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Abstract. We consider the topological structure of the sublinear quasi-metrics in locally convex cones and
define the notion of a locally convex quasi-metric cone. The presence of upper bounded neighborhoods,
gives necessary and sufficient conditions for the quasi-metrizability of locally convex cones. In particular,
we investigate the boundedness and separatedness of locally convex quasi-metric cones and characterize
the metrizability of locally convex cones.

1. Introduction

The theory of locally convex cones carries a certain topological structure which generalizes the concept
of (ordered) topological vector spaces. In the similar way that the topology of a locally convex space is
defined by a family of seminorms, a locally convex topological structure on a cone can also be defined
through a family of sublinear quasi-metrics [1, Ch I, 5.6]. In this paper, we define the unit neighborhood of
a sublinear quasi-metric which leads to the notion of a locally convex quasi-metric cone topology. Then we
investigate the sublinear quasi-metrics induced by neighborhoods and discuss the quasi-metrizable locally
convex cones. Also, we study the boundedness and separatedness of locally convex quasi-metric cones
and present necessary and sufficient conditions for (quasi) metrizability of locally convex cones.

An ordered cone is a setP endowed with an addition (a, b) 7−→ a+b and a scalar multiplication (λ, a) 7−→ λa
for real numbers λ ≥ 0. The addition is supposed to be associative and commutative, there is a neutral
element 0 ∈ P, and for the scalar multiplication the usual associative and distributive properties hold, that
is, λ(µa) = (λµ)a, (λ + µ)a = λa + µa, λ(a + b) = λa + λb, 1a = a, 0a = 0 for all a, b ∈ P and λ, µ ≥ 0. In
addition, the cone P carries a (partial) order, i.e., a reflexive transitive relation ≤ that is compatible with the
algebraic operations, that is a ≤ b implies a + c ≤ b + c and λa ≤ λb for all a, b, c ∈ P and λ ≥ 0. For example,
the extended scalar field R = R ∪ {+∞} of real numbers is a preordered cone. We consider the usual order
and algebraic operations in R; in particular, λ +∞ = +∞ for all λ ∈ R, λ · (+∞) = +∞ for all λ > 0 and
0 · (+∞) = 0. In any cone P, equality is obviously such an order, hence all results about ordered cones apply
to cones without order structures as well.

Let (P,≤) be an ordered cone. An abstract neighborhood system in P is a subset V of positive elements
that is directed downward, closed for addition and multiplication by (strictly) positive scalars. If the all
elements ofP are bounded below, i.e., for every a ∈ P and v ∈ Vwe have 0 ≤ a+λv for some λ > 0, then (P,V)
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is called a full locally convex cone. The elements v of V define upper (lower) neighborhoods for the elements
of P by v(a) = {b ∈ P : b ≤ a + v} (respectively, (a)v = {b ∈ P : a ≤ b + v}), creating the upper, respectively
lower topologies on P. Their common refinement is called the symmetric topology. Finally, a locally convex
cone (P,V) is a subcone of a full locally convex cone, not necessarily containing the abstract neighborhood
systemV. Endowed with the neighborhood systemV = {ε ∈ R : ε > 0}, R is a full locally convex cone.

A collection U of convex sets of U ⊂ P2 is called a convex quasi-uniform structure, if the following
conditions hold:

(U1) 4 ⊂ U for all U ∈ U, 4 = {(a, a) : a ∈ P}.
(U2) For all U,V ∈ U there is W ∈ U such that W ⊆ U ∩ V.
(U3) λU ◦ µU ⊆ (λ + µ)U for all λ, µ > 0 and U ∈ U, where λU ◦ µU = {(a, b) ∈ P2 : ∃c ∈ P with (a, c) ∈

λU and (c, b) ∈ µU}.
(U4) λU ∈ U for all U ∈ U and λ > 0.

