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Abstract. In this paper, we investigate the stability of some essential spectra of a 2 × 2 block operator
matrices pencil with unbounded entries and with non-diagonal domain (i.e a domain consisting of
vectors which satisfy certain relations between their components) by using the resolvent of this kind of
matrix operator in terms of the union of the essential spectra of the restriction of its diagonal operators
entries. Furthermore, an example of two-group transport operators pencils is presented to illustrate the
validity of the main results.

1. Introduction

Numerous mathematical and physical problems lead to operator pencils, T − λS (see for example
[11, 17, 21]). Recently, the spectral theory of operator matrices attracts the attention of many mathemati-
cians for study and characterize the essential spectra with different methods. The obtained results are
used in many physical problems, for example, transport operator. (see, for example [8, 10, 12, 13, 20]).
In this paper, we are mainly concerned with the study of the spectral theory of operator matrices pencils
of the form

A− λM =

(
A B
C D

)
− λ

(
M1 M2
M3 M4

)
(1)

defined on E×F product of Banach spaces, whereA is an unbounded matrix operator with non-diagonal
domain and M is a bounded and invertible matrix operator. Many authors suggested a spectral theory
for operators in the formA− λM, where M = I, (see [10, 13, 20]).
The characterization and the investigation of some essential spectra of block operator matrices pencils
with diagonal domain case, have drawn the attention of several authors involving the corresponding
Schur complements, see [12]. Later, in paper [25], the author improves the previous results by considering
the case of matrix operator pencils with domain consisting of vectors satisfying one relation between
their components expressed as:

ΓX f = ΓY1 for
(

f
1

)
∈ (dom (A) ∩ dom (C)) × (dom (B) ∩ dom (D)) where ΓX and ΓY are two linear

operators.
In [22], R. Nagel has paid attention to the research of the problem related to spectral properties of 2 × 2
operator matrices A with non-diagonal domain defined by two relations between their components,
that is:

dom (A) =

( f
1

)
∈ dom (Am) × dom (Dm) such that

φ1( f ) = ψ2(1)
and

φ2(1) = ψ1( f )

 , (2)
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for continuous linear operators φi andψi, i = 1, 2, Am and Dm are two maximal operators. The purpose of
this work consists principally in studying some essential spectra of operator matrices with non-diagonal
domain, given in [2] in the case of matrix operator pencil. For this, to achieve this goal, first, we determine
the expression of the resolvent (A−λM)−1 for some convenable λ. More precisely, the idea is to associate
to the pair (A,M) a pair (A0,M), which is more easier to deal with and we prove that

σe,k(A,M) = σe,k(A0,M1) ∪ σe,k(D0,M4)

where A0 = Am |kerφ1 , D0 = Dm |kerφ2 and k ∈ {1, 2, 3, 4, r, l}. (For more details see Theorems 3.10 and 3.11).
In the last section, we will apply the results obtained in Section 3 to exploit several results from perturba-
tion theory and spectral theory to obtain information about the M-essential spectra of the following two-
group transport operator acts in the space Xp ×Xp, where Xp := Lp([−a, a]× [−1, 1]; dxdv), a > 0 and p ≥ 1.
Let

AH = T + K,

where T, K and M are defined by

T :=
(

Tm1 0
0 Tm4

)
, K :=

(
0 K12

K21 0

)
and M :=

(
M1 M2
M3 M4

)
.

The operators Tmi , i = 1, 4 are the so-called streaming operators, defined by:
Tmi : dom (Tmi ) ⊆ Xp −→ Xp

f 7−→ Tmi f = −v ∂ f
∂x − σi(v) f ,

dom (Tmi ) = { f ∈ Xp such that v ∂ f
∂x ∈ Xp} :=Wp.

The linear bounded collision operators K j j′ , for ( j, j′) ∈ {(1, 2), (2, 1)}, are defined on Xp by:
K j j′ : Xp −→ Xp

u 7−→
∫ 1

−1
k j j′ (x, v, v′)u(x, v′)dv′,

(see Section 4 for more details).

Our paper is organized as follow: In the next section, we give some preliminary results and notations
used in the sequel of the paper. Section 3 focuses on the characterization of the essential spectra of
unbounded operator matrices pencils with non-diagonal domain. We end this paper by applying our
results to determine the M-essential spectra of two-group transport equations.

2. Preliminary results

In this section, we gather some auxiliary notations and definitions that we will need in the rest of
the paper. let X and Y be two Banach spaces. We denote byL(X,Y) (resp. C(X,Y)) the set of all bounded
(resp. closed, densely defined) linear operators from X into Y. We denote by K (X,Y) the subspace of
all compact operators. If X = Y, then L(X,Y), C(X,Y) and K (X,Y) are replaced by L(X), C(X) and K (X)
respectively.
We will consider the set of polynomially compact operators which are denoted by PK (X) and defined
as:

PK (X) :=
{

T ∈ L(X); there exists a non zero complex polynomial
P(z) =

∑p
r=0 arzr with P(1) , 0 such that P(T) ∈ K (X)

}
.

For T ∈ C(X,Y), we write dom (T) ⊂ X for the domain, ker(T) for the null space and ran (T) ⊂ Y for the
range of T. The nullity, α(T), of T is defined as the dimension of ker(T) and the deficiency, β(T), of T is
defined as the codimension of ran (T) in Y.
For T ∈ C(X,Y) and S be a bounded operator from X into Y, we define the S-resolvent set ρ(T,S) of the
pair (T,S) by:

ρ(T,S) = {λ ∈ C such that Rλ(T,S) = (T − λS)−1 exists and is bounded}.
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For λ ∈ ρ(T,S), Rλ(T,S) is the S-resolvent of T. The S-spectrum σ(T,S) is the complement of ρ(T,S) in the
complex plane, see([8]).

In what follows, we need to introduce some important classes of operators. The set of upper semi-
Fredholm operators from X into Y is defined by:

Φ+(X,Y) = {T ∈ C(X,Y) such that α(T) < ∞ and ran (T) is closed in Y}.

and the set of lower semi-Fredholm operators from X into Y is defined by:

Φ−(X,Y) = {T ∈ C(X,Y) such that β(T) < ∞ and ran (T) is closed in Y}.

Φ(X,Y) := Φ+(X,Y) ∩ Φ−(X,Y) (resp. Φ±(X,Y) := Φ+(X,Y) ∪ Φ−(X,Y)) denotes the set of Fredholm
(resp. semi-Fredholm) operators from X into Y . For such an operator, we define the index ind (T) by:
ind (T) = α(T) − β(T).
If X = Y, then Φ(X,Y), Φ+(X,Y) and Φ−(X,Y) are replaced by Φ(X), Φ+(X) and Φ−(X) respectively.

