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Abstract. In this article, we establish certain sufficient conditions to show the existence of solutions of
a fractional differential equation with the ¢-Riemann-Liouville and ¢-Caputo fractional derivative in a
special Banach space. Our approach is based on fixed point theorems for Meir-Keeler condensing operators
via measure of non-compactness. Also an example is given to illustrate our approach..

1. Introduction

The theoretical study of fractional differential equations and inclusions has recently acquired great
importance in applied mathematics and the modeling of many phenomena in various sciences. Let us

quote for example [6, 12, 13, 17-19, 22]. The monographs [15, 20, 21, 24, 27] contain basic concepts and
theory in fractional differential equations and fractional calculus.

Recently, excellent works has been done to study fractional differential equations with various conditions

which resides in the existence and uniqueness theorem by involving various fractional derivatives [1, 2, §,
9,11, 14, 23, 25].

In [26] there are new concepts of the fractional integral and the fractional derivative. Many fractional

differential equations solved over Banach spaces using these new concepts and certain basic tools from
functional analysis, we mention for example [7, 16].

We consider, in this work, the following fractional differential equation

DI COPOYY(r) = f(r, y(r), DPy(r), 7€ (O,L],
() 1§ WepPoyy(0%) =g,
y(0)=b,

where "D (resp.cDF?) denotes the left-sided ¢-Riemann-Liouville (resp. ¢-Caputo) fractional deriva-
tive, 0 <a <1,0 < B <1witha+ g > 1. The operator S(()l:“)’q) denotes the left-sided ¢- Riemann-Liouville
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fractional integral, E is a Banach space with the norm ||.||,a,b € E, f : (0,L] X E X E — E a function satisfying
some specified conditions (see, section 3) and ¢ € C'([0, L], R") satisfies ¢’(r) > 0, for all r € [0, L].

The present work is organized as follows: to make the reader understand our problem, we give in
section 2 some definitions, lemmas and basic results. Next, in the section 3, we present our main results
using a new method to show the existence of solutions to the problem (P). Finally an example to reinforce
our work in the section 4

2. Background and basic results

In this section, we introduce some definitions and results that are very useful in this work.
Let C([0, L], E) be the space of E-valued continuous functions on [0, L] endowed with the uniform norm

topology
lIxlleo = supf{llx(r)ll, r € [0, L]}.

Let Cy,([0, L], E) and Cﬁ ¢([O, L], E) two Banach spaces of functions defined as follows:
Ca0([0,L],E) = {w € C((0,L],E) : li%l(w(r) — w(0))'™*w(r) exists and finite},

with the norm

llwllc,,, = sup (¢(r) = PO llw()ll,

re[0,L]

and
Ci@([O, LLE)={w:[0,L] > E: w € C([0,L],E) and “DF®w € Cq([0,L], E)},

with the norm

llewlles = sup [lw(r)ll + sup (p(r) - $(0)' D P ().
ap re[0,L] re[0,L]

We begin with some definitions from the theory of fractional calculus. For all > -1 and s,r €
[0, L] with 7 > s, we pose 1,(,5) = (P(r) — P(s))™.

Definition 2.1. [15]. Let T be the gamma function, & a non-negative real number and 5 € C*((0, L], E).

(i) We recall that the ¢-Riemann- Liouwville fractional integral of order & > 0 of 0 is given by

IP6(r) = f @' (S)e_1(r, 5)5(s)ds,

T()

(ii) Let 0 < a < 1. The ¢-Riemann- Liouville fractional derivative of order & of the function 6 is given as

e Ed s _ 1 alr .
Dy o(r) = —qb’(r)F(1 5 (L ¢ (s)lp_g(r,s)é(s)ds),

(iii) Let 0 < a < 1. The ¢-Caputo fractional derivative of order & of the function 6 is given as

caneP _ 1 " ’
Z)O+ o(r) = Ta-9 ([) Y_g(1,5)0 (s)ds).
Lemma 2.2. [15, 26] Let &, C € IR;,. Then we have:

~&, I'(C
1 \soﬂ)lpc,l(r, 0) = r(é(—?ol//acfl(r/ 0).
2. If0 < & <1, then "D e a(r, 0) =
3. IfC > 1, then C.Z)gfpll{—l(r/ 0) F(C g) lybC - 1(1’ 0)
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Lemma2.3. [9] Let (,&, w > 0. Thus
T
f (r —s)* 1t e ds < Cr 7t
0

where

oo ((1 +L1L+ /O
@

max{1,2'7¢}.
Remark 2.4. Under the data of the previous lemma, the inequality that follows is also valid

f V @' ()1 (r,8) 1 (r,0)e V10 ds < Cpe_4(r,0).
0

Let us now give the definition of the measure of non-compactness in the sense of Kuratowski and its
properties. For all G € E, we denote by S,(G) the set of all bounded subsets of G.