If (P,V) is a locally convex cone, then the collection of all sets ṽ ⊆ P2, where ṽ = {(a, b) : a ≤ b + v} for
all v ∈ V, defines a convex quasi-uniform structure on P. On the other hand, if a convex quasi-uniform
structure on a cone P has the extra property

(U5) for all a ∈ P and U ∈ U, there is some λ > 0 such that (0, a) ∈ λU,

then it leads to a full locally convex cone, including P as a subcone and induces the same convex quasi-
uniform structure [1, Ch I, 5.2].

2. Sublinear quasi-metrics, neighborhoods and quasi-metrizablity

Let P be a cone, P2 = P × P be the product cone with the pointwise addition and scalar multiplication
with non-negative scalars λ ≥ 0 and R+ := [0,+∞]. According to [1, Ch I, 5.6], the function d : P2

→ R+ is
called a sublinear quasi-metric, if it satisfies:

(M1) d(a, a) = 0 for all a ∈ P.
(M2) d(a, b) ≤ d(a, c) + d(c, b) for all a, b, c ∈ P.
(M3) d((a, b) + (a′, b′)) ≤ d(a, b) + d(a′, b′) for all a, b, a′, b′ ∈ P.
(M4) d(λ(a, b)) = λd(a, b) for all a, b ∈ P and λ ≥ 0.

A family of sublinear quasi-metrics (di)i∈I on P is called directed, if for every i, j ∈ I, there are k ∈ I and
λ > 0 such that max{di(a, b), d j(a, b)} ≤ λdk(a, b) for all a, b ∈ P.

Definition 2.1. Let P be a cone and (di)i∈I a directed family of sublinear quasi-metrics on P satisfying:

(M5) di(0, a) < +∞ for all a ∈ P and i ∈ I.

If for every finite subset F of I and λ > 0, we put

UλF = {(a, b) ∈ P2 : di(a, b) ≤ 1/λ for all i ∈ F}

and UI = {UλF : λ > 0 and F ⊂ I is finite}, then UI forms a convex quasi-uniform structure on P with
condition (U5) (cf. [1, Ch I, Proposition 5.7]).

For every finite set F ⊂ I and λ > 0,we set a ≤ b + vλF for elements a, b ∈ P if and only if (a, b) ∈ UλF and
putVI := {vλF : λ > 0 and F ⊂ I is finite}. Then according to [1, Ch I, 5.4], there exists a full cone P ⊕VI0

with abstract neighborhood system VI = {0} ⊕ VI, whose neighborhoods yield the same quasi-uniform
structure on P. The elements ofVI form a basis for VI in the following sense: For every a, b ∈ P and λ > 0,
a ≤ b + vλF implies that a ≤ b ⊕ vλF. The locally convex cone topology on P induced by VI is called the
locally convex cone generated by (di)i∈I and denoted by (P,VI). In particular, let d be a sublinear quasi-metric
on P satisfying (M5). If we define the unit neighborhood vd for all a, b ∈ P on P by

a ≤ b + vd if and only if d(a, b) ≤ 1

and putVd = {vλd : λ > 0}, thenVd induces a locally convex cone topology on P which is called the locally
convex quasi-metric cone generated by d and denoted by (P,Vd) (cf. [4, Definition 2.1]).
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We say that a locally convex cone (P,V) is quasi-metrizable if there is a sublinear quasi-metric on P
satisfying (M5) such that (P,V) is equivalent to the locally convex quasi-metric cone (P,Vd).

Remark 2.2. Suppose (E, p) is a semi-normed space with unit ball BE and let Conv(E) be the cone of all
non-empty convex subsets of E with the usual addition and scalar multiplication of sets. If we define the
function D : Conv(E)2

→ R+ for all A,B ∈ Conv(E) by

D(A,B) = inf{λ > 0 : A ⊂ B + λBE},

then clearly D satisfies (M1)-(M4). We note that D(A,B) := +∞, whenever {λ > 0 : A ⊂ B + λBE} = ∅.
For every A ∈ Conv(E), there is λ > 0 such that λBE ∩ A , ∅ so {0} ⊂ A + λBE, i.e., D satisfies (M5).