Definition 2.1. [12, Definition 2.4, p. 4] Let X and Y be two Banach spaces.
An operator T ∈ L(X,Y) is said to have a left (resp. a right) Fredholm inverse if there exists an operator Tl ∈ L(Y,X)
(resp. Tr ∈ L(Y,X)) such that TlT − Id ∈ K (X) (resp. TTr − Id ∈ K (Y)). The operator Tl(resp. Tr) is called left
(resp. right) Fredholm inverse of T. ♦

In [12],the authors proved that if T ∈ C(X,Y), then they have same above definition with an hypothesis
that is dom (T) endow with the graph norm.

Definition 2.2. Let X and Y be two Banach spaces. An operator T ∈ L(X,Y) is said to be weakly compact if T(B)
is relatively weakly compact in Y for every bounded B ∈ X.

♦

The family of weakly compact operators from X into Y is denoted by W(X,Y). If X = Y the family
of weakly compact operators on X, W(X) := W(X,X) is a two-sided closed ideal of L(X) containing
K (X)(see [5]).

Definition 2.3. Let X and Y be two Banach spaces. An operator T ∈ L(X,Y) is said to be strictly singular if the
restriction of T to any infinite-dimensional subspace of X is not a homeomorphism. ♦

Let S(X,Y) denote the set of strictly singular operators from X to Y. The concept of strictly singular
operators was introduced in the pioneering paper by T. Kato [14]) as a generalization of the notion of
compact operators. For a detailed study of the properties of strictly singular operators, we refer to [14].
Note that S(X,Y) is a closed subspace of L(X,Y). If X = Y, S(X) := S(X,X) is a two-sided closed ideal of
L(X) containingK (X). If X is a Hilbert space, then S(X) = K (X). The class of weakly compact operators
in L1-spaces (resp. C(Ω)- spaces with Ω is a compact Hausdorff space) is nothing else than the family of
strictly singular operators on L1-space (resp. C(Ω)-space) see [23].

In order to state our main results, let us introduce some definitions on Fredholm perturbations and
then continue with some lemmas and propositions:

Definition 2.4. Let X and Y be two Banach spaces and F ∈ L(X,Y).
(i) F is called a Fredholm perturbation if T + F ∈ Φ(X,Y) whenever T ∈ Φ(X,Y).
(ii) F is called an upper (resp. lower) semi-Fredholm perturbation if T + F ∈ Φ+(X,Y) (resp. T + F ∈ Φ−(X,Y))
whenever T ∈ Φ+(X,Y). (resp. T ∈ Φ−(X,Y)).
(iii) F is called a left (resp. right) Fredholm perturbation if T + F ∈ Φl(X,Y) (resp. T + F ∈ Φr(X,Y)) whenever
T ∈ Φl(X,Y). (resp. T ∈ Φr(X,Y)). ♦

We denote by F (X,Y) the set of Fredholm perturbations, by F+(X,Y) (resp. F−(X,Y)) the set of upper
semi-Fredholm (resp. lower semi-Fredholm) perturbations and by Fl(X,Y) (resp. Fr(X,Y)) the set of left
(resp. right) Fredholm perturbations.
If X = Y we write F (X), F+(X), F−(X), Fl(X) and Fr(X) for F (X,X), F+(X,X), F−(X,X), Fl(X,X) and
Fr(X,X), respectively.
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Remark 2.5. Let Φb(X,Y), Φb
l (X,Y) and Φb

r (X,Y) denote respectively the sets Φ(X,Y) ∩ L(X,Y), Φl(X,Y) ∩
L(X,Y) and Φr(X,Y) ∩ L(X,Y). In Definition 2.4, if we replace Φ(X,Y), Φl(X,Y) and Φr(X,Y) by Φb(X,Y),
Φb

l (X,Y) and Φb
r (X,Y), we obtain the sets F b(X,Y), F b

l (X,Y) and F b
r (X,Y) respectively.

The sets of Fredholm and semi-Fredholm perturbations were introduced and investigated in [4]. In
particular, it is shown that F b(X,Y), F b

+(X,Y) and F b
−

(X,Y) are closed subsets of L(X,Y) and if X = Y,
then F b(X) := F b(X,X), F b

+(X) = F b
+(X,X) and F b

−
(X) = F b

−
(X,X) are closed two-sided ideals of L(X).

In [12], it was proved that if X = Y, then F b
l (X) := F b

l (X,X) and F b
r (X) := F b

r (X,X) are two-sided ideals
of L(X) and we have:

K (X,Y) ⊆ F b
l (X,Y) ⊆ F b(X,Y) (3)

and

K (X,Y) ⊆ F b
r (X,Y) ⊆ F b(X,Y). (4)

Let us recall the following useful results on Fredholm perturbations theory of 2 × 2 block operator
matrices established in [12].

Theorem 2.6. [12, Theorems 3.1-3.2 ] Let X1 and X2 be two Banach spaces and

F :=
(

F11 F12
F21 F22

)
where Fi j ∈ L(Xi,X j) ∀ i, j = 1, 2. Then :

(i) F ∈ F b(X1 × X2)⇔ Fi j ∈ F
b(Xi,X j) ∀ i, j = 1, 2.

(ii) F ∈ F b
r (X1 × X2)⇔ Fi j ∈ F

b
r (Xi,X j) ∀ i, j = 1, 2.

(iii) F ∈ F b
l (X1 × X2)⇔ Fi j ∈ F

b
l (Xi,X j) ∀ i, j = 1, 2.

♦

Our concern in this paper is about the following definitions of some essential spectra of operators pencils.
For T ∈ C(X,Y) and S ∈ L(X,Y), we consider

σe,l(T,S) := {λ ∈ C : T − λS < Φl(X,Y)},
σe,r(T,S) := {λ ∈ C : T − λS < Φr(X,Y)},
σe,1(T,S) := {λ ∈ C : T − λS < Φ+(X,Y)},
σe,2(T,S) := {λ ∈ C : T − λS < Φ−(X,Y)},
σe,3(T,S) := {λ ∈ C : T − λS < Φ±(X,Y)},
σe,4(T,S) := {λ ∈ C : T − λS < Φ(X,Y)}.

These sets can be ordered as

σe,1(T,S) ∩ σe,2(T,S) = σe,3(T,S) ⊂ σe,4(T,S) = σe,l(T,S) ∪ σe,r(T,S). (5)

and

σe,1(T,S) ⊂ σe,l(T,S) ⊂ σe,4(T,S), (6)

σe,2(T,S) ⊂ σe,r(T,S) ⊂ σe,4(T,S). (7)

Remark 2.7. We mention that if S = Id, we recover the usual definition of the essential spectra of a closed densely
defined linear operator T, see [7, 16, 24].

