Some Studies on Partial Isometry in Rings with Involution

Xinyu Yang ${ }^{\text {a }}$, Zhiyong Fan ${ }^{\text {b }}$, Wei Junchao ${ }^{\text {a }}$
${ }^{a}$ School of Mathematical Sciences, Yangzhou University ,Yangzhou,Jiangsu 225002,P.R.China
${ }^{b}$ Jiaozuo normal college, Jiaozuo, Henan Province, 454000, P. R. China

Abstract

This paper mainly gives some sufficient and necessary conditions for an element in a ring with involution to be partial isometry and strongly EP element by using some invertible elements and solutions of certain equations.

1. Introduction

Let R be an associative ring with 1. An element $a \in R$ is said to be group invertible if there is $a^{\#} \in R$ satisfying the following conditions:

$$
a a^{\#} a=a, \quad a^{\#} a a^{\#}=a, \quad a a^{\#}=a^{\#} a .
$$

If $a^{\#}$ exists, it is unique. Denote by $R^{\#}$ the set of group invertible elements of R [1].
An involution $*: a \longmapsto a^{*}$ in R is an anti-isomorphism of degree 2 , that is,

$$
\left(a^{*}\right)^{*}=a, \quad(a+b)^{*}=a^{*}+b^{*}, \quad(a b)^{*}=b^{*} a^{*} .
$$

An element $a^{+} \in R$ is called the Moore-Penrose inverse (or MP-inverse) of a [5], if

$$
a a^{+} a=a, \quad a^{+} a a^{+}=a^{+}, \quad\left(a a^{+}\right)^{*}=a a^{+}, \quad\left(a^{+} a\right)^{*}=a^{+} a .
$$

Also, if a^{+}exists, it is unique. Denote by R^{+}the set of all MP-invertible elements of R [5].
If $a \in R^{\#} \cap R^{+}$and $a^{\#}=a^{+}$, then a is called an $E P$ element [2]. Denote by $R^{E P}$ the set of all $E P$ elements of R.

If $a=a a^{*} a$, then a is called a partial isometry element of $R[4]$. Denote by $R^{P I}$ the set of all partial isometry elements of R.

If $a \in R^{E P} \cap R^{P I}$, then a is called a strongly partial isometry element. Denote by $R^{S E P}$ the set of all strongly partial isometry elements of R.

In [9], by discussing the solutions of some equations in a fixed set, we give some new characterizations of $E P$ element. In [8], $E P$ elements are studies by using principally one-sided ideals and annihilators; More results on $E P$ elements can be founded in $[3,4]$.

In $[4,6,7]$, many characterizations of partial isometry elements are given. Motivated by the above results, this paper is aimed to provide some equivalent conditions for an element a to be PI by using some invertible elements and the solutions of certain equations.

[^0]
2. Partial isometry and construction of EP elements

Lemma 2.1. Let $a \in R^{\#} \cap R^{+}$. Then
(1) $a^{*} a^{+} a \in R^{E P}$ and $\left(a^{*} a^{+} a\right)^{+}=\left(a^{\#}\right)^{*} a^{+} a$.
(2) $a^{+} a^{+} a \in R^{E P}$ and $\left(a^{+} a^{+} a\right)^{+}=\left(a^{\#}\right)^{*} a^{*} a$.

Proof. (1) Noting that $a^{*}\left(a^{\#}\right)^{*} a^{+}=a^{+}=a^{+} a^{*}\left(a^{\#}\right)^{*}$ and $a^{+} a\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a a^{+}$. Then

