by [2, Theorem 2.1(ii)];

6) If $x = (a^+)^*$ is a solution, we have $aa^+(a^+)^*a^* = (a^+)^*a^+$, that is, $aa^+ = (a^+)^*a^+$. Post-multiplying the equality by a, one has $a = (a^+)^*a^+a = (a^+)^*$. Therefore $a \in \mathbb{R}^{PI}$. \Box

(16)

Pre-multiplying the equation (15) by a^+ , we have the following equation.

$$a^+xa^* = a^+xa^+.$$

Theorem 2.17. Let $a \in R^{\#} \cap R^+$. Then $a \in R^{PI}$ if and only if Equation (16) has at least one solution in $\{a, a^{\#}, a^*, (a^{\#})^*, (a^{+})^*\}$.

Proof. " \Rightarrow " Obviously x = a is a solution.

" \leftarrow "1) If x = a is a solution, then $a^+aa^* = a^+aa^+ = a^+$, this gives $a^* = a^+$. Hence $a \in \mathbb{R}^{\mathbb{P}I}$;

2) If $x = a^{\#}$ is a solution, one has $a^{+}a^{\#}a^{*} = a^{+}a^{\#}a^{+}$. It follows that $a^{\#}a^{*} = a^{\#}a^{+}$ by pre-multiplying *a*. Hence $a \in R^{PI}$ by [2, Theorem 2.1(iv)];

3) If $x = a^*$ is a solution, one concludes that $a^+a^*a^* = a^+a^*a^+$. Pre-multiplying the equality by a and applying the involution, we have $a^3a^+ = (a^+)^*a^2a^+$. Post-multiplying the last equality by $a^{\#}a$, one obtains $a^2 = (a^+)^*a$. Hence $a \in \mathbb{R}^{PI}$ by the proof of 5) of Theorem 2.7;

4) If $x = (a^{\#})^*$ is a solution, then $a^+(a^{\#})^*a^* = a^+(a^{\#})^*a^+$. Pre-multiply the equality by a and then taking the involution, one has $aa^+ = (a^+)^*a^{\#}aa^+$, Post-multiplying the last equality by a^2 , one has $a^2 = (a^+)^*a$, which implies $a \in R^{PI}$ by 3);

5) If $x = (a^+)^*$ is a solution, we have $a^+(a^+)^*a^* = a^+(a^+)^*a^+$, that is, $a^+ = a^+(a^+)^*a^+$, this gives $a = aa^+a = aa^+(a^+)^*a^+a^+$. Therefore $a \in \mathbb{R}^{PI}$.

Proposition 2.18. *Let* $a \in R^{\#} \cap R^{+}$ *, if* $a^{+}a^{+}a^{*} = a^{+}a^{+}a^{+}$ *, then* $a \in R^{PI}$ *.*

Proof. Since $a^+a^+a^* = a^+a^+a^+$, $a^+a^* = a^+a^+$ by [19, Lemma2.11]. Hence $a \in R^{PI}$ by [19, Corollary 2.10].

Theorem 2.19. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if Equation

$$aya^*x = xy. \tag{17}$$

has at least one solution in ρ_a^2 *, where* $\rho_a = \{a, a^{\#}, a^+, (a^{\#})^*, (a^+)^*\}$ *.*

Proof. " \Rightarrow " If $a \in R^{PI}$, then $a^* = a^+$, it follows that

$$\begin{cases} x = a \\ y = a \end{cases}$$

is a solution.

