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A Case Study

Imed Ben Salaha, Francisco Marcellánb, Mohamed Khalfallaha
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Abstract. Based on their second degree character, in this contribution we study new characterizations
of families of symmetric and quasi-symmetric semiclassical linear forms of class one. In fact, by using
the Stieltjes function and the moments of those forms, we give necessary and sufficient conditions for
a regular form to be at the same time of the second degree, symmetric (resp. quasi-symmetric) and
semiclassical of class one. We focus our attention on the link between these forms and the Jacobi forms
Tp,q = J(p − 1/2, q − 1/2), p, q ∈ Z, p + q ≥ 0. All of them are rational transformations of the first kind
Chebychev form T = J (−1/2,−1/2). Finally, we study a family of second degree linear forms which are
semiclassical of class one and are not included in the above families.

1. Introduction

Semiclassical orthogonal polynomials (OP) have been introduced in the seminal paper by J. Shohat
[34] and they arise as a natural extension of the well-known classical OP of Hermite, Laguerre, Jacobi and
Bessel. Semiclassical OP attracted the interest of many researchers from 1980 taking into account their
applications in several domains. More precisely, this theory has been developed, from an algebraic aspect
and a distributional one by P. Maroni and extensively studied during the last three decades (see [22] as a nice
survey on this topic, as well as [15] with the applications in the framework of Sobolev inner products). In
particular, the classification of semiclassical forms (linear functionals) according to some criteria of optimal
information from the so-called Pearson equation, i.e. a first order linear differential equation satisfied by
the form, plays a central role in the construction of such forms. In [6], S. Belmehdi makes use of this
approach to provide a full description of all semiclassical forms of class s = 1. Moreover, in [3], M. Bachène
established the non linear system satisfied by the coefficients of the recurrence relation of semiclassical
orthogonal sequences of class s = 1 which is difficult to solve in general. In particular case (see [22, 26]) the
authors are able to find such a nonlinear system. In the framework of general semiclassical linear forms
these equations are called in the literature (see[7]) Laguerre-Freud equations.
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Taking into account the difficulties to solve the Laguerre-Freud equations, it is more important to use
other tools for the construction and characterizations of some semiclassical forms [2, 4, 5, 9, 10, 31, 32]
based either on the moments, the corresponding Stieltjes function or their integral representation. As an
illustrative example of semiclassical linear forms in [24], second degree forms have been introduced. These
forms are characterized by the fact that their formal Stieltjes function S(w)(z) = −

∑
n≥0 〈w, xn

〉/zn+1 satisfies
a quadratic equation

BS2(w) + CS(w) + D = 0,

where B,C,D are polynomials such that B , 0,C2
− 4BD , 0 and D , 0. The most famous and elementary

examples of second degree forms are the Tchebychev forms of the first and second kind and, more generally.
the Bernstein-Szegö forms and their generalizations [16, 27, 29] as well as [17]. It is worthy to mention that
the unique classical second degree forms are the Jacobi formsJ(k− 1

2 , l−
1
2 ),where k, l are integer numbers

with k + l ≥ 0 (see [4]).

Our work is focused on the analysis of semiclassical forms of class s = 1 which are second degree forms.
In particular, we are interested in description, by using the second degree character, of a large family of
forms such that their corresponding sequences of orthogonal polynomials {Wn}n≥0 satisfy the three-term
recurrence relation (TTRR)

Wn+2(x) =
(
x − (−1)n+1β0

)
Wn+1(x) − γn+1Wn(x), n ≥ 0,

with initial conditions W0(x) = 1, W1(x) = x − β0, where β0 ∈ C. These forms are general enough to accom-
modate all the symmetric forms as well as some particular non-symmetric ones. The sequence {Wn}n≥0 has
been the subject of several works [1, 2, 11, 12, 21, 25, 26, 30–32, 35]. Indeed, if we take β0 = 0, we get the
symmetric forms. When β0 , 0, we will say that corresponding form of {Wn}n≥0 is quasi-symmetric. Later
on, the authors of [2, 4, 31] determined all the symmetric and quasi-symmetric second degree semiclassical
forms of class one. But unfortunately, the link between all these forms and the classical one has not been
studied until now. The above families of orthogonal polynomials appear when you deal with quadratic
decompositions of sequences of orthogonal polynomials (see [14], [21]).

The aim of the present contribution is not only to describe all the semiclassical forms of class one which
are of second degree and symmetric (resp. quasi-symmetric), but also we go further by giving a new
identification of this family of forms by presenting their link with the above classical forms which are of
the second degree. Our approach is quite different of those presented in [4] (for the symmetric case) and [2]
(for the quasi-symmetric case), respectively, since our main tool is the representation of the corresponding
Stieltjes functions and, as a consequence, the moments of the forms are deduced in a straightforward way.
Thus we have the explicit expression of these Stieltjes functions as well as we deduce the quadratic equation
as well the first order ordinary linear differential equation they satisfy.

This paper is organized as follows. In Section 2 the notations and basic background which will be used
in the forthcoming sections. In Section 3, we first recall the definitions as well as the main proprieties of
second degree forms. Afterwards, we will give some results concerning second degree classical forms,
denoted by Tp,q = J

(
p − 1/2, q − 1/2

)
, p, q ∈ Z, p + q ≥ 0, which are needed in the sequel. In Sections 4

and 5, we state our main results. Through the second degree forms, we give an identification of the
family of symmetric (resp. quasi-symmetric) regular forms. Indeed, we give necessary and sufficient
conditions for a regular form to be at the same time a symmetric (resp. quasi-symmetric), second degree
and semiclassical form of class one. Thus, we establish the connection between all these forms and the
Jacobi forms Tp,q = J

(
p − 1/2, q − 1/2

)
, p, q ∈ Z, p + q ≥ 0, and also we show that all these forms are

rational transformations of the Tchebychev form of the first kind T = J (−1/2,−1/2). Finally, by using a
canonical Christoffel transformation of classical linear forms of second degree, in Section 6 we deal with a
large family of second degree linear forms which are semiclassical of class one and, as a consequence, do
not belong to the families analyzed in the previous sections.
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2. Notations and basic background

Let P be the linear space of algebraic polynomials with complex coefficients. 〈w, p〉 will denote the
action of the form (linear functional) w ∈ P′ over the polynomial p ∈ P,whereP′ denotes the algebraic dual
of the linear space P. In particular, 〈w, xn

〉 := (w)n, n ≥ 0, represent the moments of w.
Let us define the following operations in the algebraic dual space of the polynomials: the left product
of w by a polynomial, defined as 〈 f w, p〉 = 〈w, f p〉, p ∈ P; the derivative Dw of the linear form w is
defined as 〈Dw, p〉 = −〈w, p′〉, p ∈ P; the dilations and shifted forms haw and τbw are defined, respectively,
as 〈haw, p〉 = 〈w, hap〉 = 〈w, p(ax)〉, 〈τbw, p〉 = 〈w, τ−bp〉 = 〈w, p(x + b)〉; the form x−1u defined as 〈x−1w, p〉 =

〈w, θ0p〉 =
〈
w, p(x)−p(0)

x

〉
; the Cauchy product of two forms, v and w, defined as 〈vw, f 〉 := 〈v,w f 〉, f ∈ P,where

the right product of a linear form by a polynomial is given by (wp)(x) :=
〈
w, xp(x)−ζp(ζ)

x−ζ

〉
=

∑n
i=0

(∑n
j=i(w) j−ia j

)
xi,

being p(x) =
∑n

i=0 aixi.
In P′, we have the well-known formula

τb ◦ ha = ha ◦ τa−1b, a ∈ C − {0}, b ∈ C. (1)

The linear form w ∈ P′ is said to be a rational perturbation of v ∈ P′, if there exist polynomials p and q, such
that

q(x)w = p(x)v.