$$
\begin{gathered}
\left(a^{*} a^{+} a\right)\left(\left(a^{\#}\right)^{*} a^{+} a\right)\left(a^{*} a^{+} a\right)=a^{*}\left(a^{\#}\right)^{*} a^{+} a a^{*} a^{+} a=a^{*} a^{+} a ; \\
\left(\left(a^{\#}\right)^{*} a^{+} a\right)\left(a^{*} a^{+} a\right)\left(\left(a^{\#}\right)^{*} a^{+} a\right)=\left(a^{\#}\right)^{*} a^{*} a^{+} a\left(a^{\#}\right)^{*} a^{+} a=\left(a^{\#}\right)^{*} a^{+} a ; \\
{\left[\left(a^{*} a^{+} a\right)\left(\left(a^{\#}\right)^{*} a^{+} a\right)\right]^{*}=\left[a^{*}\left(a^{\#}\right)^{*} a^{+} a\right]^{*}=\left(a^{+} a\right)^{*}=a^{+} a=\left(a^{*} a^{+} a\right)\left(\left(a^{\#}\right)^{*} a^{+} a\right) ;} \\
{\left[\left(\left(a^{\#}\right)^{*} a^{+} a\right)\left(a^{*} a^{+} a\right)\right]^{*}=\left[\left(a^{\#}\right)^{*} a^{*} a^{+} a\right]^{*}=\left(a^{+} a\right)^{*}=a^{+} a=\left(\left(a^{\#}\right)^{*} a^{+} a\right)\left(a^{*} a^{+} a\right) ;} \\
\left(a^{*} a^{+} a\right)\left(\left(a^{\#}\right)^{*} a^{+} a\right)=a^{+} a=\left(\left(a^{\#}\right)^{*} a^{+} a\right)\left(a^{*} a^{+} a\right) .
\end{gathered}
$$

Hence $a^{*} a^{+} a \in R^{E P}$ and $\left(a^{*} a^{+} a\right)^{+}=\left(a^{\#}\right)^{*} a^{+} a$.
Similarly, we can show (2).
Lemma 2.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if $a^{*} a^{+} a=a^{+} a^{+} a$.
Proof. \Longrightarrow It is evident because $a^{*}=a^{+}$.
\Longleftarrow Assume that $a^{*} a^{+} a=a^{+} a^{+} a$. Post-multiplying the equality by $\left(a a^{\#}\right)^{*}$, one gets $a^{*}=a^{+}$. Thus $a \in R^{P I}$.
Lemma 2.1 and Lemma 2.2 imply the following theorem.
Theorem 2.3. Let $a \in R^{\#} \cap R^{+}$, then the following conclusions are equivalent.

1) $a \in R^{P I}$;
2) $\left(a^{\#}\right)^{*} a^{+} a=\left(a^{\#}\right)^{*} a^{*} a$;
3) $\left(a^{*} a^{+} a\right)^{+}=\left(a^{\#}\right)^{*} a^{*} a$;
4) $\left(a^{+} a^{+} a\right)^{+}=\left(a^{\#}\right)^{*} a^{+} a$.

It is well known that $a \in R^{+}$is partial isometry if and only if $a=\left(a^{+}\right)^{*}$. Hence Lemma 2.2 also implies the following corollary.
Corollary 2.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if $a^{*} a^{+}\left(a^{+}\right)^{*}=a^{+} a^{+}\left(a^{+}\right)^{*}$.
The following lemma can be obtained by routine verification.
Lemma 2.5. Let $a \in R^{\#} \cap R^{+}$. Then
(1) $a^{*} a^{+}\left(a^{+}\right)^{*} \in R^{E P}$ and $\left(a^{*} a^{+}\left(a^{+}\right)^{*}\right)^{+}=a^{*} a\left(a^{\#}\right)^{*} a^{+} a$.
(2) $a^{+} a^{+}\left(a^{+}\right)^{*} \in R^{E P}$ and $\left(a^{+} a^{+}\left(a^{+}\right)^{*}\right)^{+}=a^{*} a\left(a^{\#}\right)^{*} a^{*} a$.

Hence Corollary 2.4 and Lemma 2.5 leads to the following theorem.
Theorem 2.6. Let $a \in R^{\#} \cap R^{+}$. Then the following conclusions are equivalent.

1) $a \in R^{P I}$;
2) $a^{*} a\left(a^{\#}\right)^{*} a^{+} a=a^{*} a\left(a^{\#}\right)^{*} a^{*} a$;
3) $\left(a^{*} a^{+}\left(a^{+}\right)^{*}\right)^{+}=a^{*} a\left(a^{\#}\right)^{*} a^{*} a$;
4) $\left(a^{+} a^{+}\left(a^{+}\right)^{*}\right)^{+}=a^{*} a\left(a^{\#}\right)^{*} a^{+} a$.

It is evident that for $a \in R^{\#} \bigcap R^{+}, a \in R^{P I}$ if and only if $a^{*} a\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*}$. Hence Lemma 2.5 and Theorem 2.6 imply the following corollary.

Corollary 2.7. Let $a \in R^{\#} \cap R^{+}$. Then the following conclusions are equivalent.