Definition 2.5. [4, 5] Let D € Sy(E). The Kuratowski measure of non-compactness 9 of the subset D is defined as
follows:

9(D) = infl{e > 0 : Q admits a finite cover by sets of diameter < e}.
Lemma 2.6. [4, 5] Let A, B € Sy(E). The following properties hold:
(i1) S(A) = 0 if and only if A is relatively compact,
(ir) S(A) = S(A), where A denotes the closure of A,
(iz) (A + B) < 3(A) + 3(B),
(i) A C Bimplies y(A) < y(B),
(i5) 9(a.A) = ||al|.9(A) foralla € E,
(ig) S({a} UA) =3(A) foralla e E,
(i) 3(A) = 9(Conv(A)), where Conv(A) is the smallest convex that contains A.
Lemma 2.7. [7] Let D € Sy(E) and € > 0. Then, there is a sequence {n}nen C D, such that
I(D) <29({pn,n € N}) + ¢.

Lemma 2.8. [10] If D is a equicontinuous and bounded subset of C([a, b, E), then 9(D(.)) € C([a, b], R*)

b b
9c(D) = max (D)), s({ f w(r)dr:weD})s f (D(r)dr,

where D(r) = {w(r) : w € D} and ¢ is the non-compactness measure on the space C([a, b], E).

Meir-Keeler has been introduced since 1969 the notion of Meir-Keeler contraction mapping in a metric
space. Most recently in 2015, the authors introduced the following definition and fixed point theorem.

Definition 2.9. [3] Let k be an arbitrary measure of non-compactness on E and G be a nonempty subset of E . Let A
be an operator from G to G. A is said Meir-Keeler condensing operator if

Ve >0, dk(e) > 0,VD € 55(G) : e < k(D) < ¢ + k = k(AD) < e.
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Theorem 2.10. [3] Let x be an arbitrary measure of non-compactness on E and G a closed, bounded and convex
subset of E. Let A be an operator from G to G, assume that A is a Meir-Keeler condensing operator and continuous,
then the set {w € G : A(w) = w} is nonempty and compact.

Lemma 2.11. Let y € C([0,L],E)and y € Ci , (p([O, L], E), then y is a solution of the problem

DR DY) = (), e O], O
DY) =4, 2
y(0) = b, 3)

if y satisfies the following integral equation,

rae1(r,0 S
Y =b+ Wrﬁwﬁ Z) ' F(B)ll‘(a)fo fo P OF @10l Dy (DTS @

Proof. Lety € Cﬁ o ([0, L], E) be a solution of (4), we have y(0) = b. Next, by applying “DF* to both sides of
(4), we get

e W0 1 (7
Dy = B2 o [ Oty ®

Applying 317% to both sides of (5) and utilizing Lemma 2.2, we get

SEICDINY0) = a+ 3y y0)

By taking r tends to 0, we get (2) [

3. Existence of the solutions
We first put the following hypotheses:
(H;) The function f : (0,L] X E X E — E is continuous and for all x, y,u,v € E and r € (0, L]:
f(rx, y) = f(r,u,0)ll < Allx = ull + Y1-2(r, 0)Blly — o,

where A, B € R*.

(Hy) Forre (0,L]and x,y € E,
£, x, PNl < a@)llxll + Pa(r, 0)e= " “Ob(r) Iyl
where 6 > 0,A > 1 —a and a(.), b(.) : [0, 00) = R* are continuous functions,

(H3) Thereexists two functionss, j € C([0, L], R*) such that for each nonempty, bounded set 3 C Ci ¢([0, L], E),

S(f(r, Q(r),° Z)ﬁ"PQ(r))) < 1(r)S(Q(r) + P1-a(r, O)](r)S(CZ)ﬁ'¢’Q(V)), forallr € (0,L],

and
4(F(L) + ¢1-a(L, 0° DPPE(L)) < 1,

where Q(r) = {y(r) : y € Q}, “OPPQ(r) = {CDPPy(r) : y € Q) and

1 7 S , ,
F@r) = Wfo f(; ' ()" (T)Yp-1 (7, 8)Pa-1(s, 7) [1(7) + j(1)] dds, r € (0,L].
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(Haq)
T+ B+ 1) [baC + a1 (L, 0)] + Ta + 1) [a"9pra(L, 0) + b (ct + P)CPasp1(L, 0)]
Ia+DI(a+p+1)