Thus (Conv(E),VD) is a locally convex quasi-metric cone, where VD = {vλD : λ > 0}. Via the embedding
x → {x} : E → Conv(E), we may consider E as a subcone of Conv(E) hence (E,VD) is also a locally convex
quasi-metric cone. We note that D({a}, {b}) = p(a − b) for all a, b ∈ E, consequently a ≤ b + vD if and only if
p(a − b) ≤ 1 so the lower, upper and symmetric topologies of (E,VD) are identical to the given topology of
(E, p) (cf. [9, 2.1 (c)]).

Example 2.3. Let Conv(R) be the cone of all non-empty convex subsets of R with the usual addition and
scalar multiplication of sets by non-negative scalars λ ≥ 0. We define the function D : Conv(R)2

→ R+ for
all A,B ∈ Conv(R) by

D(A,B) = inf{λ > 0 : A ⊂↓ B + λBR},

where ↓ B = {a ∈ R : a ≤ b for some b ∈ B}. Since A ⊂↓ A + λBR for all λ > 0 and A ∈ Conv(R), we have
D(A,A) = 0, i.e., (M1) holds. Let A,B,C ∈ Conv(R). If D(A,B) = +∞ or D(B,C) = +∞, then clearly (M2)
holds. If D(A,B) = λ and D(B,C) = µ for some λ, µ > 0, then A ⊂↓ B + λBR and B ⊂↓ C + µBR which
yields A ⊂↓ C + (λ + µ)BR, i.e., D(A,C) ≤ D(A,B) + D(B,C). The condition (M3) is similar to (M2) and (M4)
is trivial. For every A ∈ Conv(R), there is λ > 0 such that 0 ∈↓ A + λBR so D({0},A) < +∞, i.e., (M5) is also
satisfied for D. Thus (Conv(R),VD) is a locally convex quasi-metric cone. In particular, (Conv(R),VD) and
(Conv(R+),VD) are locally convex quasi metric cones.

We may considerR as a subcone of Conv(R) so (R,Vd) is also a locally convex quasi-metric cone, where

the sublinear quasi-metric d : R
2
→ R+ for all (x, y) ∈ R

2
is given by d(x, y) = D({x}, {y}), i.e.,

d(x, y) =

{
max {x − y, 0}, if y , +∞,

0, if y = +∞.

In particular, (R,Vd) and (R+,Vd) are locally convex quasi-metric cones.

If (P,V) is a locally convex cone then Vv = {λv : λ > 0} is a neighborhood system on P for all v ∈ V,
and (P,Vv) is again a locally convex cone [8, p. 13].

Proposition 2.4. If (P,V) is a locally convex cone and v ∈ V, then

(a) the function dv : P2
→ R+ defined by

dv(a, b) = inf{λ > 0 : a ≤ b + λv} for all (a, b) ∈ P2

is a sublinear quasi-metric on P satisfying (M5),
(b) (P,Vv) is quasi-metrizable.

Proof. (a) Since a ≤ a+λv for all a ∈ P and λ > 0,we have dv(a, a) = 0, i.e., (M1) holds. For (M2), let a, b, c ∈ P.
If dv(a, c) = +∞ or dv(c, b) = +∞ then clearly (M2) holds. If dv(a, c) = λ and dv(c, b) = µ for some λ, µ ≥ 0,
then a ≤ c + λv, c ≤ b + µv, so a ≤ b + (λ + µ)v, hence dv(a, b) ≤ dv(a, c) + dv(c, b). In a similar way, we can
verify (M3) and the condition (M4) is clear. Thus dv is a sublinear quasi-metric. Since every element a ∈ P
is bounded below, 0 ≤ a + λv for some λ > 0, hence dv(0, a) ≤ λ < +∞ i.e., dv satisfies (M5). For (b), we have
a ≤ b + vdv for elements a, b ∈ P if and only if a ≤ b + v, that is,Vv andVdv are equivalent to each other.
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We say that a sublinear quasi-metric is a sublinear metric, if it also satisfies:

(M6) d−1(a, b) = d(a, b) for all a, b ∈ P, where d−1(a, b) = d(b, a).
(M7) d(a, b) , 0 for a, b ∈ P if a , b.