The even part of a form w is given by

〈σ(w), p〉 = 〈w, σ(p)〉, p ∈ P.

where the linear operator σ : P → P is defined by σ(p)(x) := p(x2) for every p ∈ P.
We introduce the so-called anti-symmetrization operator α : P′ → P′ defined by, for $ ∈ P′ [22](
α($)

)
2n

= 0,
(
α($)

)
2n+1

= ($)n, n ≥ 0. (2)

We will also use the so-called formal Stieltjes function associated with w ∈ P′ that is defined by [13, 22]

S(w)(z) = −
∑
n≥0

(w)n

zn+1 .

Remark 2.1. For any p ∈ P and w ∈ P′, S(w)(z) = p(z) if and only if w = 0 and f = 0.

For any p ∈ P and u, v ∈ P′, the following properties hold [22]

S(uv)(z) = −zS(u)(z)S(v)(z), (3)
S(pu)(z) = p(z)S(u)(z) + (uθ0p)(z). (4)

Let us recall that a form w is called regular (quasi-definite) if there exists a monic polynomial sequence
{Wn}n≥0 with deg Wn = n such that [13]

〈w,WnWm〉 = rnδn,m, n,m ≥ 0,

where {rn}n≥0 is a sequence of nonzero complex numbers and δn,m is the Kronecker symbol.
{Wn}n≥0 is called a monic orthogonal polynomial sequence (MOPS, in short) with respect to the form w. It
is characterized by the following three-term recurrence relation

W0(x) = 1, W1(x) = x − β0,

Wn+2(x) = (x − βn+1)Wn+1(x) − γn+1Wn(x), n ≥ 0.
(5)
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Here {βn}n≥0 and {γn+1}n≥0 are sequences of complex numbers such that γn+1 , 0 for all n. This is the so
called Favard’s theorem (see [13, 22, 23]). The form w is said to be normalized if (w)0 = 1. In the sequel, we
only consider normalized forms.

In this work, we will consider a (MOPS) {Wn}n≥0 with respect to the form w fulfilling a second-order
recurrence relation (5) with coefficients

βn = β0(−1)n, n ≥ 0, β0 ∈ C.

In this case, we will say that {Wn}n≥0 is quasi-symmetric (respectively, symmetric) if β0 , 0 (respectively,
β0 = 0). The corresponding form w is quasi-symmetric (respectively, symmetric).

In the sequel, the following results will be useful.

Lemma 2.2. [1, 11, 13, 21] Let {Wn}n≥0 be a (MOPS) with respect to the form w. The following statements are
equivalent:

(1) {Wn}n≥0 is symmetric.
(2) Wn(−x) = (−1)nWn(x), n ≥ 0.
(3) (w)2n+1 = 0, n ≥ 0.
(4) The sequence {Wn}n≥0 has the following quadratic decomposition

W2n(x) = Pn

(
x2

)
, W2n+1(x) = xRn

(
x2

)
, n ≥ 0,

where {Pn}n≥0 is orthogonal with respect to the form u = σ(w) and {Rn}n≥0 is orthogonal with respect to the
form v = γ−1

1 xσ(w).

Thus,

S
(
w
)
(z) = zS

(
u
)
(z2), (6)

S
(
v
)
(z) = γ−1

1 zS
(
u
)
(z) + γ−1

1 , (7)

On the other hand, if β0 , 0, by using a suitable dilation of the form we can assume that β0 = 1, i. e.

βn = (−1)n, n ≥ 0. (8)

Next result concerns the quasi-symmetric case.

Lemma 2.3. Let {Wn}n≥0 be a (MOPS) with respect to the form w. The following statements are equivalent:

(1) {Wn}n≥0 satisfies (5)-(8).
(2) (w)2n+1 = (w)2n, n ≥ 0.
(3) The sequence {Wn}n≥0 has the following quadratic decomposition

W2n(x) = Pn(x2), W2n+1(x) = (x − 1)Rn(x2), n ≥ 0,

where {Pn}n≥0 is a (MOPS) with respect to the form u = σ(w) and {Rn}n≥0 is a (MOPS) with respect to the form
v = γ−1

1 (x − 1)σ(w).

Notice that

S
(
w
)
(z) = (z + 1)S

(
u
)
(z2), (9)

S
(
v
)
(z) = γ−1

1 (z − 1)S
(
u
)
(z) + γ−1

1 . (10)

A form w is called semiclassical when it is regular and there exist two polynomials φ and ψ, φ monic,
degφ ≥ 0, degψ ≥ 1, such that w satisfies a Pearson’s equation

D(φw) + ψw = 0. (11)
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Equivalently, the formal Stieltjes function of w satisfies a nonhomogeneous first order linear differential
equation with polynomial coefficients

A0(z)S′(w)(z) = C0(z)S(w)(z) + D0(z), (12)

where

A0 = φ, C0 = −φ′ − ψ, D0 = −(uθ0φ)′ − (uθ0ψ). (13)

Furthermore, if the polynomials A0,C0, and D0 appearing in (13) are coprime, then the class of w is defined
by

s = max{degC0 − 1,degD0}.

If {Wn}n≥0 is an (OPS) with respect to a semiclassical form w of class s then, {Wn}n≥0 is called a semiclassical
(OPS) of class s. In particular, when s = 0 (so that deg φ ≤ 2 and deg ψ = 1) one obtains, up to an affine
change of variables, the four well-known families of classical forms : Hermite, H ; Laguerre, L(α); Jacobi,
J(α, β) and Bessel,B(α) (see[23]). Taking into account Jacobi linear formsJ(α, β) will be used in the sequel,
we point out that φ(x) = x2

− 1, ψ(x) = −(α + β + 2)x + (α − β).
The semiclassical character of a form is preserved by an affine transformation. Indeed, the shifted form

ŵ = (ha−1 ◦ τ−b)w, a ∈ C − {0}, b ∈ C, is also semiclassical and has the same class as w. It satisfies

D
(
a−degφφ(ax + b)ŵ

)
+ a1−degφψ(ax + b)ŵ = 0.