Remark 2.8. (i) It follows from [16, pp. 779], that if p > 1

K (Xp) = F+(Xp) = F−(Xp) = F (Xp) = S(Xp).

and if p = 1, according to Theorem 1 in [23, pp. 779], we have S(X1) =W(X1).
(ii) For two Banach spaces X and Y, the last assertion with Eqs. (6) and (7) reveals

Fr(Xp) = Fl(Xp) = F (Xp).
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We recall some stability results of the essential spectra of unbounded operator subjected to Fredholm
perturbations which is essential to provide the main purpose of this paper.

Theorem 2.9. [1, 11] Let T1 and T2 two closed densely defined linear operators on X and S an invertible operator
on X.

(i) If for some λ ∈ ρ(T1,S) ∩ ρ(T2,S), the operator (T1 − λS)−1
− (T2 − λS)−1

∈ F
b

r (X), then

σe,r(T1,S) = σe,r(T2,S).

(ii) If for some λ ∈ ρ(T1,S) ∩ ρ(T2,S), the operator (T1 − λS)−1
− (T2 − λS)−1

∈ F
b

l (X), then

σe,l(T1,S) = σe,l(T2,S).

(iii) If for some λ ∈ ρ(T1,S) ∩ ρ(T2,S), the operator (T1 − λS)−1
− (T2 − λS)−1

∈ F
b
+(X), then

σe,1(T1,S) = σe,1(T2,S).

(v) If for some λ ∈ ρ(T1,S) ∩ ρ(T2,S), the operator (T1 − λS)−1
− (T2 − λS)−1

∈ F
b
−

(X), then

σe,2(T1,S) = σe,2(T2,S).

♦

3. Stability of the essential spectra of an operator matrices pencils with non-diagonal domain

This section deals with the spectral theory of 2 × 2 operator matrix pencilA− λM on the product
of two Banach space E and F. First, we start by giving a simplified description of the resolvent ofA−λM
which are needed to provide a new characterization of some essential spectra of this kind matrix in terms
of the union of the essential spectra of the restriction of its diagonal operators entries.

3.1. Expression of the resolvent of an operator matrices pencils with non-diagonal domain
Let us consider the unbounded block operator matrix pencil defined as a product of simpler

operators on the Banach space E × F having the form

A− λM =

(
A B
C D

)
− λ

(
M1 M2
M3 M4

)
To treat this problem in a functional analytic setting, we consider the following assumptions introduced
in Nagel [22].
(H1) Am and Dm two closed, densely defined linear operators with maximal domains dom (Am) in E and
dom (Dm) in F.
(H2) Let X and Y be two Banach spaces (called "spaces of boundary conditions"), endow dom (Am) and
dom (Dm) with the graph norm and define continuous linear operators φi and ψi for i = 1, 2 as in the
following diagram:

E ⊃ dom (Am)
φ1 //

ψ1))

X

F ⊃ dom (Dm)
φ2

//

ψ2

55

Y

(H3) φ1 and φ2 are surjective.

Definition 3.1. On the Banach space E × F we consider the non-diagonal domain

dom (A− λM) = dom (A) =

( f
1

)
∈ dom (Am) × dom (Dm) such that

φ1( f ) = ψ2(1)
and

φ2(1) = ψ1( f )

 , (8)
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to define the pencil matrixA− λM by

(A− λM)
(

f
1

)
= (Am − λM)

(
f
1

)
, for

(
f
1

)
∈ dom (A− λM).

Here, M =

(
M1 M2
M3 M4

)
is a bounded and invertible operator andA is of the form

Am =

(
Am B
C Dm

)
where B,C are bounded linear operators such that B ∈ L(dom (Dm),E) and C ∈ L(dom (Am),F).

♦

Remark 3.2. In view of the continuity assumption on the operators φ1, φ2, ψ1 and ψ2, the domain dom (A) is
closed in dom (Am) × dom (Dm) with respect to the graph norm. Hence (A,dom (A)) is a closed operator on
E × F

As a first towards, the description of the resolvent of unbounded operator matrix pencil A − λM
with non-diagonal domain will be investigated by associating A − λM with an operator matrix pencil

A0 − λMd where Md =

(
M1 0
0 M4

)
is bounded and invertible operator acting in E × F andA0 is of the

form
(

A0 0
0 D0

)
which is easier to deal with since it has diagonal domain, where A0 = Am|kerφ1 and

D0 = Dm|kerφ2 represent the restriction of the operator Am to kerφ1 and Dm to kerφ2 respectively.

Remark 3.3. From the definition of the operator A0 (resp. D0) one can easily check that φ1(dom (A0)) = {0}
(resp. φ1(dom (D0)) = {0}) and thus the operator A0 (resp. D0) is closed. SoA0 is closed.

Now, let us recall the following lemma explaining the relation between the pencil operators A − λM
andA0 − λMd using the lemma 2.4 in [22] that can be rephrased in the case of linear operator pencil as
follows:

Lemma 3.4. (i) For λ ∈ ρ(A0,M1)(resp. λ ∈ ρ(D0,M4)), the following decomposition holds:

dom (Am) = dom (A0) ⊕ ker(Am − λM1)

(resp. dom (Dm) = dom (D0) ⊕ ker(Dm − λM4)).

(ii) For λ ∈ ρ(A0,M1) (resp. λ ∈ ρ(D0,M4)), the following operator

φλ,M1 := φ1|ker(Am−λM1) and φλ,M4 := φ2|ker(Dm−λM4).

is a continuous bijection from ker(Am − λM1) onto X (resp. from ker(Dm − λM4) onto Y). ♦

Proof. (i) Let λ ∈ ρ(A0,M1). Because (A0 − λM1) is invertible, then we can deduce that

dom (A0) ∩ ker(Am − λM1) = {0}.

Now, we show that
dom (Am) = dom (A0) + ker(Am − λM1).

To do this, it is clear that
dom (A0) + ker(Am − λM1) ⊂ dom (Am).

For any f ∈ dom (Am), ∃ 1 ∈ dom (A0) such that

1 = (A0 − λM1)−1(Am − λM1) f

Then, f − 1 ∈ ker(Am − λM1).
A same reasoning as helps us to reach the result of dom (Dm) = dom (D0) ⊕ ker(Dm − λM4), which ends
the proof of this assertion.
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(ii) We know that φ1 et φ2 are bounded then φλ,M1 and φλ,M4 there are.
The injectivity of the operator φλ,M1 follows from the following fact:

ker(φλ,M1 ) = kerφ1 ∩ ker(Am − λM1) = ker(A0 − λM1) = {0}.