" \leftarrow " 1) If y = a, then Equation (17) changes as follows

$$a^2a^*x = xa. aga{18}$$

(1) If x = a is a solution, then $a^2a^*a = a^2$. Pre-multiplying the equality by $a^+a^{\#}$, one has $a^*a = a^+a$, this implies $a \in R^{PI}$;

(2) If $x = a^{\#}$ is a solution, then $a^2a^*a^{\#} = a^{\#}a$. Post-multiplying it by a^2 , we have $a^2a^*a = a^2$, by (1), we can get $a \in R^{PI}$;

(3) If $x = a^+$ is a solution, then $a^2a^*a^+ = a^+a$. Post-multiplying the equality by aa^+ , one obtains $a^+a = a^+a^2a^+$, this gives $a = a^2a^+$, $a \in R^{EP}$, so $a^\# = a^+$, it follows $a^2a^*a^\# = a^2a^*a^+ = a^+a = a^\#a$, by (2), $a \in R^{PI}$; (4) If $x = (a^+)^*$ is a solution, then $a^2a^*(a^+)^* = (a^+)^*a$, that is, $a^2 = (a^+)^*a$. Pre-multiplying it by a^* , one has

(4) If $x = (a^+)^*$ is a solution, then $a^2a^*(a^+)^* = (a^+)^*a$, that is, $a^2 = (a^+)^*a$. Pre-multiplying it by a^* , one has $a^*a^2 = a^+a^2$, it infers $a \in \mathbb{R}^{PI}$;

(5) If $x = (a^{\#})^*$ is a solution, then $a^2a^*(a^{\#})^* = (a^{\#})^*a$. Post-multiplying aa^+ , we have $(a^{\#})^*a = (a^{\#})^*a^2a^+$. Pre-multiplying $(a^+)^*a^*a^*$, we have $a = a^2a^+$, it follows that $a \in R^{EP}$, then $a^{\#} = a^+$, and $a^2a^*(a^+)^* = (a^+)^*a$, by (4), $a \in R^{PI}$. 2) If $y = a^{\#}$, then

$$aa^{\#}a^{*}x = xa^{\#}.$$

i) If x = a is a solution, then $aa^{\#}a^{*}a = aa^{\#}$. Pre-multiplying the equality by a^{2} , we have $a^{2}a^{*}a = a^{2}$, by (1), $a \in R^{PI}$.

ii) If $x = a^{\#}$ is a solution, then $aa^{\#}a^{*}a^{\#} = a^{\#}a^{\#}$. Post-multiplying a^{2} , we have $aa^{\#}a^{*}a = aa^{\#}$, by i), we can get $a \in \mathbb{R}^{PI}$;

iii) If $x = a^+$ is a solution, then $aa^{\#}a^*a^+ = a^+a^{\#}$. Pre-multiplying *a*, we have $aa^*a^+ = a^{\#}$, post-multiplying $1 - aa^+$, one has $a^{\#} = a^{\#}aa^+$, $a \in R^{EP}$, this gives $aa^{\#}a^*a^{\#} = aa^{\#}a^*a^+ = a^+a^{\#} = a^{\#}a^{\#}$, by ii), $a \in R^{PI}$;

iv) If $x = (a^+)^*$ is a solution, then $aa^{\#}a^*(a^+)^* = (a^+)^*a^{\#}$, that is, $aa^{\#} = (a^+)^*a^{\#}$, post-multiplying a^2 , we have $a^{2} = (a^{+})^{*}a$, by (4), we have $a \in R^{PI}$;

v) If $x = (a^{\#})^*$ is a solution, then $aa^{\#}a^*(a^{\#})^* = (a^{\#})^*a^{\#}$. Pre-multiplying $1 - aa^+$, we have $(1 - aa^+)(a^{\#})^*a^{\#} = 0$. $(a^{\#})^* a^{\#} = (a^+)^* a^{\#}$, by iv), $a \in \mathbb{R}^{PI}$.