The sequence {Ŵn}n≥0, where Ŵn(x) = a−nWn(ax + b), n ≥ 0, is orthogonal with respect to ŵ. The recurrence
coefficients are given by [22]

β̂n =
βn − b

a
, γ̂n+1 =

γn+1

a2 , n ≥ 0.

The formal Stieltjes function of ŵ = (ha−1 ◦ τ−b)w, a ∈ C − {0}, b ∈ C, satisfies [9]

S
(
ŵ
)
(z) = aS(w)(az + b). (14)

On the other hand, it is easy to check that for any a ∈ C − {0}, b ∈ C, and w ∈ P′ we have(
(ha−1 ◦ τ−b)w

)
n

= n!a−n
∑
ν+µ=n

(−b)ν

ν!µ!
(w)µ, n ≥ 0. (15)

3. Second degree forms

In this section we recall the definition and some basic properties of the second degree regular forms
which we will need later.

Definition 3.1. [24] A regular form w is said to be a second degree form if there exist two polynomials B,monic, and
C such that

B(z)S2(w)(z) + C(z)S(w)(z) + D(z) = 0, (16)

where D depends on B,C and w.

Remark 3.2. [24]

1. The regularity of w means that B , 0, C2
− 4BD , 0, and D , 0.

2. D(z) = (wθ0C)(z) − (w2θ2
0B)(z).
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3. It is a well-known result that, in terms of the form w (16) is equivalent to [24]

B(x)w2 = xC(x)w, 〈w2, θ0B〉 = 〈w,C〉. (17)

4. The polynomials B and C, given in (16) and (17), are not unique, because B and C can be multiplied by an
arbitrary polynomial. If in (16) the polynomials B, C and D are coprime, then the pair (B,C) is called a primitive
pair. The primitive pair is unique.

It is well known that the Chebychev form of first kind T := J
(
−

1
2 ,−

1
2

)
is a second degree form. Indeed,

its Stieltjes function is S(T )(z) = −(z2
− 1)−

1
2 and satisfies the quadratic equation (z2

− 1)S2(T )(z) − 1 = 0.
If w is a second degree form, then w is a semiclassical form and satisfies (11) with [24]

λφ(x) = B(x)
(
C2(x) − 4B(x)D(x)

)
, λψ(x) = − 3

2 B(x)
(
C2(x) − 4B(x)D(x)

)′
,

where λ is a normalization constant chosen in order to make φ(x) monic.
The second degree character is preserved by an affine transformation. Indeed, if w is a second degree

form satisfying (16), then ŵ is also a second degree form [24]. Indeed,

B̂(z)S2(ŵ)(z) + Ĉ(z)S(ŵ)(z) + D̂(z) = 0,

with B̂(x) = a−rB(ax + b), Ĉ(x) = a1−rC(ax + b), D̂(x) = a2−rD(ax + b), r = deg B.
Elementary transformations of forms as linear and rational spectral transformations ( see [37]), association
(see [36]), antiassociation (see [28]) and inversion (see [22] preserve the family of linear forms of second
degree [4, 5, 19, 24]. Moreover, we have

Lemma 3.3. [5] Let u and v be two regular forms satisfying q(x)u = p(x)v, where q and p are polynomials. If one of
the two forms u and v is a second degree form then the other one is also a second degree form. Indeed, if u is a second
degree form and BuS2(v) + CuS(v) + Du = 0, then v is also a second degree form such

BvS2(v) + CvS(v) + Dv = 0,

with

Bv = Bup2,

Cv = p
{
2Bu

(
(vθ0p) − (uθ0q)

)
+ qCu

}
,

Dv = Bu

(
(vθ0p) − (uθ0q)

)2
+ qCu

(
(vθ0p) − (uθ0q)

)
+ q2Du.

3.1. Second degree classical forms

In [5] the author analyze the classical forms which are of second degree.

Theorem 3.4. [5] Among the classical forms, only the Jacobi forms J(p − 1/2, q − 1/2) are second degree forms,
assuming p + q ≥ 0, p, q ∈ Z.

Remark 3.5. In the sequel, we denote Tp,q := J
(
p − 1

2 , q −
1
2

)
, with p + q ≥ 0, p, q ∈ Z.

We begin with a lemma that is stated in [5], which gives a relation between the forms Tp,q, p, q ∈ Z, p + q ≥ 0
and the Tchebychev form of first kind T . We report it here in a simpler version which is needed for our
purposes. More precisely, the following lemma illustrates that all the forms Tp,q are rational perturbations
of T .
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Lemma 3.6. [5, Lemma 3.4]
Let p, q ∈ Z with p + q ≥ 0. The forms Tp,q and T are related by

fp,q(x)Tp,q = 1p,q(x)T , (18)

where fp,q(x) and 1p,q(x) are polynomials defined by

fp,q(x) =
〈
T , (x + 1)

|p|+p
2 (x − 1)

|q|+q
2

〉
(x + 1)

|p|−p
2 (x − 1)

|q|−q
2 , (19)

1p,q(x) =
〈
Tp,q, (x + 1)

|p|−p
2 (x − 1)

|q|−q
2

〉
(x + 1)

|p|+p
2 (x − 1)

|q|+q
2 . (20)

The following remarks concerning the forms Tp,q defined as above will be very useful later on.

Remark 3.7. 1. From Lemma 3.3, taking into account the expression of the first kind Chebychev form and (18),
Tp,q is a second degree form since

Bp,q(z)S2
(
Tp,q

)
(z) + Cp,q(z)S

(
Tp,q

)
(z) + Dp,q(z) = 0, (21)

with

Bp,q(z) = (z2
− 1) f 2

p,q(z),

Cp,q(z) = 2(z2
− 1) fp,q(z)

(
(Tp,qθ0 fp,q)(z) − (Tθ01p,q)(z)

)
,

Dp,q(z) = (z2
− 1)

(
(Tp,qθ0 fp,q)(z) − (Tθ01p,q)(z)

)2
− 12

p,q(z).