Now Using the item (i) and the linearity of φλ,M1 , we get

Im(φλ,M1 ) = φ1(ker(Am − λM1)φ1(dom (Am)) = Im(φ1)

As long as φ1 is surjective, then Im(φλ,M1 ) = X. Hence φλ,M1 is surjective.
A same reasoning to reach the result of φλ,M2 �

As a direct consequence of the above lemma, forλ ∈ ρ(A0,M1)∩ρ(D0,M4), we can define the following
operators

Kλ,M1 := φ−1
λ,M1
◦ ψ2 and Lλ,M4 := φ−1

λ,M4
◦ ψ1.

Note that Kλ,M1 ∈ L(dom (Dm),dom (Am)) and Lλ,M4 ∈ L(dom (Am),dom (Dm)) ,

φλ,M1 (Kλ,M11) = ψ2(1) for 1 ∈ dom (Dm) and φλ,M4 (Lλ,M4 f ) = ψ1( f ) for f ∈ dom (Am).

The following factorizations may be used to formulate the key tool for our investigations.

Theorem 3.5. Let λ ∈ ρ(A0,M1) ∩ ρ(D0,M4), Then,

(A− λM) = (A0 − λMd)Qλ,M on dom (A) (9)

where

Qλ,M =

 Id −Kλ,M1 + (A0 − λM1)−1(B − λM2)

−Lλ,M4 + (D0 − λM4)−1(C − λM3) Id

 (10)

♦

Proof. We decompose Qλ,M in the form

Qλ,M = Bλ,M + Cλ,M

where

Bλ,M :=
(

Id −Kλ,M1

−Lλ,M4 Id

)
, Cλ,M =

(
0 (A0 − λM1)−1(B − λM2)

(D0 − λM4)−1(C − λM3) 0

)
.

are bounded operators matrices defined on dom (Am) × dom (Dm).
The proof can show in two steps:
Step 1: LetHλ = (A0 − λMd)Qλ,M, then

dom (Hλ) =

{(
f
1

)
∈ dom (Am) × dom (Dm) tel que Qλ,M

(
f
1

)
∈ dom (A0)

}
Using the definitions and the linearity of Kλ,M1 and Lλ,M4 , we obtain

dom (Hλ) =

{(
f
1

)
∈ dom (Am) × dom (Dm) tel que

φ1( f ) = ψ2(1),
φ2(1) = ψ1( f ).

}
= dom (A).

Step 2: On dom (A), we prove the decomposition (9).

We consider the unbounded operator matrices Ad =

(
Am 0
0 Dm

)
with non-diagonal domain dom (A)

expressed in (8), and for λ ∈ ρ(A0,M1) ∩ ρ(D0,M4), the operator matrices pencil (Ad − λMd) can be
decomposed as follows:

(Ad − λMd) = (A0 − λMd)Bλ,M on dom (Ad),
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then we get

(A0 − λMd)Qλ,M

(
f
1

)
= (Ad − λMd)

(
f
1

)
+ (A0 − λMd)Cλ,M

(
f
1

)
= (A− λM)

(
f
1

)
, for all

(
f
1

)
∈ dom (A).

�

In view of the above decomposition of A − λM, we shall describe its resolvent. For this reason,
we impose some conditions on the components of the matrix operator Qλ,M and the matrix operator
A0 − λMd to show the invertibility of the operator matrices pencil A − λM. First, we will provide the
invertibility of Qλ,M. For this, we consider the following notationGλ = −Kλ,M1 + (A0 − λM1)−1(B − λM2) ∈ L(dom (Dm),dom (Am)),

Fλ = −Lλ,M4 + (D0 − λM4)−1(C − λM3) ∈ L(dom (Am),dom (Dm)).
(11)

Lemma 3.6. For λ ∈ ρ(A0,M1) ∩ ρ(D0,M4)

Qλ,M is invertible in L(dom (Am) × dom (Dm)) ⇔ Id − FλGλ is invertible in L(dom (Dm)).

♦

Proof. For λ ∈ ρ(A0,M1)∩ ρ(D0,M4), according to the Frobenuis-Schur factorization, the operator Qλ,M
can be written in the following form

Qλ,M =

(
Id 0
Fλ Id

)
︸       ︷︷       ︸

U

(
Id 0
0 Id − FλGλ

)
︸                 ︷︷                 ︸

V

(
Id Gλ

0 Id

)
︸       ︷︷       ︸

W

(12)

Since U and W are invertible and have a bounded inverse in dom (Am) × dom (Dm). Hence, Qλ,M is
invertible if and only if V is invertible in dom (Am) × dom (Dm) if and only if Id − FλGλ is invertible in
dom (Dm). �

In order to describe the resolvent of the operator matrices pencil Rλ(A,M) = (A − λM)−1, we start
our investigations with the following result.

Theorem 3.7. For λ ∈ ρ(A0,M1) ∩ ρ(D0,M4).

(i) If Id − FλGλ ∈ L(dom (Dm)) is invertible, thenA− λM is invertible in L(E × F).

(ii)Furthermore, if FλGλ ∈ PK (dom (Dm)) then,

A− λM is invertible in L(E × F) ⇔ Id − FλGλ is invertible in L(dom (Dm)).

♦

Proof. (i) Let λ ∈ ρ(A0,M1) ∩ ρ(D0,M4), then λ ∈ ρ(A0,Md) and according to hypothesis 1 ∈ ρ(FG) and
by the lemma 3.6 and Theorem 3.5, we get λ ∈ ρ(A,M).
(ii) We suppose that λ ∈ ρ(A,M), then A − λM is injective. Consequently, the equation (9) of Theorem
3.5, gives that Id − FG is injective.
Under the hypothesis FG ∈ PK (D(Dm)), and using Theorem 2.2 in [7], give (Id − FG)−1 invertible and
have a bounded inverse. Then, Id − FG is invertible.

�

By the decomposition (A − λM) = (A0 − λMd)Qλ,M and Theorem 3.7, we deduce the expression of
the resolvent Rλ(A,M) := (A− λM)−1.
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Theorem 3.8. Let λ ∈ ρ(A0,M1) ∩ ρ(D0,M4) such that 1 ∈ ρ(FλGλ), we obtain

Rλ(A,M) = Rλ(A0,Md) +M f (13)

Here,

M f =

 Gλ(Id − FλGλ)−1FλRλ(A0,M1) Gλ[Id + (Id − FλGλ)−1FλGλ]Rλ(D0,M4)

(Id − FλGλ)−1FλRλ(A0,M1) (Id − FλGλ)−1FλGλRλ(D0,M4)

 . (14)

♦

Proof. For λ ∈ ρ(A0,M1) ∩ ρ(D0,M4) such that 1 ∈ ρ(FλGλ), then λ ∈ ρ(A,M) and by a simple calculus,
we have

Rλ(A,M) =

 [Id + Gλ(Id − FλGλ)−1Fλ]Rλ(A0,M1) −Gλ(Id − FλGλ)−1
Rλ(D0,M4)

−(Id − FλGλ)−1FλRλ(A0,M1) (Id − FλGλ)−1
Rλ(D0,M4)

 , (15)

and we can write

(Id − FλGλ)−1 = Id + (Id − FλGλ)−1FλGλ on dom (Dm).