3) If $y = a^+$, then

$$aa^+a^*x = xa^+. ag{20}$$

By Theorem 2.6, $a \in R^{PI}$. 4) If $v = (a^+)^*$, then

$$a(a^{+})^{*}a^{*}x = x(a^{+})^{*}.$$
(21)

That is.

$$a^2 a^+ x = x(a^+)^*. (22)$$

(a) If x = a is a solution, then $a^2a^+a = a(a^+)^*$, that is $a^2 = a(a^+)^*$. Similar to the proof of (4), we have $a \in \mathbb{R}^{\mathbb{P}I}$; (b) If $x = a^{\#}$ is a solution, then $a^2a^+a^{\#} = a^{\#}(a^+)^*$, that is $aa^{\#} = a^{\#}(a^+)^*$, pre-multiplying it by a^2 , we have $a^2 = a(a^+)^*$, by (a), we can get $a \in \mathbb{R}^{PI}$;

(c) If $x = a^+$ is a solution, then $a^2a^+a^+ = a^+(a^+)^*$. Pre-multiplying it by $1 - aa^+$, we have $(1 - aa^+)a^+(a^+)^* = 0$, post-multiplying a^* , we have $(1 - aa^+)a^+ = 0$, this implies $a \in R^{EP}$. Hence $x = a^{\#}$ is a solution of the equation (22), by (b), $a \in R^{PI}$;

(d) If $x = (a^+)^*$ is a solution, then $a^2a^+(a^+)^* = (a^+)^*(a^+)^*$. Applying the involution on the equality, we have $a^{+}a^{*} = a^{+}a^{+}$, pre-multiplying the equality by *a* and then, applying the involution, we have $a^{2}a^{+} = (a^{+})^{*}aa^{+}$, post-multiply *a*, one has $a^2 = (a^+)^* a$, by (4), $a \in \mathbb{R}^{PI}$;

(e) If $x = (a^{\#})^*$ is a solution, then $a^2a^+(a^{\#})^* = (a^{\#})^*(a^+)^*$. Post-multiplying the equality by aa^+ , we have $(a^{\#})^*(a^+)^* = (a^{\#})^*(a^+)^*aa^+$. Applying the involution on the last equality, we have $a^+a^{\#} = aa^+a^+a^{\#}$. Postmultiplying it by a^2 , we have $a^+a = aa^+a^+a$, hence $a \in R^{EP}$, this implies $x = (a^+)^*$ is a solution of Equation (22), by (d), $a \in R^{PI}$.

5) If
$$y = (a^{\#})^*$$
, then

$$a(a^{\#})^*a^*x = x(a^{\#})^*.$$
(23)

a) If x = a is a solution, then $a(a^{\#})^*a^*a = a(a^{\#})^*$, pre-multiplying a^+ , we have $(a^{\#})^*a^*a = (a^{\#})^*$. Applying the involution, one obtains $a^*aa^\# = a^\#$, this implies $a \in R^{SEP}$. Hence $a \in R^{PI}$;

b) If $x = a^{\#}$ is a solution, then $a(a^{\#})^* a^* a^{\#} = a^{\#}(a^{\#})^*$. Post-multiplying it by a^+a , we have $a^{\#}(a^{\#})^* a^+ a = a^{\#}(a^{\#})^*$. Pre-multiplying it by a^+a^2 , we have $(a^{\#})^*a^+a^- = (a^{\#})^*$. Applying the involution on the equality, we have $a^{\#} = a^{+}aa^{\#}, a \in \mathbb{R}^{EP}$. Thus $aa^{+} = aa^{\#} = aaa^{+}a^{\#} = a(a^{+})^{*}a^{*}a^{\#} = a(a^{\#})^{*}a^{*}a^{\#} = a^{\#}(a^{\#})^{*} = a^{+}(a^{+})^{*}, a = a^{2}a^{+} = aa^{+}(a^{+})^{*} = a^{2}a^{+} =$ $(a^+)^*, a \in R^{PI};$

c) If $x = a^+$ is a solution, then $a(a^{\#})^*a^*a^+ = a^+(a^{\#})^*$. Pre-multiplying it by aa^+ , we have $a^+(a^{\#})^* = aa^+a^+(a^{\#})^*$, post-multiplying the last equality by $(a^*)^2$, we have $a^+a^* = aa^+a^+a^*$. Applying the involution, we have

(19)

(21)