If a sublinear metric d on P satisfies (M5) then (P,Vd) is called the locally convex metric cone generated
by d on P.

Proposition 2.5. If (P,Vd) is a locally convex quasi-metric cone and d(a, 0) < +∞ for all a ∈ P, then the function
ds : P2

→ R+ defined by
ds(a, b) = max{d(a, b), d−1(a, b)} for all (a, b) ∈ P2

is a sublinear quasi-metric on P satisfying (M5) and (P,Vds ) is a locally convex quasi-metric cone.

Proof. Clearly, ds satisfies (M1)-(M4), so it is a sublinear quasi-metric. By the assumption, for every a ∈ P,
there is λ > 0 such that d(a, 0) ≤ λ. On the other hand, by the condition (M5) for d, we have d(0, a) ≤ λ′ for
someλ′ > 0.Thus ds(0, a) ≤ max{λ, λ′} < +∞, so ds satisfies (M5) and (P,Vds ) is a locally convex quasi-metric
cone.

A locally convex cone (P,V) is called separated if ā = b̄ for a, b ∈ P implies a = b, where a is the closure
of {a} with respect to the lower topology [1, Ch I, 3.8]. We recall that according to the Proposition 3.9 in
[1], P is separated if and only if the symmetric topology is Hausdorff (equivalently the upper topology
is T0), i.e., as

= {a} for all a ∈ P, where as is the closure of {a} in the symmetric topology. The separating
families of linear mappings have been studied for polar (or weak) topologies in [3]-[7]. Here, we consider
the separating families of sublinear quasi-metrics and discuss the metrizability of locally convex cones. We
say that a family of sublinear quasi-metrics (di)i∈I on a cone P is separating if for all a, b ∈ Pwith a , b there
is i ∈ I such that ds

i (a, b) , 0.

Proposition 2.6. If P is a cone and (di)i∈I is a directed family of sublinear quasi-metrics on P satisfying (M5), then
(di)i∈I is separating if and only if (P,VI) is separated.

Proof. Let (P,VI) be separated and let a , b. The symmetric topology of P is Hausdorff by [1, Ch I,
Proposition 3.9], so there is a finite set F ⊂ I and λ > 0 such that a ≤ b + vλF but b � a + vλF , hence di(b, a) > λ
for some i ∈ F. For the converse, let a, b ∈ Pwith a , b. By the assumption, there is i ∈ I such that ds

i (a, b) , 0,
which implies that di(a, b) , 0 or di(b, a) , 0, i.e., a � b + vdi or b � a + vdi . That is, the upper topology of
(P,VI) is T0, so (P,VI) is separated by [1, Ch I, Proposition 3.9].

In particular, a sublinear quasi-metric d onP is separating, if for all a, b ∈ Pwith a , b we have ds(a, b) , 0,
i.e., if and only if ds satisfies in (M7). Hence:

Corollary 2.7. A locally convex quasi-metric cone (P,Vd) is separated if and only if (P,Vds ) is a locally convex
metric cone.

An element a ∈ P is called v-bounded if a ≤ λv for some λ > 0, and a is called bounded if it is v-bounded
for all v ∈ V [1, Ch I, 2.3]. If all elements of P are bounded, then they are bounded below with respect to
the symmetric topology. Thus the symmetric convex quasi-uniform structure defines a locally convex cone
topology as well. Let us denote this by (P,Vs), i.e., for a, b ∈ P and v ∈ V, we have a ≤ b + vs if and only if
a ≤ b + v and b ≤ a + v. By a simple verification, we notice that the upper, lower and symmetric topologies
of (P,Vs) coincide to the original symmetric topology [1, P. 35].