Consequently,

(Id − FλGλ)−1
Rλ(D0,M4) = Rλ(D0,M4) + (Id − FλGλ)−1FλGλRλ(D0,M4).

Gλ(Id − FλGλ)−1
Rλ(D0,M4) = GλRλ(D0,M4) + Gλ(Id − FλGλ)−1FλGλRλ(D0,M4).

Then, thanks to its above expressions, we can rewrite the new entries of the resolvent (15) to obtain our
result. �

3.2. Main results
Our aim in this subsection is to characterize some essential spectra of unbounded operator matrices

pencils. To do this, we need to determine the resolvent Rλ(A0,M) of the operator pencilA0 − λM.
We consider the following notation

Gλ,d = −λ(A0 − λM1)−1M2 ∈ L(F,dom (A0)),
Fλ,d = −λ(D0 − λM4)−1M3 ∈ L(E,dom (D0)).

Lemma 3.9. For λ ∈ ρ(A0,M1) ∩ ρ(D0,M4) such that 1 ∈ ρ(Fλ,dGλ,d), then λ ∈ ρ(A0,M) and we have

Rλ(A0,M) = Rλ(A0,Md) +M′f (16)

with

M
′

f =

 Gλ,d(Id − Fλ,dGλ,d)−1Fλ,dRλ(A0,M1) Gλ,d[Id + (Id − Fλ,dGλ,d)−1Fλ,dGλ,d]Rλ(D0,M4)

(Id − Fλ,dGλ,d)−1Fλ,dRλ(A0,M1) (Id − Fλ,dGλ,d)−1Fλ,dGλ,dRλ(D0,M4)

 . (17)

♦

Proof. In theorem 3.5, for λ ∈ ρ(A0,M1) ∩ ρ(D0,M4), replacing the operator matrix A by A0 then we
get the following decomposition ofA0 − λM:

(A0 − λM) = (A0 − λMd)Qλ,M on dom (A0). (18)

Indeed, if Am = A0 and Dm = D0 then Kλ,M1 and Lλ,M4 are null operators respectively, and with B = C = 0
we obtain Fλ = Fλ,d and Gλ = Gλ,d. Then, the invertibility of the operator matricesA0 − λM is satisfied if
1 ∈ ρ(Fλ,dGλ,d).
Hence, we obtain the expression of the resolvent Rλ(A0,M) which is indicated in the lemma below by
using the same method as in theorem 3.8. �

Now, we are in the position to express the first main results of this subsection.
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Theorem 3.10. Let M be a bounded and invertible operator matrices on E × F and λ ∈ ρ(A0,M1) ∩ ρ(D0,M4)
such that 1 ∈ ρ(FλGλ) and 1 ∈ ρ(Fλ,dGλ,d). Then, we have:

(i) If M2 and M3 are right Fredholm perturbation and if FλRλ(A0,M1) ∈ F b
r (E,dom (Dm)) and GλRλ(D0,M4) ∈

F
b

r (F,dom (Am)), then
σe,r(A,M) = σe,r(A0,M1) ∪ σe,r(D0,M4).

(ii) If M2 and M3 are left Fredholm perturbation and if FλRλ(A0,M1) ∈ F b
l (E,dom (Dm)) and GλRλ(D0,M4) ∈

F
b

l (F,dom (Am)), then
σe,l(A,M) = σe,l(A0,M1) ∪ σe,l(D0,M4).

(iii) If M2 and M3 are Fredholm perturbation and if FλRλ(A0,M1) ∈ F b(E,dom (Dm)) and GλRλ(D0,M4) ∈
F

b(F,dom (Am)), then
σe,4(A,M) = σe,4(A0,M1) ∪ σe,4(D0,M4),

♦

Proof. Based on Theorem 2.9, we will prove the Fredholmness perturbation of the operator Rλ(A,M)−
Rλ(A0,M), Then, it follows from the two equations 13 and 16, it is sufficient to show that all the entries
of the block operators matricesM f andM′f are Fredholm perturbations.

(i) From the assumptions FλRλ(A0,M1) ∈ F b
r (E,dom (Dm)) and

GλRλ(D0,M4) ∈ F b
r (F,dom (Am)) and Theorem 3.2 in [12], we deduce that the all entries of the matrixM f

are right Fredholm perturbations operators.
On the other hand, the right Fredholmness perturbations of M2 and M3 result that the operators Gλ,d and
Fλ,d are right fredholm perturbations. Then all entries of the matrixM′f are right Fredholm perturbations
operators by using Theorem 3.2 in [12].
Hence according to Theorem 2.6 (ii), we can deduce thatM f ∈ F

b
r (E × F) andM′f ∈ F

b
r (E × F). Conse-

quently, for λ ∈ ρ(A0,M1) ∩ ρ(D0,M4), we obtained

Rλ(A,M) − Rλ(A0,M) ∈ F b
r (E × F).

According to Theorem 2.9 (i), one gets

σe,r(A,M) = σe,r(A0,M). (19)

As
(

0 M2
M3 0

)
∈ F

b
r (E × F), and using Proposition 3.1 in [1], we find that

σe,r(A0,M) = σe,r

((
A0 − λM1 0

0 D0 − λM4

)
− λ

(
0 M2

M3 0

))
= σe,r

(
A0 − λM1 0

0 D0 − λM4

)
Furthermore

σe,r(A0,M) = σe,r(A0,M1) ∪ σe,r(D0,M4). (20)

Then by Eq (19) and (20) we obtain

σe,r(A,M) = σe,r(A0,M1) ∪ σe,r(D0,M4).

The use of Theorems 2.6 (iii), 2.9 (ii) and according to [12, Theorem 3.2 ] allows us to reach the result of
assertion (ii) in a similar way as in the item (i).
(iii) From Eq (5), the first result of this item is an immediate consequence of the items (i) and (ii). �

We can translate the results of the above Theorem in terms of some essential spectra of type σe,k(.) for
k ∈ {1, 2, 3}.
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Theorem 3.11. Let M be an invertible operator matrices on E × F and consider λ ∈ ρ(A0,M1) ∩ ρ(D0,M4) such
that 1 ∈ ρ(FλGλ) and 1 ∈ ρ(Fλ,dGλ,d). Then
(i) If M2 ∈ F

b
+(E × F), M3 ∈ F

b
+(F × E) and Rλ(A,M) − Rλ(A0,M) ∈ F b

+(E × F), then

σe,1(A,M) = σe,1(A0,M1) ∪ σe,1(D0,M4).