(22)

2. Using the first order linear differential equation satisfied by the Stieltjes function of the Jacobi form [22], it is a
straightforward exercise to prove that S(Tp,q)(z) satisfies

Φ(z)S′(Tp,q)(z) = Cp,q
0 (z)S(Tp,q)(z) + Dp,q

0 (z), (23)

where Φ(z),Cp,q
0 (z), and Dp,q

0 (z) are polynomials given by

Φ(z) = z2
− 1, Cp,q

0 (z) = (p + q − 1)z + q − p, Dp,q
0 (z) = p + q. (24)

3. Let us recall that the moments of the Jacobi form Tp,q, where p + q ≥ 0, p, q ∈ Z, are given by [23]

(
Tp,q

)
n

=

n∑
ν=0

(
n
ν

)
2ν−1 Γ(p + q + 1)

Γ(ν + p + q + 1)
Fn,ν

(
p − 1

2 , q −
1
2

)
, n ≥ 0, (25)

where

Fn,ν

(
p − 1

2 , q −
1
2

)
= (−1)n−ν Γ(ν + p + 1

2 )

Γ(p + 1
2 )

+ (−1)ν
Γ(ν + q + 1

2 )

Γ(q + 1
2 )

, (26)

and Γ is the gamma function [23].

Remark 3.8. In the sequel, we denote T̂p,q := (h(−1/2 ◦ τ−1)Tp,q, with p + q ≥ 0, p, q ∈ Z.

In the sequel, we need the following lemma:

Corollary 3.9. One has

S(T̂ )(z2) = z−1S
(
T

)
(z). (27)
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Proof. From Remarks 3.5 and 3.8 we get T̂ = T̂0,0 = (h(−2)−1 ◦ τ−1)T . As a consequence,

S(T̂ )(z2)
by (14)

= −2S(T )(−2z2 + 1)

= 2
(
4z4
− 4z2

)− 1
2

= −z−1
(
z2
− 1

)− 1
2

= z−1S
(
T

)
(z).

4. Second degree symmetric semiclassical forms of class one

In this section, we obtain several characterizations for the symmetric semiclassical forms of class one
which are of second degree, by pointing out the connection with the formsTp,q, their corresponding Stieltjes
function and their moments.

In [4] all the second degree symmetric semiclassical forms of class one are determined. Indeed, we keep
the same notation in [4], let I(µ, ν) which is regular if µ , −n, ν , −n, µ + ν , −n − 1, n ∈N∗, and satisfies
the following distributional equation:(

x(x2
− 1)I(µ, ν)

)′
+

(
−2(µ + ν + 2)x2 + 2(ν + 1)

)
I(µ, ν) = 0.

Moreover, the linear form σ
(
I(µ, ν)

)
is classical fulfilling(

h(−1/2)−1 ◦ τ−1/2

)
σ
(
I(µ, ν)

)
= J(µ, ν). (28)

Only one solution appears, up to affine transformation. Indeed,

Theorem 4.1. [4] Among the symmetric semiclassical forms of class s = 1, only the formsI
(
p − 1

2 , q −
1
2

)
are second

degree forms, provided p + q ≥ 0, q , 0, p, q ∈ Z.

The corresponding orthogonal polynomials are known in the literature as Generalized Gegenbauer ([8],
[13]). The coefficients of the three term recurrence relation they satisfy are explicitly given therein.

The integral representation of the linear form is given. In particular, a positive symmetric semiclassical
form of class s = 1 is of second degree if and only if the weight function is a Christoffel perturbation
x2q(1 − x2)p, p a nonnegative integer number and q a positive integer number, of the weight of Chebychev
polynomials of first kind.

The main result of this section provides a characterization of the second degree symmetric semiclassical
forms of class one in terms of their formal Stieltjes function (that is explicitly given) and, as consequence,
the moments are deduced.

Proposition 4.2. Let w be a regular form. The following statements are equivalent.

(a) w is a second degree symmetric semiclassical form of class one.
(b) There exists (p, q) ∈ Z ×Z∗, p + q ≥ 0, such that

fp,q(−2x2 + 1)w = 1p,q(−2x2 + 1)T , (29)

and (
wθ0( fp,q(−2x2 + 1))

)
(z) = 2z

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1) +

(
Tθ0(1p,q(−2x2 + 1))

)
(z), (30)

where fp,q and 1p,q are polynomials defined by (19) and (20), respectively.
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(c) There exists (p, q) ∈ Z ×Z∗ with p + q ≥ 0 such that

S(w)(z) = zS
(
T̂p,q

)
(z2). (31)

(d) There exists (p, q) ∈ Z ×Z∗ with p + q ≥ 0 such that

w = xα
(
T̂p,q

)
.

(e) There exists (p, q) ∈ Z ×Z∗ with p + q ≥ 0 such that

(w)2n+1 = 0, (32)

(w)2n = n!(−2)−n
∑
ν+µ=n

1
ν!µ!

µ∑
i=0

(
µ

i

)
2i−1 Γ(p + q + 1)

Γ(i + p + q + 1)
Fµ,i

(
p − 1

2 , q −
1
2

)
, n ≥ 0, (33)

where Fµ,i
(
p − 1

2 , q −
1
2

)
is defined by (26).

Proof. (a) ⇒ (b) Let w be a second degree symmetric semiclassical form of class one. Taking into account
Theorem 4.1, there exists (p, q) ∈ Z ×Z∗ with p + q ≥ 0 such that

w = I
(
p −

1
2
, q −

1
2

)
.

From (1), (28) becomes

u = (h(−2)−1 ◦ τ−1)Tp,q. (34)

According to (6), (14) and (34), we get

S(w)(z) = −2zS(Tp,q)(−2z2 + 1).

Multiplying both sides of last equation by fp,q(−2z2 + 1), from (4) we deduce

fp,q(−2z2 + 1)S(w)(z) = −2zS
(

fp,qTp,q

)
(−2z2 + 1) + 2z

(
Tp,qθ0 fp,q

)
(−2z2 + 1)

by (18)
= −2zS

(
1p,qT

)
(−2z2 + 1) + 2z

(
Tp,qθ0 fp,q

)
(−2z2 + 1)

by (4)
= −2z1p,q(−2z2 + 1)S(T )(−2z2 + 1) − 2z

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1)

by (27)
= 1p,q(−2z2 + 1)S

(
T

)
(z) − 2z

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1).

Using (4), the above relation reads as

S
(

fp,q(−2x2 + 1)w
)
(z) = S

(
1p,q(−2x2 + 1)T

)
(z) + P(z),

with

P(z) = − 2z
((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1)

+
(
wθ0( fp,q(−2x2 + 1))

)
(z) −

(
Tθ0(1p,q(−2x2 + 1))

)
(z),

or equivalently,
S
(

fp,q(−2x2 + 1)w − 1p,q(−2x2 + 1)T
)
(z) = P(z) ∈ P.

Thus, taking into Remark 2.1 we get

fp,q(−2x2 + 1)w − 1p,q(−2x2 + 1)T = 0 in P′,
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and
P(z) = 0.

Thus the result follows.
(b)⇒ (c) Applying the operator S to (29) and taking into account (4) we get

fp,q(−2z2 + 1)S(w)(z) =1p,q(−2z2 + 1)S
(
T

)
(z) −

(
wθ0( fp,q(−2x2 + 1))

)
(z)

+
(
Tθ0(1p,q(−2x2 + 1))

)
(z).