Remark 2.8. If (P,V) is a locally convex cone, then
(i) If 0 ∈ V, then (P,V) is equivalent to (P,V0), where V0 = {0}. Indeed, for v0 = 0, if a ≤ b + v0 for

a, b ∈ P then a ≤ b + v for all v ∈ V, i.e.,V0 is finer thanV, butV0 ⊂ V soV is equivalent toV0.
(ii) If the elements of P are bounded and 0 ∈ V, then (P,V) is separated if and only if P = {0}; for, we

have 0 ≤ a + v0 and a ≤ v0 for all a ∈ P, i.e., a ∈ 0
s

= {0}.
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Proposition 2.9. If (P,V) is a locally convex cone and v ∈ V is upper bounded, then

(a) (P,V) is equivalent to (P,Vv),
(b) if (P,V) is separated, then (P,Vv) is also separated.

Proof. (a) If 0 ∈ V, the assertion holds by Remark 2.8 (i). Let 0 < V. For every u ∈ V, there is a λ > 0 such
that 1

λv ≤ u, so the neighborhood systemVv is equivalent toV. Part (b) is clear by (a).

Theorem 2.10. A locally convex cone (P,V) is quasi-metrizable if and only if V contains an upper bounded
neighborhood.

Proof. If 0 ∈ V, then by Remark 2.8 (i),V is equivalent toV0 = {0}, butV0 is equivalent toVd0 by Proposition
2.4 (b), where d0 : P2

→ R+ for all (a, b) ∈ P2 is given by

d0(a, b) =

 0, if a ≤ b,

+∞, if a � b,

i.e., (P,V) is quasi-metrizable. Suppose 0 < V and let v ∈ V be upper bounded. By Proposition 2.9
(a), the neighborhood system V is equivalent to Vv, so (P,V) is quasi-metrizable by Proposition 2.4 (b).
Conversely, let (P,V) be quasi-metrizable and let d be a sublinear quasi-metric on P with condition (M5)
such that (P,V) is equivalent to (P,Vd). Fix v ∈ V. Then for every u ∈ V there exist λ, µ > 0 such that
v ≤ µ vd ≤ λu, i.e., v is upper bounded.

Proposition 2.11. If (P,V) is a locally convex cone and v ∈ V, then

(a) the function ds
v : P2

→ R+ defined by

ds
v(a, b) = max{dv(a, b), d−1

v (a, b)} for all (a, b) ∈ P2

is a sublinear quasi-metric on P satisfying (M6),
(b) ds

v satisfies (M5) if and only if the elements of P are bounded,
(c) (P,Vds

v
) is a locally convex metric cone if and only if (P,Vv) is separated and the elements of P are bounded,

(d) (P,Vv) is metrizable if and only if it is separated and dv = d−1
v .

Proof. The proof of (a) is similar to Proposition 2.4 (a). For (b), if b ∈ P is bounded, then there is λ > 0
such that 0 ≤ b + λv, b ≤ λv which yields ds

v(0, b) ≤ λ, i.e., ds
v satisfies (M5). Conversely, if ds

v satisfies (M5)
then by a similar verification the elements of P are bounded. By Proposition 2.4 (b), (P,Vv) is equivalent
to (P,Vdv ), so part (c) follows from (b) and Corollary 2.7. For (d), if (P,Vv) is metrizable, then obviously it
is separated and dv = d−1

v . For the converse, if v = 0 then (P,V0) is equivalent to (P,Vds
0
) by Proposition 2.4

(b), where the sublinear metric ds
0 : P2

→ R+ for all (a, b) ∈ P2 is given by

ds
0(a, b) =

 0, if a = b,

+∞, if a , b,

i.e., (P,V0) is metrizable. Let v , 0 and a, b ∈ P with a , b. If ds
v(a, b) = 0 then dv(a, b) = dv(b, a) = 0, i.e.,

a ≤ b + λv and b ≤ a + λv for all λ > 0 which yields av
= b

v
where av is the closure of a in the lower topology

induced byVv, hence a = b; since (P,Vv) is separated, i.e., ds
v satisfies (M7). Thus (P,Vdv

) is a locally convex
metric cone, since dv = d−1

v so (P,Vv) is metrizable.