1) $a \in R^{P I}$;
2) $\left(a^{\#}\right)^{*} a^{+} a=\left(a^{\#}\right)^{*} a^{*} a$;
3) $\left(a^{*} a^{+}\left(a^{+}\right)^{*}\right)^{+}=\left(a^{\#}\right)^{*} a^{+} a$;
4) $\left(a^{+} a^{+}\left(a^{+}\right)^{*}\right)^{+}=\left(a^{\#}\right)^{*} a^{*} a$.

It is easy to see that for $a \in R^{+}, a \in R^{P I}$ if and only if $a^{+} a=a^{+}\left(a^{+}\right)^{*}$. Hence we have the following corollary by Corollary 2.7.

Corollary 2.8. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {PI }}$ if and only if $\left(a^{*} a^{+} a\right)^{+}=\left(a^{\#}\right)^{*} a^{+}\left(a^{+}\right)^{*}$.
Lemma 2.9. Let $a \in R^{\#} \cap R^{+}$. Then $\left(a^{\#}\right)^{*} a^{+}\left(a^{+}\right)^{*} \in R^{E P}$ and $\left(\left(a^{\#}\right)^{*} a^{+}\left(a^{+}\right)^{*}\right)^{+}=a^{*} a a^{*} a^{+} a$.
Proof. Routine verification is enough.
Corollary 2.8 and Lemma 2.9 give the following corollary.
Corollary 2.10. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if $a^{*} a^{+} a=a^{*} a a^{*} a^{+} a$.

3. Partial isometry and construction of invertible elements

The following two lemmas are well known.
Lemma 3.1. Let R be a ring and $a, b \in R$. If $1-a b$ is invertible, then $1-b a$ is also invertible, and $(1-b a)^{-1}=$ $1+b(1-a b)^{-1} a$.

Lemma 3.2. Let $a \in R^{\#}$. Then $a+1-a a^{\#} \in R^{-1}$ and $\left(a+1-a a^{\#}\right)^{-1}=a^{\#}+1-a a^{\#}$.
Theorem 3.3. Let $a \in R^{\#} \bigcap R^{+}$. Then $a^{*} a^{+} a+1-a^{+} a \in R^{-1}$ and $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=\left(a^{\#}\right)^{*} a^{+} a+1-a^{+} a$.
Proof. By Lemma 2.1, we have $a^{*} a^{+} a \in R^{E P}$ with $\left(a^{*} a^{+} a\right)^{\#}=\left(a^{\#}\right)^{*} a^{+} a$. Noting that $\left(a^{*} a^{+} a\right)\left(\left(a^{\#}\right)^{*} a^{+} a\right)=a^{+} a$. Then by Lemma 3.2, we have $a^{*} a^{+} a+1-a^{+} a \in R^{-1}$ and $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=\left(a^{\#}\right)^{*} a^{+} a+1-a^{+} a$.

Corollary 3.4. Let $a \in R^{\#} \cap R^{+}$. Then

1) $a \in R^{P I}$ if and only if $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=\left(a^{\#}\right)^{*} a^{+}\left(a^{+}\right)^{*}+1-a^{+} a$.
2) $a \in R^{S E P}$ if and only if $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=a+1-a^{+} a$.
3) $a \in R^{S E P}$ if and only if $\left(a^{*} a^{+} a\right)^{+}=a$.

Proof. 1) It follows from Lemma 2.1, Corollary 2.8 and Theorem 3.3.
2) Noting that $a \in R^{S E P}$ if and only if $a \in R^{\#} \bigcap R^{+}$and $a=\left(a^{\#}\right)^{*} a^{+} a$. Then the result follows from Theorem 3.3.
3) It is evident.

Theorem 3.5. Let $a \in R^{\#} \bigcap R^{+}$. Then $a \in R^{P I}$ if and only if $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=\left(a^{\#}\right)^{*} a^{*} a+1-a^{+} a$.
Proof. " $\Longrightarrow "$ Assume that $a \in R^{P I}$. First, we have $a^{*}=a^{+}$and $\left(a^{+}\right)^{*}=a$. Next, by Corollary 3.4, we have $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=\left(a^{\#}\right)^{*} a^{+}\left(a^{+}\right)^{*}+1-a^{+} a$. Hence $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=\left(a^{\#}\right)^{*} a^{*} a+1-a^{+} a$.
$" \Longleftarrow "$ Assume that $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=\left(a^{\#}\right)^{*} a^{*} a+1-a^{+} a$. Then $\left(a^{\#}\right)^{*} a^{+} a+1-a^{+} a=\left(a^{\#}\right)^{*} a^{*} a+1-a^{+} a$ by Theorem 3.3, this gives $\left(a^{\#}\right)^{*} a^{+} a=\left(a^{\#}\right)^{*} a^{*} a$. Hence $a \in R^{P I}$ by Theorem 2.3.