Thus, from (27)

fp,q(−2z2 + 1)S(w)(z) = − 2z1p,q(−2z2 + 1)S
(
T

)
(−2z2 + 1) −

(
wθ0( fp,q(−2x2 + 1))

)
(z)

+
(
Tθ0(1p,q(−2x2 + 1))

)
(z)

by (4)−(18)
= − 2zS

(
fp,qTp,q

)
(−2z2 + 1) −

(
wθ0( fp,q(−2x2 + 1))

)
(z)

+
(
Tθ0(1p,q(−2x2 + 1))

)
(z) + 2z

(
Tθ01p,q

)
(−2z2 + 1)

by (4)
= − 2z fp,q(−2z2 + 1)S

(
Tp,q

)
(−2z2 + 1) −

(
wθ0( fp,q(−2x2 + 1))

)
(z)

+
(
Tθ0(1p,q(−2x2 + 1))

)
(z) + 2z

(
Tθ01p,q

)
(−2z2 + 1) − 2z

(
Tp,qθ0 fp,q

)
(−2z2 + 1).

Therefore, by using (30), the last equation becomes

fp,q(−2z2 + 1)S(w)(z) = −2z fp,q(−2z2 + 1)S
(
Tp,q

)
(−2z2 + 1).

As a consequence,
S(w)(z) = zS

(
T̂p,q

)
(z2).

The statement (c) holds.
(c)⇒ (d) First, observe that

S
(
α
(
T̂p,q

))
(z) = −

∑
n≥0

(
α
(
T̂p,q

))
n

zn+1

by (2)
= −

∑
n≥0

(
α
(
T̂p,q

))
2n+1

z2n+2

by (2)
= −

∑
n≥0

(
T̂p,q

)
n

z2(n+1)
= S

(
T̂p,q

)
(z2). (35)

Together with (31) we have
S(w)(z) = zS

(
α
(
T̂p,q

))
(z).

Therefore, using (4), the last equation becomes

S(w)(z) = S
(
xα

(
T̂p,q

))
(z) − 1.

By using Remark 2.1 the desired relation holds.
(d)⇒ (e)

(w)2n+1 =
(
xα

(
T̂p,q

))
2n+1

=
(
α
(
T̂p,q

))
2n+2

by (2)
= 0, n ≥ 0. (36)

(w)2n =
(
xα

(
T̂p,q

))
2n

=
(
α
(
T̂p,q

))
2n+1

by (2)
=

(
T̂p,q

)
n
, n ≥ 0. (37)

Using (15) and taking into account (25)-(26) (32)-(33) follow in a straightforward way.
(e)⇒ (a) By hypothesis we have

(w)2n+1 = 0, (w)2n =
(
T̂p,q

)
n
, n ≥ 0.
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It remains to show that

S(w)(z) = −
∑
n≥0

(w)2n

z2n+1 −

∑
n≥0

(w)2n+1

z2n+2 = −
∑
n≥0

(
T̂p,q

)
n

z2(n+1)
= zS

(
T̂p,q

)
(z2). (38)

Moreover, the fact that the affine transformation of a second degree form is also a second degree form yields
T̂p,q is a second degree form such that

B̂p,q(z)S2
(
T̂p,q

)
(z) + Ĉp,q(z)S

(
T̂p,q

)
(z) + D̂p,q(z) = 0, (39)

with

B̂p,q(z) = (−2)−tBp,q(−2z + 1), Ĉp,q(z) = (−2)1−tCp,q(−2z + 1), D̂p,q(z) = (−2)2−tDp,q(−2z + 1),

where Bp,q, Cp,q and Dp,q are polynomials given in (22) and t =
|p|−p+|q|−q

2 .
Making z← z2 in (39), multiplying this equation by z2 and taking into account (38) we get

B̂p,q(z2)S2(w)(z) + zĈp,q(z2)S(w)(z) + z2D̂p,q(z2) = 0.

As a consequence, w is a second degree form.
To finish the proof, it remains to prove that the class of w is one. Based on (14), the relation (38) becomes

S(w)(z) = −2zS(Tp,q)(−2z2 + 1). (40)

Taking formal derivatives in the last equation we get

S′(w)(z) = 8z2S′(Tp,q)(−2z2 + 1) − 2S(Tp,q)(−2z2 + 1).

From the above two expressions we obtain

S′(Tp,q)
(
−2z2 + 1

)
=

zS′(w)(z) − S(w)(z)
8z3 . (41)

In (23) the change of variable z← −2z2 + 1 yields

Φ(−2z2 + 1)S′(Tp,q)(−2z2 + 1) = Cp,q
0 (−2z2 + 1)S(Tp,q)(−2z2 + 1) + Dp,q

0 (−2z2 + 1). (42)

Replacing (40) and (41) in (42), and multiplying both sides of the resulting equation by 8z3, one obtains

φw(z)S′(w)(z) = Cw(z)S(w)(z) + Dw(z), (43)

where the polynomials φw,Cw and Dw are

φw(z) = zΦ(−2z2 + 1),

Cw(z) = Φ(−2z2 + 1) − 4z2Cp,q
0 (−2z2 + 1),

Dw(z) = 8z3Dp,q
0 (−2z2 + 1).

Therefore, from (24) S(w)(z) fulfils (43) with

φw(z) = 4z3(z2
− 1),

Cw(z) = 4z2(z2
− 1) − 4z2

[
(p + q − 1)(−2z2 + 1) + q − p

]
,

Dw(z) = 8(p + q)z3.

(44)
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Therefore, the polynomials φw,Cw, and Dw given by (44) have 4z2 as a common factor, and so dividing these
polynomials by 4z2 we obtain

φw(z) = z(z2
− 1),

Cw(z) = (2p + 2q − 1)z2
− 2q,

Dw(z) = 2(p + q)z.

Now, taking into account that q , 0 and 2p + 2q − 1 , 0 hold, then φw,Cw, and Dw are coprime. As a
consequence, since deg Dw = 1 and deg Cw = 2, the class of w is one.

5. Second degree quasi-symmetric semiclassical forms of class one

In this section we establish several characterizations of the semiclassical forms of class one which are of
second degree such that their corresponding (MOPS) verifies (5)-(8). In particular, we focus our attention on
the link between these forms and the classical forms. Notice that all the quasi-symmetric semiclassical forms
of class one are determined by several authors with different methods [12, 26, 30]. The unique solution, up
to affine transformation, is the linear form L(α, β) that is regular if α , −n, β , −n, α + β , −n − 1,n ∈ N,
and satisfies the Pearson equation(

x
(
x2
− 1

)
L(α, β)

)′
+

(
−2(α + β + 2)x2 + x + 2β + 3

)
L(α, β) = 0.