(ii) If M2 ∈ F
b
−

(E × F), M3 ∈ F
b
−

(F × E) and Rλ(A,M) − Rλ(A0,M) ∈ F b
−

(E × F) then

σe,2(A,M) = σe,2(A0,M1) ∪ σe,2(D0,M4).

(iii) If M2 ∈ F
b
+(E×F)∩F b

−
(E×F), M3 ∈ F

b
+(F×E)∩F b

−
(E×F) andRλ(A,M)−Rλ(A0,M) ∈ F b

+(E×F)∩F b
−

(E×F)
then

σe,3(A,M) = σe,3(A0,M1) ∪ σe,3(D0,M4).

♦

Proof.

(i) For λ ∈ ρ(A0,M1) ∩ ρ(D0,M4) such that 1 ∈ ρ(FλGλ), we infer by Theorem 3.7 that λ ∈ ρ(A,M) ∩
ρ(A0,Md) and if adding the condition 1 ∈ ρ(Fλ,dGλ,d) we get λ ∈ ρ(A,M)∩ρ(A0,M). Together with
the fact that Rλ(A,M) − Rλ(A0,M) ∈ F b

+(E × F) and based on Theorem 2.9 (iii), we obtain

σe,1(A,M) = σe,1(A0,M). (21)

Since M2,M3 ∈ F
b
+(E × F), we deduce from Theorem (2.1) in [11]

σe,1(A0,M) = σe,1

((
A0 − λM1 0

0 D0 − λM4

)
− λ

(
0 M2

M3 0

))
= σe,1(A0,Md). (22)

AsA0 − λMd is a diagonal operators matrix, this shows that

σe,1(A0,Md) = σe,1(A0,M1) ∪ σe,1(D0,M4). (23)

So by Eqs (21), (22) and (23) we infer that

σe,1(A,M) = σe,1(A0,M1) ∪ σe,1(D0,M4).

(ii) A same reasoning as helps us to reach the result of item (ii).

(iii) According to Eq (5) we see that this assertion is a consequence of the items (i) and (ii).

�

Remark 3.12. It is noted that in the book [8], Jeribi supposed that the operator matrix

M(λ) =:

 0 M1(A − λM1)−1
−M2

(C − λM3)−1M1 −M3 (C − λM3)−1M1(A − λM1)−1

 ∈ I(E × F),

(where I(E × F) is an arbitrary nonzero two-sided ideal of L(E × F) satisfying that I(E × F) ⊂ F (E × F))
to characterize the essential spectra of unbounded operator matrix pencil with diagonal domain in terms of its
Schur complement. But in our case we suppose only that M2, M3, FλRλ(A0,M1) and GλRλ(D0,M4) are Fredholm
perturbations and by using the difference between the resolvent of two block operator matrices pencils, (see Theorems
3.10 and 3.11) we investigate the essential spectra of the matrix pencil A − λM in terms of the essential spectra
pencil of the restriction of its diagonal operators entries.
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4. Application to two-group transport operator matrices pencils

In this section, we study the essential spectra of two-group transport operator matrices pencils
with non-diagonal domain on Lp−space.
Let

Xp := Lp([−a, a] × [−1, 1]; dxdv), a > 0 and p ≥ 1.

We consider the following two-group transport operator matrices pencil:

AH − λM :=

 Tm1 − λM1 K12 − λM2

K21 − λM3 Tm4 − λM4

 ,
where

• The closed linear operator Tmi , i = 1, 4 is defined on its maximal domain dom (Tmi ) as:
Tmi : dom (Tmi ) ⊆ Xp −→ Xp

f 7−→ Tmi f = −v ∂ f
∂x − σi(v) f ,

dom (Tmi ) :=Wp := { f ∈ Xp such that v ∂ f
∂x ∈ Xp},

where the collision frequency σi(.) ∈ L∞(−1, 1) for i = 1, 4.

• K j j′ : are bounded linear collision operator, for ( j, j′) ∈ {(1, 2), (2, 1)} on Xp by:
K j j′ : Xp −→ Xp

u 7−→
∫ 1

−1
k j j′ (x, v, v′)u(x, v′)dv′,

(24)

with the scattering kernel K j j′ : x ∈ [−a, a] −→ K(x) ∈ L(Lp([−1, 1], dv)), assumed to be measurable.

• The coefficients Mi, i = 1, 4 is defined by:Mi : Xp −→ Xp

u 7−→Miu(x, v) = ηi(v)u(x, v), i = 1.4

where ηi(.) ∈ L∞(−1.1) and M2, M3 are bounded operators on Xp.
Let

λ∗j := inf
v∈[−1,1]

σ j(v) and µ∗j := inf
v∈[−1,1]

η j(v), for j = 1, 4

and assume that µ∗j > 0, j = 1, 4.

To verify the hypotheses of Theorem 3.10, we shall define the operatorAH − λM on the domain:

dom (AH) =

{
V =

(
f
1

)
∈ Wp ×Wp such thatVi = HVo

}
,

where Vo and Vi represent respectively the outgoing and the incoming fluxes related by a boundary
operator H.
We consider the boundary spaces:

Xo
p := Lp({−a} × [−1, 0]; |v|dv) × Lp({a} × [0, 1]; |v|dv) = Xo

1,p × Xo
2,p

and
Xi

p := Lp({−a} × [0, 1]; |v|dv) × Lp({a} × [−1, 0]; |v|dv) = Xi
1,p × Xi

2,p

(see [3] for more details). We will assume that the operator H is giving by

H : Xo
p × Xo

p → Xi
p × Xi

p(
f
1

)
7→ H

(
f
1

)
=

(
0 H12

H21 0

) (
f
1

)
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Clearly, the boundaries condition, Vi = HVo, of the unbounded operator matrix AH can be related
to a coupled conditions φ1( f ) = ψ2(1)

φ2(1) = ψ1( f )

modeled by the bounded linear operators φk and ψk, k = 1, 2 acting like in the diagram

Xp ⊃ dom (Tm1 ) =Wp
φ1 //

ψ1))

Xi
p

Xp ⊃ dom (Tm4 ) =Wp φ2

//

ψ2

55

Xi
p

and defined as followsφk : Wp −→ Xi
p

u 7−→ ui ,

ψ1 : Wp −→ Xi
p

f 7−→ H21 f o and

ψ2 : Wp −→ Xi
p

1 7−→ H121
o .