<1,
where a* = Supo ) a(r)and b* = Supjo 1 b(r).
We define the operator N : Ci’d)([O, L],E) — Ci (P([O, L],E) by

alpﬁ+a—1 (7, 0)
I'B+a

1 7 S ) ) C ,
’ F(ﬁ)r«x)fo fo &' ()¢ (D1, 9)ac1(5, T (T, y(1),S D y(0))deds,

Ny(r)=b+

and the operator “DF?N : C, ([0, L], E) = Ca([0,L], E) by

c s _ all)a—l (7’, O)
(DN = =

1 d ,
’ c pbd
T fo O (5)Pa-1(r,5) f(5, Y(5),* Dy (s))ds.
The theorem below is the main result. Let
— S .
B={yeC,,(0,LLE): ||y||cﬁ'(p <R},

where R is a strictly positive real number.

Theorem 3.1. Suppose that the conditions (Hy) — (Hy) are valid. If

(Hs)

l< IFNa+DI(a+p+1)
R T(a+p+DIbIC(a +1) + allall] + T'(a + Dllall(e + B)¢p+a-1(L, 0)
Lo+ B+ 1) [1aC + a1 (L, 0)] + Ta + 1) [a'Ypra(L, 0) + b (c + B)CPasp1(L, 0)]
- I(a + B+ D IbIT(a + 1) + allall] + T(a + Dllall(a + B)¢p+a-1(L, 0)

is valid. Then the problem (P) has at least one solution.

Proof. From the definition of the operator N and Lemma 2.11, we see that the fixed points of N are solutions
of problem (P). For this reason, it suffices to verify the axioms of Theorem 2.10, it is done in four steps.

First step. We start to prove that N is bounded. Let y € Ci ) q)([O, L], E), from (H,) it is easy to deduce that
Ny e Ci¢([0, L],E). Using (Hz) and Lemma 2.2, forall y € B, = {y € Ci,q)([O, L],E): ||y||cg <glandr € (0,L]
we get :

llallp+a-1(r, 0)

INYOI < 11+ s

+W fo fo & ()6 (W1 (1, s (5, DILF(T, y(0) DHy(0)ldeds

lgpear L) ap
< b+ 2 e el [ 0O @ s

b* 7 S
1"(04)18(‘[3)‘f0 j(; ¢ ()P (O Pp-1 (7, 8)Pa-1(s, DPasa-1(t, 0V Vdrds.

+
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So,
lallppra-1(L,0)  a"pppia(l,0)  b'pCiPaip-1(L,0)
Nyl <+ =R S ey =M 6)
And we have also
ey lall | ¥1e0) (7 o 80
914, 00D Ny < s + 2 [ a5, (9, Dyl

lall @' pp1-a(r,0) (T,
= F(a)+ (@) j(;(P(S)lPal(?’,S)ds

b* o _a(r, r
+ W]}T)(ro) j; ¢'(S)¢a—1(715)¢A+a_1(s, O)e_m’b](s’ods,

So,

lall , @pYr(L,0)  b'pC _
T T+1) = T@

FDHN)yle,, <

where C = max{1,2""*|T(a + A)[1 + (a + A)(a + A + 1)/a]o~ @D,
From (6) and (7), we get
INYllgs <M =My +M,.

Second step. We prove that N is continuous. Let {y,},en converges to y in Ci ¢([O, L],E) and € > 0.
Hypothesis (H;) assume that there exists m € IN such that, for all n > m and r € (0, L], we have

IFa+DI'(a+p+1)
T(a+ B+ D)L, 0) + T(@ + Darp(L,0)

1, yn(r),S DP2y(r)) = £, y(r), DFPy(r)l < (8)

We have then
b, ey _ 1
INY() = Nyl + $1-a(r, OICDPON)yu(r) — CDPON)y(r)ll < T@I(P)
xfo fo ¢ 60 (Y1, a1 (5, DIF( YD), DPPy(0) = (3, y(0), D y(0) lldds

'7[1170((7’/ 0)

T(a) j: le(s)‘/’a—l(?’/ (S, yals),f Z)ﬁ’¢yn(s)) - f(s,y(s),f Z)ﬁ’¢y(s))l|d5.