Theorem 2.12. A locally convex cone (P,V) is metrizable if and only if P is separated and V contains an upper
bounded neighborhood v with dv = d−1

v .

Proof. Suppose (P,V) is separated and let dv = d−1
v . If 0 ∈ V then (P,V) is metrizable by Remark 2.8 (i)

and Proposition 2.11 (d). Suppose 0 < V and let v ∈ V be upper bounded. Then (P,V) is equivalent to
(P,Vv) by Proposition 2.9 (a), so (P,V) is metrizable by Proposition 2.11 (d). The converse evidently holds
by Theorem 2.10.
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As a consequence of Theorem 2.12 and Proposition 2.11, we have:

Corollary 2.13. If (P,V) is separated and the elements of P are bounded, then (P,Vs) is metrizable if and only if
V contains an upper bounded neighborhood.

Example 2.14. (i) With the sublinear quasi metric d introduced in Example 2.3, the locally convex cone
(R,V) is quasi-metrizable, whereV = {ε ∈ R : ε > 0}; indeed, for every ε > 0, we have a ≤ b + ε for a, b ∈ R
if and only if d(a, b) ≤ ε, i.e., V is equivalent toVd. In particular, (R,V), (R+,V) are equivalent to (R,Vd)
and (R+,Vd), respectively hence they are quasi-metrizable. We note that d does not satisfies (M6), (M7); so
these cones are not metrizable.

The sublinear function ds : R
2
→ R+ is given by

ds(x, y) =


|x − y|, if x, y , +∞,

0, if x, y = +∞,

+∞, if x = +∞ or y = +∞,

which satisfies (M7) so (R,Vds ) is a locally convex metric cone. We note that ds(x, y) = |x − y| for all x, y ∈ R
so (R,Vds ) and (R+,Vds ) coincide to the usual metric space on R and R+.

(ii) With the singleton neighborhood systemV0 = {0}, the subcone R+ of R is also a full locally convex
cone and the symmetric topology of (R+,V0) is the discrete topology on R+ [9, Example 2.1 (b)]. With the
sublinear quasi-metric d0 in Theorem 2.10, (R+,Vd0 ) is a locally convex quasi-metric cone; indeed, for v0 = 0
and λ > 0, we have a ≤ b + λv0 if and only if d0(a, b) = 0 ≤ 1/λ, i.e., a ≤ b + vλd0 . That is,V0 is equivalent to

Vd0 . The function ds
0 : R

2
+ → R+ is given by

ds
0(x, y) =

{
0, if x = y,
+∞, if x , y,

which induces the discrete topology on R+.

Example 2.15. For 1 ≤ p < +∞, we define the `p-norm of a sequence x = (xi)i∈N in R by

||x||p =

 (
∑
∞

i=1 |xi|
p)

1
p , if x ⊂ R,

+∞, if ∃i ∈N, xi = +∞,

and for p = +∞ as

||x||∞ =

 supi∈N |xi|, if x ⊂ R,

+∞, if ∃i ∈N, xi = ∞.