Theorem 3.6. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if $\left(1-a^{+} a+a^{*}\right)^{-1}=1+\left(a^{\#}\right)^{*} a^{*} a-\left(a^{\#}\right)^{*} a^{*}$.

Proof. " \Longrightarrow " Suppose that $a \in R^{P I}$, then $\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}=\left(a^{\#}\right)^{*} a^{*} a+1-a^{+} a$ by Theorem 3.5. Noting that $a^{*} a^{+} a+1-a^{+} a=1-\left(1-a^{*}\right) a^{+} a$. Then $\left(1-a^{+} a\left(1-a^{*}\right)\right)^{-1}=1+a^{+} a\left(a^{*} a^{+} a+1-a^{+} a\right)^{-1}\left(1-a^{*}\right)$ by Lemma 3.1, e.g. $\left(1-a^{+} a+a^{*}\right)^{-1}=1+a^{+} a\left(\left(a^{\#}\right)^{*} a^{*} a+1-a^{+} a\right)\left(1-a^{*}\right)=1+\left(a^{\#}\right)^{*} a^{*} a-\left(a^{\#}\right)^{*} a^{*} a a^{*}$. Since $a \in R^{P I}, a^{*}=a^{*} a a^{*}$. Hence $\left(1-a^{+} a+a^{*}\right)^{-1}=1+\left(a^{\#}\right)^{*} a^{*} a-\left(a^{\#}\right)^{*} a^{*}$.
$" \Longleftarrow "$ If $\left(1-a^{+} a+a^{*}\right)^{-1}=1+\left(a^{\#}\right)^{*} a^{*} a-\left(a^{\#}\right)^{*} a^{*}$, then $\left(1-a^{+} a+a^{*}\right)\left(1+\left(a^{\#}\right)^{*} a^{*} a-\left(a^{\#}\right)^{*} a^{*}=1\right.$. Noting that $\left(1-a^{+} a\right)\left(a^{\#}\right)^{*} a^{*} a=0=\left(1-a^{+} a\right)\left(a^{\#}\right)^{*} a^{*}$. Then by simple calculation, we obtain $-a^{+} a+a^{*} a=0$. Hence $a \in R^{P I}$ by [4, Theorem 2.2].

Corollary 3.7. Let $a \in R^{\#} \cap R^{+}$. Then

1) $a \in R^{P I}$ if and only if $\left(1-a a^{+}+a^{*}\right)^{-1}=1+\left(a^{+}\right)^{*}\left(a a^{\#}\right)^{*} a a^{*}-\left(a a^{\#}\right)^{*}$.
2) $a \in R^{\text {SEP }}$ if and only if $\left(1-a a^{+}+a^{*}\right)^{-1}=1+a-\left(a a^{\#}\right)^{*}$.

Proof. 1)" $\Longrightarrow "$ Assume that $a \in R^{P I}$, then $\left(1-a^{+} a+a^{*}\right)^{-1}=1+\left(a^{\#}\right)^{*} a^{*} a-\left(a^{\#}\right)^{*} a^{*}$ by Theorem 3.6. Noting that $1-a^{+} a+a^{*}=1-a^{*}\left(\left(a^{+}\right)^{*}-1\right)$. Then

$$
\begin{aligned}
\left(1-a a^{+}+a^{*}\right)^{-1} & =\left[1-\left(\left(a^{+}\right)^{*}-1\right) a^{*}\right]^{-1}=1+\left(\left(a^{+}\right)^{*}-1\right)\left(1-a^{+} a+a^{*}\right)^{-1} a^{*} \\
& =1+\left(\left(a^{+}\right)^{*}-1\right)\left[1+\left(a^{\#}\right)^{*} a^{*} a-\left(a^{\#}\right)^{*} a^{*}\right] a^{*} \\
& =1+\left(\left(a^{+}\right)^{*}-1\right)\left(a a^{\#}\right)^{*} a a^{*}=1+\left(a^{+}\right)^{*}\left(a a^{\#}\right)^{*} a a^{*}-\left(a a^{\#}\right)^{*} a a^{*} .
\end{aligned}
$$