From (8), we conclude that
dneIN,Vn > m: [Ny, — Ny||cﬁ <e.
ap

Third step. We prove that NB is equicontinuous for all bounded subset B of Ci (P([O,L],E), let B, be

the subset which was previously defined. It suffices to prove that NB, and (“DF*N)B,, are equicontinuous
respectively in C([0, L], E) and in C,, ([0, L], E). Let y € B, and r1, 72 € (0, L] with r; < r,. First of all, we have

lall (asp-1(r2, 0) = Ysp-1(r1, 0))
I'(a+p)

+m fo 1 fo & )6 (Ot (r1,5) = Pt (12, ) an (s, DIF (T YD), Dy () deds

INy(r2) = Ny(rll <

+m frl 2 fo &' (5" (O Pp-1(r2, 8)Paa (s, DIIf (T, y(1),* D y(v))lldds
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§ [lal] (ll)a+/3—1(7’2, 0) - l,ba+ﬁ—1(7’1,0)) ap
a I'(a +p) F(a)l"(ﬁ)

xjo‘lj(; &' (5)¢ (T)[Wp-1(r1,8) — Yp-1(r2, 8)|[ e (s, T)dTds +

b'p
L(@)I'(B)
X f f ' () Pp-1(r1,s) — Pp-1(r2,8)Pa-1(s, )Pa4a1(T, 0)e %10 drds

F(a)l"(ﬁ) f ()" (1) p-1(r2, $)a-1(s, T)dTds

F(a)F(ﬁ)f f & ()Pa-1(r2,)Yp-1(5, Do (7, 0)e™ Vs

_ lal (asp-10r2,0) = Parp1(r1,0) 4 pha(L, 0) + b*paassi(L, 0)
- I'(a+pB) Ia+DIrE+1)
X [2¢g(ra, 71) + Yp(r1, 0) — Pp(r1, 0)].

Taking r; tends towards r1, we get that, the last formula tends to zero. Then NB, is equicontinuous in
C([0,L], E).
And, we also have

[01-a(r2, O C DN (r2) — ¥1-a(r1, D NY )
—a 0
< fi (“ ) f & G ar(r,5) = Ba1(ray )G, y(5), Dy(s))lds

+ [Y1- a(f’zl 0) = P1-a(r1,
r(04)
a(r2,0
e 6102, s Y07 DY
a p"ljl—a(rl, O) " ,
< T]; ¢’ (5)[Ya-1(r1,5) — Ya-1(r2,5)]ds

b oy_o(ry,0) M
W;T()rl)j; ' (S)NWYa-1(r1,8) = Ya-1(r2,8)]Pas1-1(s,0)ds

o[W1_a(ra, 0) — W1_a(r1,0)] (M
L Tl (rzrza) Y1, 0)] fo & (a1 (r2,5)ds

+ b*P[¢1_a(7‘2, 0) - lljl—a(rl/
I'(a)
i —a\r2, 0 72
%cy()rz) f @' (8)a-1(r2,8)ds

n

b (72,0
W;T()rz) @' ($)a-1(r2, 8)Parr-1(s, 0)ds

otra(L,0) 4 b o (L, 0
<4 Py (1“(02 _-:__ 1)P¢A( ) (Ya(r1,0) = Pu(r2, 0) + Palra, 1))
. @ pa(L, 0) + b*phogsa-1(L, 0)
Ia+1)
L TPY1-a(L, 0) + bpya(L, 0)
IFa+1)

o) fo O’ (8)Pa-1(r2,9)lIf (s, y(s),S DOy (s))lids

ol fol O (8)Ya-1(r2,8)Pa+1-1(s,0)ds

) (1-a(r2,0) = P1-a(r1,0))

Eba (7’2/ 7’1)-
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Taking r, tends towards r1, we get that, the last inequality tends to zero. Then (“DP?N)B,, is equicontinuous
in Ca0([0, L], E).

Final step. We verify that N satisfies the assumptions of theorem 2.10.
First, we now show that N is defined from B to B, Indeed, for any y € B, by above condition (H,) and by
according to a little calculation, we have

INYOI + Y 1-a(r, ) CDP*N)y(@)
< L(a + B) [IbIIT(a + 1) + allall] + T(a + Dllallgp+a-1(L, 0)
- I'(a+ 1I'(a +p)
T(a+p+1) [baC +a'pr(L, 0)] + Ta + 1) [a"pealL, 0) + b (a + H)CPasp1(L, 0)]
" Ta+ D@+ g+ 1) R.

From (H4) and (Hs), we obtain
Vy€eB: ||Ny||C;s’¢ <R.

Thus, N is defined from B to B. We put D = conv(NB), where conv(NB) is the closure of the convex hull of
NB. Since ND c NB c D, then D is a subset closed, bounded and convex of B and N remains defined from
DtoD.