In [2, 31], the authors give all the second degree quasi-symmetric semiclassical forms of class one. In the
sequel, we keep the same notation in [2]. Let K (k, l) be the form satisfying the following distributional
equation

D
(
x
(
x2
− 1

)
K (k, l)

)
+

(
−2(k + l + 1)x2 + x + 2l

)
K (k, l) = 0.

Moreover, the linear form σ (K (k, l)) is classical and

(
h(−1/2)−1 ◦ τ−1/2

)
σ (K (k, l)) = J

(
k −

1
2
, l −

1
2

)
. (45)

Theorem 5.1. [2] Among the semiclassical forms of class s = 1 such that the corresponding (MOPS) {Wn}n≥0 satisfies
(5) with β0 = 1, only the formsK (k, l) with k + l ≥ 1, k, l ∈ Z are second degree forms.

We are now ready to state the main result of this section.

Proposition 5.2. Let w be a regular form. The following statements are equivalent.

(a) The form w is a second degree quasi-symmetric semiclassical form of class one.
(b) There exists (p, q) ∈ Z2 with p + q ≥ 1 such that

x fp,q(−2x2 + 1)w = (x + 1)1p,q(−2x2 + 1)T , (46)

and (
w( fp,q(−2x2 + 1))

)
(z) =2z(z + 1)

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1)

+
(
Tθ0((x + 1)1p,q(−2x2 + 1))

)
(z), (47)

where fp,q and 1p,q are polynomials defined by (19) and (20), respectively.
(c) There exists (p, q) ∈ Z2 with p + q ≥ 1 such that

S(w)(z) = (z + 1)S
(
T̂p,q

)
(z2). (48)
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(d) There exists (p, q) ∈ Z2 with p + q ≥ 1 such that

w = (x + 1)α
(
T̂p,q

)
.

(e) There exists (p, q) ∈ Z2 with p + q ≥ 1 such that

(w)2n = (w)2n+1 = n!(−2)−n
∑
ν+µ=n

1
ν!µ!

µ∑
i=0

(
µ

i

)
2i−1 Γ(p + q + 1)

Γ(i + p + q + 1)
Fµ,i

(
p − 1

2 , q −
1
2

)
, n ≥ 0, (49)

where Fµ,i
(
p − 1

2 , q −
1
2

)
is defined by (26).

Proof. (a) ⇒ (b) Let w be a second degree quasi-symmetric semiclassical form of class one. According to
Theorem 5.1, there exists (p, q) ∈ Z2 with p + q ≥ 1 such that

w = K (p, q).

From (1), (45) becomes

u = σ(w) = (h(−2)−1 ◦ τ−1)Tp,q. (50)

Taking into account (9), (14) and (50), we get

S(w)(z) = −2(z + 1)S(Tp,q)(−2z2 + 1).

Multiplying both sides of last equation by fp,q(−2z2 + 1), from (4) we deduce

fp,q(−2z2 + 1)S(w)(z) = −2(z + 1)S
(

fp,qTp,q

)
(−2z2 + 1) + 2(z + 1)

(
Tp,qθ0 fp,q

)
(−2z2 + 1)

by (18)
= −2(z + 1)S

(
1p,qT

)
(−2z2 + 1) + 2(z + 1)

(
Tp,qθ0 fp,q

)
(−2z2 + 1)

by (4)
= −2(z + 1)1p,q(−2z2 + 1)S(T )(−2z2 + 1) − 2(z + 1)

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1)

by (27)
= (z + 1)1p,q(−2z2 + 1)z−1S

(
T

)
(z) − 2(z + 1)

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1).

Multiplying by z and using (4), the latter becomes

S
(
x fp,q(−2x2 + 1)w

)
(z) = S

(
(x + 1)1p,q(−2x2 + 1)T

)
(z) + R(z),

with

R(z) = − 2z(z + 1)
((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1)

+
(
w( fp,q(−2x2 + 1))

)
(z) −

(
Tθ0((x + 1)1p,q(−2x2 + 1))

)
(z),

or equivalently,
S
(
x fp,q(−2x2 + 1)w − (x + 1)1p,q(−2x2 + 1)T

)
(z) = R(z) ∈ P.

According to Remark 2.1

x fp,q(−2x2 + 1)w − (x + 1)1p,q(−2x2 + 1)T = 0 in P′,

and
R(z) = 0.
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The statement is proved.
(b)⇒ (c) Applying the operator S to (46) and taking into account formula (4) we get

z fp,q(−2z2 + 1)S(w)(z) =(z + 1)1p,q(−2z2 + 1)S
(
T

)
(z) −

(
w( fp,q(−2x2 + 1))

)
(z)

+
(
Tθ0((x + 1)1p,q(−2x2 + 1))

)
(z).

From (27)

z fp,q(−2z2 + 1)S(w)(z) = − 2z(z + 1)1p,q(−2z2 + 1)S
(
T

)
(−2z2 + 1) −

(
w( fp,q(−2x2 + 1))

)
(z)

+
(
Tθ0((x + 1)1p,q(−2x2 + 1))

)
(z)

by (4)−(18)
= − 2z(z + 1)S

(
fp,qTp,q

)
(−2z2 + 1) −

(
w( fp,q(−2x2 + 1))

)
(z)

+
(
Tθ0((x + 1)1p,q(−2x2 + 1))

)
(z) + 2z(z + 1)

(
Tθ01p,q

)
(−2z2 + 1)

by (4)
= − 2z(z + 1) fp,q(−2z2 + 1)S

(
Tp,q

)
(−2z2 + 1) −

(
w( fp,q(−2x2 + 1))

)
(z)

+
(
Tθ0((x + 1)1p,q(−2x2 + 1))

)
(z) + 2z(z + 1)

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(−2z2 + 1).

Therefore, using (47), the last equation becomes

z fp,q(−2z2 + 1)S(w)(z) = −2z(z + 1) fp,q(−2z2 + 1)S
(
Tp,q

)
(−2z2 + 1),

which readily gives

S(w)(z) = (z + 1)S
(
T̂p,q

)
(z2).

This yields the statement (c).
(c)⇒ (d) From the definition of the anti-symmetrization operator αwe have

S
(
α
(
T̂p,q

))
(z) = −

∑
n≥0

(
α
(
T̂p,q

))
n

zn+1

by (2)
= −

∑
n≥0

(
α
(
T̂p,q

))
2n+1

z2n+2

by (2)
= −

∑
n≥0

(
T̂p,q

)
n

z2(n+1)
= S

(
T̂p,q

)
(z2). (51)

Combined with (48) we then have

S(w)(z) = (z + 1)S
(
α
(
T̂p,q

))
(z).

Therefore, using (4), the last equation becomes

S(w)(z) = S
(
(x + 1)α

(
T̂p,q

))
(z) − 1.