Since $a \in R^{P I}, a a^{*}=a a^{+}$, it follows that $\left(a a^{\#}\right)^{*} a a^{*}=a a^{\#}$. Hence $\left(1-a a^{+}+a^{*}\right)^{-1}=1+\left(a^{+}\right)^{*}\left(a a^{\#}\right)^{*} a a^{*}-\left(a a^{\#}\right)^{*}$.

$$
\begin{aligned}
\prime \Longleftarrow " \text { If }\left(1-a a^{+}+a^{*}\right)^{-1}= & 1+\left(a^{+}\right)^{*}\left(a a^{\#}\right)^{*} a a^{*}-\left(a a^{\#}\right)^{*} \text {, then } \\
& \left(1-a a^{+}+a^{*}\right)\left(1+\left(a^{+}\right)^{*}\left(a a^{\#}\right)^{*} a a^{*}-\left(a a^{\#}\right)^{*}\right)=1 .
\end{aligned}
$$

Nothing that $\left(1-a a^{+}\right)\left(\left(a^{+}\right)^{*}\left(a a^{\#}\right)^{*} a a^{*}\right)=0$. Then again by a simple calculation, we obtain $\left(a a^{\#}\right)^{*}=\left(a a^{\#}\right)^{*} a a^{*}$. Pre-multiplying the equality by a^{+}, we have $a^{+}=a^{*}$. Therefore $a \in R^{P I}$.
2) It is easy to show that $a \in R^{S E P}$ if and only $a=\left(a^{+}\right)^{*}\left(a a^{\#}\right)^{*} a a^{+}$.
$" \Longrightarrow "$ Since $a \in R^{S E P}, a^{*}=a^{+}$. Hence $\left(1-a a^{+}+a^{*}\right)^{-1}=1+a-\left(a a^{\#}\right)^{*}$ by 1$)$.
$" \Longleftarrow "$ If $\left(1-a a^{+}+a^{*}\right)^{-1}=1+a-\left(a a^{\#}\right)^{*}$, then $\left(1-a a^{+}+a^{*}\right)\left(1+a-\left(a a^{\#}\right)^{*}\right)=1$, this gives $a^{*} a=\left(a a^{\#}\right)^{*}$.
Hence $a^{*} a=a a^{\#}$, by [4, Theorem 2.3], we have $a \in R^{S E P}$.

4. Partial isometry and the solution of equations

Observing Lemma 2.2, we can construct the following equation

$$
\begin{equation*}
a^{*} x a=x a^{+} a . \tag{1}
\end{equation*}
$$

The following theorem follows from [7, Theorem 2.9].
Theorem 4.1. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (1) has at least one solution in χ_{a}, where $\chi_{a}=\left\{a, a^{\#}, a^{+}, a^{*},\left(a^{\#}\right)^{*},\left(a^{+}\right)^{*}\right\}$.

Variable a in Equation (1), we can obtain the following equation.

$$
\begin{equation*}
a^{*} x y=x a^{+} y \tag{2}
\end{equation*}
$$

Lemma 4.2. Let $a \in R^{\#} \cap R^{+}$. Then the following conditions are equivalent:
(1) $a \in R^{P I}$;
(2) $a^{*} a^{*}=a^{*} a^{+}$;
(3) $a^{*} a^{*}=a^{+} a^{*}$;
(4) $a^{*} a^{+}=a^{+} a^{+}$;
(5) $a^{+} a^{*}=a^{+} a^{+}$.

Proof. $(1) \Longrightarrow(2)$ It is trivial.
$(2) \Longrightarrow(5)$ Assume that $a^{*} a^{*}=a^{*} a^{+}$. Pre-multiplying the equality by $a^{+}\left(a^{+}\right)^{*}$, one yields $a^{+} a^{*}=a^{+} a^{+}$.
$(5) \Longrightarrow(1)$ If $a^{+} a^{*}=a^{+} a^{+}$. Pre-multiplying the equality by $\left(a a^{\#}\right)^{*} a$, one has $a^{*}=a^{+}$. Hence $a \in R^{P I}$.
Similarly, we can show $(1) \Longrightarrow(3) \Longrightarrow(4) \Longrightarrow(1)$.
Theorem 4.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (2) has at least one solution in $\chi_{a}^{2}=$: $\left\{(x, y) \mid x, y \in \chi_{a}\right\}$.
Proof. " " Assume that $a \in R^{P I}$, then $(x, y)=\left(a^{+}, a\right)$ is a solution by Lemma 2.2 and Theorem 4.1.
$" \Longleftarrow "(1)$ If $y=a$, then we have the equation (1). Hence $a \in R^{P I}$ by Theorem 4.1;
(2) If $y=a^{\#}$, then we have the following equation