Let Ti, i = 1, 4 be the closed, densely defined operator with non empty resolvent set, defined respectively
by: T1 := Tm1 |kerφ1 ,

dom (T1) :=
{

f ∈ Wp such that f i = 0
}

T4 := Tm4 |kerφ2 ,

dom (T4) :=
{
1 ∈ Wp such that 1i = 0

}
.

Then, we obtain the operator matricesA0 :=
(

T1 0
0 T4

)
with diagonal domain, dom (A0) = dom (T1) ×

dom (T4).

Remark 4.1. 1. It is well known from Remark 4.1 in [20] that the operators Tmi , i = 1.4 are closed, densely
defined linear operators with nonempty resolvent set. Hence, the assumption (H1) is satisfied.

2. the trace mapping φi, i = 1, 2 is surjective, which was establish by Dautray and Lion in[3]. (see Theorem
1, p 252 for more details).
Then for λ ∈ %(T1,M1) ∩ %(T4,M4), the restrictions

φλ,M1 := φ1|ker(Tm1−λM1) and φλ,M4 := φ2|ker(Tm4−λM4)

of φ1 and φ2 are invertible with bounded inverses operators

φ−1
λ,M1
∈ L(Xi

p,ker(Tm1 − λM1)) ⊆ L(Xi
p,Wp), for p ≥ 1.

and
φ−1
λ,M4
∈ L(Xi

p,ker(Tm4 − λM4)) ⊆ L(Xi
p,Wp), for p ≥ 1.

♦

The following Lemma is crucial for the expression of the operators Kλ,M1 and Lλ,M4 .

Lemma 4.2. Let λ ∈ ρ(T1,M1) ∩ ρ(T4,M4), the bounded operators Kλ,M1 and Lλ,M4 are defined by
Kλ,M1 :Wp −→ ker(Tm1 − λM1) ⊂Wp

1 7−→ Kλ,M11(x, v) = χ(−1,0)(v)H121(−a, v)e−
(λη1(v)+σ1(v))

|v| |a−x|

+χ(0,1)(v)H121(a, v)e−
(λη1(v)+σ1(v))

|v| |x+a|,

and 
Lλ,M4 :Wp −→ ker(Tm4 − λM4) ⊂Wp

f 7−→ Lλ,M4 f (x, v) = χ(−1,0)(v)H21 f (−a, v)e−
(λη4(v)+σ2(v))

|v| |a−x|

+χ(0,1)(v)H21 f (a, v)e−
(λη4(v)+σ2(v))

|v| |x+a|.

♦
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Proof. Note that the expression of the operators Kλ,M1 and Lλ,M4 may be checked using the following
steps:
Step 1. Determine the expression of ker(Tm1 − λM1) and ker(Tm4 − λM4), for λ ∈ ρ(T1,M1) ∩ ρ(T4,M4).
For this, we consider Γ ∈ dom (Tm1 ) and Υ ∈ dom (Tm4 ).
An easy computation reveals that the solution of the equation (Tm1 − λM1)Γ(x, v) = 0 and (Tm4 −

λM4)Υ(x, v) = 0 are formally given by

Γ(x, v) =

 Γ(a, v)e−
(λη1(v)+σ1(v))

|v| |a−x|, − 1 < v < 0

Γ(−a, v)e−
(λη1(v)+σ1(v))

|v| |a+x|, 0 < v < 1

and

Υ(x, v) =

 Υ(a, v)e−
(λη4(v)+σ4(v))

|v| |a−x|, − 1 < v < 0

Υ(−a, v)e−
(λη4(v)+σ4(v))

|v| |a+x|, 0 < v < 1

Step 2. For λ ∈ ρ(T1,M1) ∩ ρ(T4,M4), construct the operators Kλ,M1 and Lλ,M4 satisfying

φλ,M1 (Kλ,M11) = ψ2(1) for 1 ∈ dom (Tm1 ) and φλ,M4 (Lλ,M4 f ) = ψ1( f ) for f ∈ dom (Tm4 ).

Indeed, according to Step 1, it suffices to establish the expressions of Γ(a, v), Γ(−a, v), Υ(a, v) and Υ(−a, v)
which have to satisfy Kλ,M11(x, v) = γΓ(a, v) + εΓ(−a, v)

γΓi(a, v) + εΓi(−a, v) = H121
o(x, v)

and Lλ,M4 f (x, v) = µΥ(a, v) + νΥ(−a, v)
µΥi(a, v) + µΥi(−a, v) = H21 f o(x, v)

Then, Γ(a, v) = H121(−a, v), −1 < v < 0,
Γ(−a, v) = H121(a, v), 0 < v < 1,

and Υ(a, v) = H21 f (−a, v), −1 < v < 0,
Υ(−a, v) = H21 f (a, v), 0 < v < 1,

which finds an explicit from of the bounded operators Kλ,M1 and Lλ,M4 . �

To compute the essential spectra of (AH − λM), we shall prove the Fredholmness perturbations of
the operators Fλ(T1 − λM1)−1 and Gλ(T4 − λM4)−1. To do this, the following definition introduced by M.
Kharroubi in [18] is required.

Definition 4.3. [18] A collision operator K j j′ in the form (24), is said to be regular if it satisfies the following
conditions: 

−the function K j j′ (.) is mesurable,
−there exists a compact subset C ⊂ L(Lp([−1, 1], dv)) such that :
K j j′ (x) ∈ C a.e on [−a, a],
−K j j′ (x) ∈ K (Lp([−1, 1], dv)) a.e on [−a, a]

whereK (Lp([−1, 1], dv)) is the set of compact operators on Lp([−1, 1], dv).

In order to verify the hypotheses of Theorem 3.10, We use the next lemma established in [11] .

Lemma 4.4. Let λ ∈ ρ(T1,M1) ∩ ρ(T4,M4).
If K j j′ (x, v, v′),( j, j′) ∈ {(1, 2), (2, 1)}, defines a regular operator, then the operator (Ti − λMi)−1K j j′ , i = 1, 4, is
compact on Xp, for 1 < p < ∞ and weakly compact on X1.