Then, using Remark 2.1 we have the desired relation.
(d)⇒ (e)

(w)2n+1 =
(
(x + 1)α

(
T̂p,q

))
2n+1

=
(
α
(
T̂p,q

))
2n+2

+
(
α
(
T̂p,q

))
2n+1

by (2)
=

(
T̂p,q

)
n
, n ≥ 0,

(w)2n =
(
(x + 1)α

(
T̂p,q

))
2n

=
(
α
(
T̂p,q

))
2n+1

+
(
α
(
T̂p,q

))
2n

by (2)
=

(
T̂p,q

)
n
, n ≥ 0.

Using (15) and taking into account (25)-(26) we deduce the statement (e).
(e)⇒ (a) By hypothesis we have

(w)2n = (w)2n+1 =
(
T̂p,q

)
n
, n ≥ 0.
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Then,

S(w)(z) = −
∑
n≥0

(w)2n

z2n+1 −

∑
n≥0

(w)2n+1

z2n+2 = −z
∑
n≥0

(
T̂p,q

)
n

z2(n+1)
−

∑
n≥0

(
T̂p,q

)
n

z2(n+1)
= (z + 1)S

(
T̂p,q

)
(z2). (52)

On the other hand, the fact that the affine transformation of a second degree form is also a second degree
form yields T̂p,q is a second degree form such that

B̂p,q(z)S2
(
T̂p,q

)
(z) + Ĉp,q(z)S

(
T̂p,q

)
(z) + D̂p,q(z) = 0, (53)

with

B̂p,q(z) = (−2)−tBp,q(−2z + 1), Ĉp,q(z) = (−2)1−tCp,q(−2z + 1), D̂p,q(z) = (−2)2−tDp,q(−2z + 1),

where Bp,q, Cp,q and Dp,q are polynomials given in (22), and t =
|p|−p+|q|−q

2 .
Making z← z2 in (53), multiplying this equation by (z + 1)2 and on account of (52) we get

B̂p,q(z2)S2(w)(z) + (z + 1)Ĉp,q(z2)S(w)(z) + (z + 1)2D̂p,q(z2) = 0.

As a consequence, we conclude that w is a second degree form and, thus, w is a semiclassical form.
Based on (14), (52) becomes

S(w)(z) = −2(z + 1)S(Tp,q)(−2z2 + 1). (54)

The formal derivative of the last formula gives

S′(w)(z) = 8z(z + 1)S′(Tp,q)(−2z2 + 1) − 2S(Tp,q)(−2z2 + 1).

From the above two expressions we obtain

S′(Tp,q)
(
−2z2 + 1

)
=

(z + 1)S′(w)(z) − S(w)(z)
8z(z + 1)2 . (55)

In (23) the change of variable z← −2z2 + 1 yields

Φ(−2z2 + 1)S′(Tp,q)(−2z2 + 1) = Cp,q
0 (−2z2 + 1)S(Tp,q)(−2z2 + 1) + Dp,q

0 (−2z2 + 1). (56)

Replacing (54) and (55) in (56), and multiplying both sides of the resulting equation by 8z(z+1)2, one obtains

φw(z)S′(w)(z) = Cw(z)S(w)(z) + Dw(z), (57)

where the polynomials φw,Cw and Dw are

φw(z) = (z + 1)Φ(−2z2 + 1),

Cw(z) = Φ(−2z2 + 1) − 4z(z + 1)Cp,q
0 (−2z2 + 1),

Dw(z) = 8z(z + 1)2Dp,q
0 (−2z2 + 1).

Therefore, it follows from (24) that S(w)(z) fulfils (57) with

φw(z) = 4(z + 1)z2(z2
− 1),

Cw(z) = 4z2(z2
− 1) − 4z(z + 1)

[
(p + q − 1)(−2z2 + 1) + q − p

]
,

Dw(z) = 8(p + q)z(z + 1)2.

(58)
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Therefore, the polynomials φw,Cw, and Dw given by (58) have 4z(z + 1) as a common factor, and so dividing
these polynomials by 4z(z + 1) we obtain

φw(z) = z(z2
− 1),

Cw(z) = (2p + 2q − 1)z2
− z − 2q + 1,

Dw(z) = 2(p + q)(z + 1).

Now, we see that the conditions 2p + 2q− 1 , 0 and −2q + 1 , 0 hold. Thus φw,Cw, and Dw are coprime and
since deg Dw ≤ 1 and deg Cw = 2 the class of w is one. Thus, the proof is finished.

6. A new family of second degree semiclassical forms of class one

Proposition 6.1. Let w be a regular form. The following statements are equivalent.

(a) There exist c ∈ C with |c| > 1 and (p, q) ∈ Z2 with p + q ≥ 0 such that

w = (x − c)Tp,q. (59)

(b) There exist c ∈ C with |c| > 1 and (p, q) ∈ Z2 with p + q ≥ 0 such that

S(w)(z) = (z − c)S
(
Tp,q

)
(z) + 1. (60)

(c) There exist c ∈ C with |c| > 1 and (p, q) ∈ Z2 with p + q ≥ 0 such that

fp,q(x)w = (x − c)1p,q(x)T , (61)

and (
wθ0 fp,q

)
(z) = −(z − c)

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(z) +

(
Tθ0((x − c)1p,q(x))

)
(z) − fp,q(z), (62)

where fp,q and 1p,q are polynomials defined by (19) and (20), respectively.
(d) There exist c ∈ C with |c| > 1 and (p, q) ∈ Z2 with p + q ≥ 0 such that

(w)n =

n+1∑
ν=0

(
n + 1
ν

)
2ν−1 Γ(p + q + 1)

Γ(ν + p + q + 1)
Fn+1,ν

(
p − 1

2 , q −
1
2

)
− c

n∑
ν=0

(
n
ν

)
2ν−1 Γ(p + q + 1)

Γ(ν + p + q + 1)
Fn,ν

(
p − 1

2 , q −
1
2

)
, n ≥ 0,

where Fn,ν

(
p − 1

2 , q −
1
2

)
is defined by (26).

(e) There exist c ∈ Cwith |c| > 1 and (p, q) ∈ Z2 with p+q ≥ 0 such that the form w is a second degree semiclassical
form of class one satisfying

φw(z)S′(w)(z) = Cw(z)S(w)(z) + Dw(z),

with

φw(z) = (x − c)(x2
− 1),

Cw(z) = (p + q)z2 +
(
q − p − c(p + q − 1)

)
z − c(q − p) − 1,

Dw(z) = −
(
q − p + c(p + q + 1)

)
z + c2(p + q) + c(q − p) + 1.

where (w)0 =
p−q

p+q+1 − c and (w)1 =
2(p+ 1

2 )(p+ 3
2 )+(q+ 1

2 )(q+ 3
2 )

(p+q+2)(p+q+1) − 1 − c p−q
p+q+1 .
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For the proof we need the following lemma:

Lemma 6.2. [18] Let $1 and $2 be two semiclassical forms satisfying (11) with degφ = degψ + 1 = t. If
($1)i = ($2)i, 0 ≤ i ≤ t − 2, then $1 = $2.