$$
\begin{equation*}
a^{*} x a^{\#}=x a^{+} a^{\#} . \tag{3}
\end{equation*}
$$

Post-multiplying the equation (3) by a^{2}, we have the equation (1). Thus $a \in R^{P I}$ by Theorem 4.1;
(3) If $y=a^{+}$, then we obtain the following equation

$$
\begin{equation*}
a^{*} x a^{+}=x a^{+} a^{+} . \tag{4}
\end{equation*}
$$

(a) If $x=a$, then $a^{*}=a^{*} a a^{+}=a a^{+} a^{+}$. Pre-multiplying the equality by $\left(a a^{\#}\right)^{*}$, one yields $a^{*}=a^{+}$. Hence $a \in R^{P I}$;
(b) If $x=a^{\#}$, then $a^{*} a^{\#} a^{+}=a^{\#} a^{+} a^{+}$. Pre-multiplying the equality by $a a^{+}$, one yields $a^{\#} a^{+} a^{+}=a a^{+} a^{\#} a^{+} a^{+}=$ $a a^{+} a^{*} a^{\#} a^{+}$, it follows that $a^{*} a^{\#} a^{+}=a a^{+} a^{*} a^{\#} a^{+}$. Post-multiplying the last equality by $a^{2}\left(a^{+}\right)^{*}$, one has $a^{+} a=$ $a a^{+} a^{+} a$. Hence $a \in R^{E P}$, this gives $a^{*} a^{\#} a^{\#}=a^{\#} a^{\#} a^{\#}$. Post-multiplying the equality by a^{4}, one gets $a^{*} a^{2}=a$. Hence $a \in R^{P I}$ by [4, Theorem 2.3];
(c) If $x=a^{+}$, then $a^{*} a^{+} a^{+}=a^{+} a^{+} a^{+}$. Post-multiplying the equality by $a a^{*}\left(a^{\#}\right)^{*} a$, one has $a^{*} a^{+} a=a^{+} a^{+} a$. Hence $a \in R^{P I}$ by Lemma 2.2;
(d) If $x=a^{*}$, then $a^{*} a^{*} a^{+}=a^{*} a^{+} a^{+}$. Pre-multiplying the equality by $\left(a^{\#}\right)^{*}$, one has $a^{*} a^{+}=a^{+} a^{+}$. Hence $a \in R^{P I}$ by Lemma 4.2;
(e) If $x=\left(a^{\#}\right)^{*}$, then $a^{+}=a^{*}\left(a^{\#}\right)^{*} a^{+}=\left(a^{\#}\right)^{*} a^{+} a^{+}$, this gives $a^{*} a^{+}=a^{+} a^{+}$. Hence $a \in R^{P I}$ by Lemma 4.2;
(f) If $x=\left(a^{+}\right)^{*}$, then $a^{+}=a^{*}\left(a^{+}\right)^{*} a^{+}=\left(a^{+}\right)^{*} a^{+} a^{+}$, so $a^{*} a^{+}=a^{+} a^{+}$. Thus $a \in R^{P I}$ by Lemma 4.2;
(4) If $y=a^{*}$, we get the following equation

$$
\begin{equation*}
a^{*} x a^{*}=x a^{+} a^{*} \tag{5}
\end{equation*}
$$

Post-multiplying the equation (5) by $\left(a^{+}\right)^{*} a^{+}$, one obtains the equation (4). Hence $a \in R^{P I}$ by (4).
(5) If $y=\left(a^{\#}\right)^{*}$, then we have the following equation

$$
\begin{equation*}
a^{*} x\left(a^{\#}\right)^{*}=x a^{+}\left(a^{\#}\right)^{*} . \tag{6}
\end{equation*}
$$

Post-multiplying the equation (6) by $\left(a^{*}\right)^{2}$, we obtain the equation (5). Thus $a \in R^{P I}$ by (4);
(6) If $y=\left(a^{+}\right)^{*}$, then we have the following equation

$$
\begin{equation*}
a^{*} x\left(a^{+}\right)^{*}=x a^{+}\left(a^{+}\right)^{*} \tag{7}
\end{equation*}
$$

Post-multiplying the equation (7) by $a^{*} a$, one yields the equation (1). Thus $a \in R^{P I}$ by Theorem 4.1.