 $a(a^+)^*(1 - aa^+) = 0$. Noting that $Ra(a^+)^* = Ra$. Then $a(1 - aa^+) = 0$, $a \in R^{EP}$. So $x = a^{\#}$ is a solution, by b), $a \in R^{PI}$;

d) If $x = (a^+)^*$ is a solution, then $a(a^{\#})^*a^*(a^+)^* = (a^+)^*(a^{\#})^*$, so $a^+aa^{\#}a^* = a^{\#}a^+$, by applying the involution. Pre-multiplying it by a^2 , we obtain $aa^* = aa^+$, $a \in R^{PI}$;

e) If $x = (a^{\#})^*$ is a solution, then $a(a^{\#})^*a^*(a^{\#})^* = (a^{\#})^*(a^{\#})^*$. Applying the involution on the equality, one has $a^{\#}a^* = a^{\#}a^{\#}$. Thus $a \in \mathbb{R}^{PI}$. \Box

Acknowledgments

We would like to express our heartfelt thanks to Professor Dijana Mosić and referees, for their instructive advice and useful suggestions on our thesis.

References

- [1] D. Mosić, Dragan S. Djordjević, J. J. Koliha. EP elements in rings. Linear Algebra Appl. 431(2009) 527-535.
- [2] D. Mosić, Dragan S. Djordjević. Further results on partial isometries and EP elements in rings with involution. Math. Comput. Model. 54(2011) 460-465.
- [3] Y. C. Qu, J. C. Wei, H. Yao, Characterizations of normal elements in rings with involution, Acta. Math. Hungar., 156(2)(2018) 459-464.
- [4] D. S. Djordjević, V. Rakočević, Lectures on generalized inverses. Faculty of Sci. Math. Univ. Niš. 2008.
- [5] D. Mosić, Dragan S. Djordjević, Partial isometries and *EP* elements in rings with involution. Electron. J. Linear Algebra. 18(2009) 761-722.
- [6] D. Mosić, Dragan S. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput. 218(2012) 6702-6710.
- [7] P. Patrício, R. Puystjens, Drazin-Moore-Penrose invertibility in rings. Linear Algebra Appl. 389(2004) 159-173.
- [8] M. P. Drazin, Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly. 65(1958) 506-514.
- [9] D. Drivaliaris, S. Karanasios, D. Pappas, Factorizations of EP operators. Linear Algebra Appl. 429(2008) 1555-1567.
- [10] R. E. Hartwig, Block generalized inverses. Arch. Retion. Mech. Anal. 61(1976) 197-251.
- [11] R. E. Hartwig, Generalized inverses, EP elements and associates. Rev. Roumaine Math. Pures Appl. 23(1978) 57-60.
- [12] R. E. Hartwig, I. J. Katz, Products of EP elements in reflexive semigroups. Linear Algebra and Appl. 14(1976) 11-19.
- [13] R. E. Harte, M. Mbekhta, On generalized inverses in C*-algebras. Studia Math. 103(1992) 71-77.
- [14] S. Karanasios, EP elements in rings and semigroup with involution and C*-algebras. Serdica Math. J. 41(2015) 83-116.
- [15] J. J. Koliha, The Drazin and Moore-Penrose inverse in C*-algebras. Math. Proc. R. Ir. Acad. 99A(1999) 17-27.
- [16] J. J. Koliha, D. Cvetković, Dragan S. Djordjević, Moore-Penrose inverse in rings with involution. Linear Algebra Appl. 426(2007) 371-381.
- [17] J. J. Koliha, P. Patrílcio. Elements of rings with equal spectral idempotents. J. Aust. Math. Soc. 72(2002) 137-152.
- [18] D. Mosić, Dragan S. Djordjević, Moore-Penrose-invertible normal and Hermitian elements in rings. Linear Algebra Appl. 431(2009) 732-745.
- [19] D. D. Zhao, J. C. Wei. Strongly EP elements in rings with involution. J Algebra Appl. 2021.