♦
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By identification, we have Gλ = −Kλ,M1 + (T1 − λM1)−1(K12 − λM2)
Fλ = −Lλ,M4 + (T4 − λM4)−1(K21 − λM3)

and as a consequence for the previous lemma, the following result holds

Lemma 4.5. Let λ ∈ ρ(T1,M1) ∩ ρ(T4,M4).
(i) If M2 and M3 are a Fredholm perturbation on X1 and K j j′ , ( j, j′) ∈ {(1, 2), (2, 1)}, is a regular operator, and if
H j j′ ∈ W(X1), then the operators Fλ(T1 − λM1)−1 and Gλ(T4 − λM4)−1) are weakly compact on X1.
(ii) If M2 and M3 are a Fredholm perturbation on Xp and K j j′ , ( j, j′) ∈ {(1, 2), (2, 1)}, is a regular operator, and if
H j j′ ∈ K (Xp), then the operators Fλ(T1 − λM1)−1 and Gλ(T4 − λM4)−1) are compact on Xp for p > 1. ♦

Proof. Let us write, for λ ∈ ρ(T1,M1)∩ρ(T4,M4), the operator Gλ(T4−λM4)−1 (resp. Fλ(T1−λM1)−1) as:

Gλ(T4 − λM4)−1 = −Kλ,M1 (T4 − λM4)−1 + (T1 − λM1)−1(K12 − λM2)(T4 − λM4)−1

and
Fλ(T1 − λM1)−1 = −Lλ,M4 (T1 − λM1)−1 + (T4 − λM4)−1(K21 − λM3)(T1 − λM1)−1

(i) We deduce from Hi j ∈ W(X1) for i, j = 1, 2 that the operator Kλ,M1 (resp. Lλ,M4 ) is weakly compact on X1.
So, the fact that the setW(X1) is a closed two sided ideal ofL(X1), we have Kλ,M1 (T4−λM4)−1

∈ W(X1) and
Lλ,M4 (T1 − λM1)−1

∈ W(X1). Using Lemma 4.4 and the assumptions for the fredholmness perturbation
of the operators M2 and M3, we deduce the result.
(ii) The use of Lemma 4.4 and the fact that the set K (Xp), for p > 1 is a closed two sided ideal of L(Xp)
allows us to reach the result of assertion (ii) in a similar ways as in the item (i). �

Remark 4.6. 1. For the remainder, we observe that if H12 is compact on Xp, p > 1 (resp. weakly compact
on X1), K12 defines a regular operator, then FλGλ ∈ K (Xp) (resp. FλGλ ∈ W(X1)). Hence, one has
[FλGλ]2

∈ K (Xp), ∀p ≥ 1, we deduce that FλGλ ∈ PK (X), ∀p ≥ 1
2. Taking account from the last item and Theorem 2.2 in [7] we infer that the following properties are equivalent:

• 1 ∈ ρ(FλGλ).

• I − FλGλ is invertible.

• I − FλGλ is injective.

The following proposition makes precise the injectivity properties.

Proposition 4.7. Let λ ∈ ρ(T1,M1) ∩ ρ(T4,M4), then the operator I − FλGλ is injective.
♦

Proof. Let λ ∈ ρ(T1,M1) ∩ ρ(T4,M4) and h ∈ ker(I − FλGλ). Then we will solve the following equation:

(I − FλGλ)h = 0.

The explicit expression of Fλ and Gλ and their properties yield that to solve the equation(
Tm4 − λM4 − (k21 − λM3)(T1 − λM1)−1(k12 − λM2)

)
h = 0.

Since λ ∈ ρ(T1,M1) ∩ ρ(T4,M4) and the use of Remark 3.1 in [10] assert that λ ∈ ρ(T1,M1) ∩ ρ(T4,M4) ∩
ρ
([

T4 − (k21 −λM3)(T1 −λM1)−1(k12 −λM2)
]
,M4

)
. That is Tm4 −λM4 − (k21 −λM3)(T1 −λM1)−1(k12 −λM2)

is injective and so h = 0. Hence, this argument yields the injectivity of the desert operator. �

Remark 4.8. 1. By Remark 4.6 and Theorem 3.7, allows us to deduce that the matrix operator pencil (AH−λM)
is invertible with bounded inverse.

2. By replacing the operator matrix AH by A0 i.e (T1 and T2 are nothing else the streaming operators with
vacuum boundaries conditions), we obtain Kλ,M1 = Lλ,M4 = 0 and B = C = 0. Then, Fλ = Fλ,d and
Gλ = Gλ,d. Hence, by Remark 4.6 and Proposition 4.7, we get 1 ∈ ρ(Fλ,dGλ,d). Furthermore we deduce that
the matrix operator pencil (A0 − λM) is invertible with bounded inverse.
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We close this section with the precise picture of the essential spectra of two-group transport operators
pencils with non-diagonal domain.

Theorem 4.9. For λ ∈ ρ(T1,M1) ∩ ρ(T4,M4), if the operators M2 and M3 are Fredholm perturbations, K12 and
K21 are regular operators and we assume that H12 and H21 are strictly singular operators on Xp for p > 1. Then,

σe,k(AH,M) = σe,k(T1,M1) ∪ σe,k(T4,M4)

= {λ ∈ C such that Reλ ≤ −min(
λ∗1
µ∗1
,
λ∗4
µ∗4

)}, k = 4, 5, l, r.

♦

Proof. Let λ ∈ ρ(T1,M1)∩ ρ(T4,M4). Lemma 4.2, Remark 4.6, Theorem 2.6, Proposition 4.7 and Remark
4.8 assert that λ ∈ ρ(T1,M1) ∩ ρ(T4,M4) ∩ ρ(AH,M) ∩ ρ(A0,M)
and

(AH − λM)−1
− (A0 − λM)−1

∈ S(Xp), p > 1

Consequently, Theorem 3.10 reveals that

σe,k(AH − λM) = σe,k(A0 − λM) = σe,k(T1,M1) ∪ σe,k(T4,M4), ∀ k ∈ {4, r, l}.

And Theorem 3.2 in [11] shows that

σe,4(T1,M1) = {λ ∈ C such that Reλ ≤ −
λ∗1
µ∗1

)},

and

σe,4(T4,M4) = {λ ∈ C such that Reλ ≤ −
λ∗4
µ∗4

)}.

Consequently, Eqs. (6) and (7) amounts that

σe,r(T1,M1) = σe,l(T1,M1) = σe,4(T1,M1),

and
σe,r(T4,M4) = σe,l(T4,M4) = σe,4(T4,M4).

Therefore, we get

σe,k(AH,M) = {λ ∈ C such that Reλ ≤ −min(
λ∗1
µ∗1
,
λ∗4
µ∗4

)}, ∀ k ∈ {4, l, r}.

�

Conclusion: Sufficient conditions are reduced to the study of invertibility conditions of unbounded
operator matrix pencil and this study is applied to the new investigation of spectral properties of matrix
operator pencil with non-diagonal domain( see Theorem 3.10 and 3.11) in a fast manner of computation.
Such a result exploit the resolvent expression involving an elegant use of the notion of Fredholm type
properties of 2 × 2 operator matrix (see Theorem 2.6)and pursue our alternative approach of studying
the essential spectra of non maximal operator matrix pencil given in [8, 11, 12, 25]. Finally, under less
hypotheses, sufficient conditions in terms of collision operators assuring the stability of some essential
spectra of unbounded operator matrices pencils with non-diagonal domain obtained in [11, 25].
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