If we set `p(R) := {(xi)i∈N ⊂ R : ||(x−i )i∈N||p < +∞}, then with the following operation `p(R) is a cone:

x + y = (xi + yi)i∈N, λx = (λxi)i∈N for all x, y ∈ `p(R) and λ > 0

(cf. [10, Ch I, 1.4 (f)]). We define the function dp : `p(R)×`p(R)→ R+ for all x, y ∈ `p(R), x = (xi)i∈N, y = (yi)i∈N
by

dp(x, y) =


||((xi − yi)+)i∈N||p , if ∃i ∈N, yi < +∞,

0, if ∀i ∈N, yi = +∞,

+∞, if ∃i ∈N, xi = +∞.



Z. Yousefi, M.R. Motallebi / Filomat 36:3 (2022), 721–728 727

It is easy to verify that dp satisfies (M1)-(M4). For every x ∈ `p(R), x = (xi)i∈N, we have

dp(0, x) = ||(0 − xi)+)i∈N||p = ||(x−i )i∈N||p < +∞,

so dp also satisfies (M5). Thus (`p(R),Vdp ) is a locally convex quasi-metric cone.

The function ds
p : `p(R) × `p(R)→ R

+
for all x, y ∈ `p(R), x = (xi)i∈N and y = (yi)i∈N is given by

ds
p(x, y) =


||x − y||p , if x, y ⊂ R,
0 , if ∀i ∈N, xi = yi = +∞,

+∞, if ∃i ∈N, xi = +∞ or yi = +∞

and satisfies (M7) so (`p(R),Vds
p
) is a locally convex metric cone. In particular, (`p(R),Vds

p
) and (`p(R+),Vds

p
)

are identical to the usual spaces `p(R) and `p(R+).

We note that a locally convex cone is not necessary to be quasi-metrizable:

Example 2.16. Let P be the cone of all sequences x = (xi)i∈N in R with the pointwise operations of addition
and scalar multiplication by non-negative scalars λ ≥ 0. For every n ∈N, we set

vn := (εi)i∈N ∈ P, where εi =

 1
n , i = 1, 2, ...,n,

0, otherwise,

andVN := {vn : n ∈N}. For elements x, y ∈ P and n ∈N, we define

x ≤ y + vn if xi ≤ yi +
1
n

for i = 1, 2, ...,n.

If we set Un = {(x, y) ∈ P2 : x ≤ y + vn} for all n ∈ N then UN = {Un : n ∈ N} forms a convex quasi-uniform
structure on P with condition (U5); indeed, for every x ∈ P, x = (xi)i∈N and n ∈ N, we have 0 ≤ x + λvn,
where λ = max{|xi| : i = 1, 2, ...,n}, i.e., (0, x) ∈ λUn. Thus according to [1, Ch I, 5.4], there exists a full
cone P ⊕ VN0 with abstract neighborhood system VN = {0} ⊕ VN, whose neighborhoods yield the same
quasi-uniform structure on P. The elements of VN form a basis for VN in the following sense: For every
a, b ∈ P and n ∈ N, a ≤ b + vn implies that a ≤ b ⊕ vn. Therefore (P,VN) is a locally convex cone with the
countable baseVN (cf. [2, Example 2.3.25]).

We claim thatVn does not have any upper bounded neighborhood and (P,VN) is not quasi-metrizable.
For every n ∈N, if we choose x, y ∈ P, x = (xi)i∈N, y = (yi)i∈N such that

xi =

{
2, for i = n + 1,
0, for i , n + 1, and yi =

{
1, for i = n + 1,
0, for i , n + 1,

then

x ≤ y + vn but x � y + vn+1 (1)

i.e., vn is not upper bounded. Now, assume to the contrary that (P,VN) is quasi-metrizable and let d be a
sublinear quasi-metric on P satisfying (M5) such thatVN is equivalent toVd. If we choose n ∈N such that
vn ≤ vd, then (1) yields 0 < d(x, y) ≤ 1. On the other hand, for every λ > 0, we have

λx ≤ λy + vn ≤ λy + vd,

so d(λ(x, y) ≤ 1. Thus λd(x, y) , d(λ(x, y)) for all λ ≥ 2
d(x,y) which is a contradiction.
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