Proof. (a)⇒ (b) Applying the operator S to (59) and taking into account (4) we obtain the desired relation.
(b)⇒ (c) Multiplying both sides of (60) by fp,q(z), from (4) we deduce

fp,q(z)S(w)(z) = (z − c)S
(

fp,qTp,q

)
(z) − (z − c)

(
Tp,qθ0 fp,q

)
(z) + fp,q(z)

by (18)
= (z − c)S

(
1p,qT

)
(z) − (z − c)

(
Tp,qθ0 fp,q

)
(z) + fp,q(z)

by (4)
= (z − c)1p,q(z)S(T )(z) + (z − c)

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(z) + fp,q(z).

i. e.
S
(

fp,q(x)w
)
(z) = S

(
(x − c)1p,q(x)T

)
(z) + Q(z),

with

Q(z) =(z − c)
((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(z)

+
(
wθ0 fp,q(x)

)
(z) −

(
Tθ0((x − c)1p,q(x))

)
(z) + fp,q(z),

or equivalently,
S
(

fp,q(x)w − (x − c)1p,q(x)T
)
(z) = Q(z) ∈ P.

We may now invoke Remark 2.1 to argue that

fp,q(x)w − (x − c)1p,q(x)T = 0 in P′,

and
Q(z) = 0.

Thus the result follows.
(c)⇒ (d) Applying the operator S to (61) and taking into account (4) we get

fp,q(z)S(w)(z) = (z − c)1p,q(z)S
(
T

)
(z) −

(
wθ0 fp,q

)
(z) +

(
Tθ0((x − c)1p,q(x))

)
(z).

Then, from (27), one has

fp,q(z)S(w)(z) =(z − c)1p,q(z)S
(
T

)
(z) −

(
wθ0 fp,q

)
(z) +

(
Tθ0((x − c)1p,q(x))

)
(z)

by (4)−(18)
= (z − c)S

(
fp,qTp,q

)
(z) −

(
wθ0 fp,q

)
(z)

+
(
Tθ0((x − c)1p,q(x))

)
(z) − (z − c)

(
Tθ01p,q

)
(z)

by (4)
= (z − c) fp,q(z)S

(
Tp,q

)
(z) −

(
wθ0 fp,q

)
(z)

+
(
Tθ0((x − c)1p,q(z))

)
(z) − (z − c)

((
Tθ01p,q

)
−

(
Tp,qθ0 fp,q

))
(z).

Therefore, using (62), the last equation becomes

fp,q(z)S(w)(z) = (z − c) fp,q(z)S
(
Tp,q

)
(z) + fp,q(z),

which readily gives
S(w)(z) = (z − c)S

(
Tp,q

)
(z) + 1.
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Then, using (4) and by Remark 2.1, we get

w = (x − c)Tp,q,

so,
(w)n =

(
Tp,q

)
n+1
− c

(
Tp,q

)
n
, n ≥ 0.

Hence, using (25) we have the desired relation.
(d)⇒ (e) By hypothesis we have

(w)n =
(
Tp,q

)
n+1
− c

(
Tp,q

)
n

=
(
(x − c)Tp,q

)
n
, n ≥ 0.

Then,

w = (x − c)Tp,q. (63)

Using Lemma 3.3 we conclude that w is a second degree form. As a consequence, w is a semiclassical form.
Based on the property (14), the relation (63) becomes

S(w)(z) = (z − c)S
(
Tp,q

)
(z) + 1. (64)

Taking formal derivatives in the last equation we get

S′(w)(z) = (z − c)S′(Tp,q)(z) + S(Tp,q)(z).

After combining the latter two expressions we obtain

S′(Tp,q) (z) =
(z − c)S′(w)(z) − S(w)(z) + 1

(z − c)2 . (65)

Replacing (64) and (65) in (23), and multiplying both sides of the resulting equation by (z − c)2, one obtains

φw(z)S′(w)(z) = Cw(z)S(w)(z) + Dw(z), (66)

where the polynomials φw,Cw and Dw are

φw(z) = (z − c)Φ(z),

Cw(z) = Φ(z) + (z − c)Cp,q
0 (z),

Dw(z) = −Φ(z) − (z − c)Cp,q
0 (z) + (z − c)2Dp,q

0 (z).

Therefore, it follows from (24) that S(w)(z) fulfills (66) with

φw(z) = (z − c)(z2
− 1),

Cw(z) = (p + q)z2 +
(
q − p − c(p + q − 1)

)
z − c(q − p) − 1,

Dw(z) = −
(
q − p + c(p + q + 1)

)
z + c2(p + q) + c(q − p) + 1.

Now, we see that conditions Φ(c) , 0, Cp,q
0 (1) , 0 and Cp,q

0 (−1) , 0 hold. Then φw,Cw, and Dw are coprime.
Since deg Dw ≤ 1 and deg Cw = 2 the class of w is one.
(e) ⇒ (a) It is easy to verify that the form (x − c)Tp,q satisfies the same functional equation as w with

degφw = degψw + 1 = 3, as well as
(
(x − c)Tp,q

)
0

=
p−q

p+q+1 − c = (w)0 and
(
(x − c)Tp,q

)
1

=
2(p+ 1

2 )(p+ 3
2 )+(q+ 1

2 )(q+ 3
2 )

(p+q+2)(p+q+1) −

1 − c p−q
p+q+1 = (w)1. From Lemma 6.2 we conclude that w = (x − c)Tp,q. Thus, the proof is finished.
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7. Open problems

• In this work we have analyzed several examples of second degree linear forms which are also
semiclassical of class s = 1. An interesting question is to describe all second degree semiclassical
forms of class s = 1. We conjecture that the examples studied in our contribution constitute the only
available cases.

• Very few examples of second degree forms which are semiclassical of class s ≥ 2 are known in the
literature. In particular, in [32] by means of the quadratic decomposition, an example of symmetric
semiclassical forms of class s = 2 that is of second degree is determined. The description of all
symmetric linear forms which are of second degree and semiclassical of class s = 2 seems to be
an open problem despite the fact that some examples of symmetric semiclassical linear forms are
considered in [33] and [20]. To check among them what are second degree forms seems to be an
interesting exercise.

• In [35] all quasi-symmetric semiclassical orthogonal polynomial sequences of class two are studied.
The coefficients of the corresponding three term recurrence relation are obtained as well as the integral
representations of the linear forms. In [18] the author deduces the second degree forms among those
analyzed in [35].

• Rational spectral transformations of second degree forms preserve such a family. Notice that according
to [37] they are generated by Christoffel, Geronimus, association and anti-association transformations.
An interesting problem is to describe the set of the transformations of linear forms such that the second
degree character is preserved.
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