We denote by 9, the Kuratowski measure of non-compactness defined on any bounded subset of
Ci ¢)([O, L], E). We can easily show the following inequality

Y(a,0)(D) < sup 9(D(r)) + sup S(W1-a(7, 0)51)’3'¢’D(r)) < 28(4,9)(D), 9)
re[0,L] re(0,L]

D(r) = {y(r) : y € D} and “DPPD(r) = {<DPPy(r) : y € D}.

Next, it remains to prove that N is a Meir-Keeler condensing operator via the measure of non-compactness
Y(a,9), this is equivalent to demonstrating the following implication

Ve >0,3o(€) > 0: € < 8 (V) <€+ 0= 9,4 (NV) <g¢, forany V C D. (10)
Let € be a strictly positive real, V C D. From Lemmas 2.6,2.7,2.8, (H3), the inequality (9) and the previous

steps, we have that there exists a sequence {u,};”, C V such that

SINV() + S(W1-a(r, DNV () < 2

2 N ¢ o }
+ —F(ﬁ)r(a)s {fo f; O’ ()P (T)Pp-1(1, 8)Ya-1(s, T) f(T, un(7),” D" tn(7))d7ds, n € N

2U1_4(1,0 4
+ - ‘ablr(og _)8 {j; &' (S)Wa1(7,8) (s, tn(s),f Dﬁ’(plin(s))ds, ne ]N}

€ 2 " s , ’ c ,
=3t Wf f &' O (Y1 (1,91 (5, D8 { (1, 1), D (1)), n € N} duds

2p1_a(1,0) (" C
22D [ 698 (1G5 007 D9, m € N s

< =+ 48,0 (V) {F(L) + Y1-a(L, 0 DPF(L)}.

N| ™

From (9), we know that

Sap)(NV) < g + 49 ) (V) {F(L) + ¢1-a(L, 0F DPPE(L)}
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If

3ap)(NV) < = + 43,0 (V) {F(L) + ¢1-a(L, 0 D (L) <,

<
2
this implies that

1

8(E(L) + Y1-a(L, O DPOE(L))

S (V) <
so that implication (10) is fulfilled, we take

1-8(F(L) + ¢1-a(L, 0 DFPF(L))
8(F(L) + U1a(L, 0 DFPE(L))

So, N is a Meir-Keeler condensing operator via 9(,,¢), finally all the hypotheses of the theorem 2.10 are
fulfilled. Then, the problem (P) admits at least one solution. [J

4. Example

As an example of the use of the main result , we shall now consider the following fractional differential
equation

Ly by o _ Varctanr . 20 v

DYDY = gy () + SEa (D) reo (an
32 (CDIPYY(0*) = (1,0,...,0,...) (12)
y(0) = (1,0,...,0,...). (13)

where ¢(r) = £ arctanr. Let
E = {(]/1/ ]/2, e /]/n/ .. ) : Sup |]/n| < OO}/
n

with the norm ||ly|| = sup,, |y.|, then (E, ||.|[) consists a Banach space, by comparing with the (P), we notice
that

=5 and £, Y0 DY) = (FO, 10 DI, F0, 10 D), ),

Varctanr ‘

T 0y, n e N,
40(1 + T’Z)y (1’) * 40(]_ + 1"2)65 V2arctanr D y (7") ne

£, yu(n), D0y, (1) =

Clear that f : (0,1] X E X E — E is continuous and

Varctanr
40(1 + 7’2)85 V2arctanr

1F(, y() DIy < ——— Iyl + DIy ().

T 401 +7?)
Hence, (H;) and (Hb) are satisfied. Next, For any bounded set B C Ci (p([O, 1], E), we have

Cc
() + Varctanr Z)%"i’B(r).

c 3/¢ =
f(i’,B(?’), Dsi B(V)) 40(1 +r2)B 40(1 +r2)85\/§arctanr

Then

1 1 c %,O
WS(B(T)) + m&( Varctanr X° D (B(T’)),

since 4 (P(l) + (j)l_a(l,O)CZ)%'(PF(l)) <0.8043 < 1. So, (H3) holds. Finally, we check (Hy), we have C = 1, thus
1 I'(2.25) [0.5+1]+T(1.5)[1 +1.25] 0.1839 <
40 I'(1.5)I(2.25) T2

So, (Hy) holds. Therefore, Theorem 2 ensures that problem (11)-(13) has a solution.

S(f(r, B(r), Di*B(r)) <

1.
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