It is well known that $a \in R^{P I}$ if and only if $a^{*} \in R^{P I}$. Hence substitute a^{*} for a in the equation (1), we obtain the following equation.

$$
\begin{equation*}
a x a^{*}=x a a^{+} \tag{8}
\end{equation*}
$$

Post-multiplying the equation (8) by $\left(a^{+}\right)^{*}$, we have the following equation.

$$
\begin{equation*}
a x a^{+} a=x\left(a^{+}\right)^{*} \tag{9}
\end{equation*}
$$

Noting that the equation (8) and (9) have the same solution. Hence we have the following corollary which follows from [7, Theorem 2.9].

Corollary 4.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (4.9) has at least one solution in χ_{a}.

5. Partial isometry and generalized equations

We can change the equation (1) as follows

$$
\begin{equation*}
a^{*} x a=y a^{+} a . \tag{10}
\end{equation*}
$$

Proposition 5.1. The general solution of equation (10) is given by

$$
\left\{\begin{array}{l}
x=p a^{+}+u-a a^{+} u a a^{+} \tag{11}\\
y=a^{*} p+z-z a^{+} a
\end{array} \quad \text { where } p, u, z \in R .\right.
$$

Proof. First, by a simple calculation, we obtain that the formula (11) is the solution of equation (10). Next, if $\left\{\begin{array}{l}x=x_{0} \\ y=y_{0}\end{array}\right.$ is a solution, then $a^{*} x_{0} a=y_{0} a^{+} a$. Then

$$
\begin{aligned}
&\left(\left(a^{+}\right)^{*} y_{0} a^{+} a\right) a^{+}+x_{0}-a a^{+} x_{0} a a^{+} \\
&=\left(\left(a^{+}\right)^{*} a^{*} x_{0} a\right) a^{+}+x_{0}-a a^{+} x_{0} a a^{+} \\
&=a a^{+} x_{0} a a^{+}+x_{0}-a a^{+} x_{0} a a^{+}=x_{0} .
\end{aligned}
$$

Similarly, we have

$$
\begin{gathered}
a^{*}\left(\left(a^{+}\right)^{*} y_{0} a^{+} a\right)+y_{0}-y_{0} a^{+} a \\
\quad=a^{+} a a^{*} x_{0} a+y_{0}-y_{0} a^{+} a \\
=a^{*} x_{0} a+y_{0}-y_{0} a^{+} a=y_{0} .
\end{gathered}
$$

Hence the general solution of the equation (10) is given by the formula (11).
Theorem 5.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the general solution of the equation (10) is given by

$$
\left\{\begin{array}{l}
x=p a^{+}+u-a a^{+} u a a^{+} \tag{12}\\
y=a^{+} p+z-z a^{+} a
\end{array} \quad \text { where } p, u, z \in R\right.
$$

Proof. " \Longrightarrow " Assume that $a \in R^{P I}$. Then $a^{+}=a^{*}$, it follows from Proposition 5.1 that the general solution of the equation (10) is given by the formula (12).
$" \Longleftarrow "$ Suppose the formula (12) is the general solution of the equation (10), then we have

$$
a^{*}\left(p a^{+}+u-a a^{+} u a a^{+}\right) a=\left(a^{+} p+z-z a^{+} a\right) a^{+} a
$$

this gives $a^{*} p a^{+} a=a^{+} p a^{+} a$ for each $p \in R$. Especially, we choose $p=a$, one yields $a^{*} a=a^{+} a$. Hence $a \in R^{P I}$.
Now we give the following equations.

$$
\begin{align*}
& a^{*} x a=y a a^{+} \\
& a^{+} x a=y a^{+} a . \tag{14}
\end{align*}
$$

$$
\begin{equation*}
a^{\#} x a=y a^{+} a . \tag{15}
\end{equation*}
$$

Theorem 5.3. Let $a \in R^{\#} \cap R^{+}$. Then
(1) $a \in R^{E P}$ if and only if the general solution of the equation (13) is given by the formula (11).
2) $a \in R^{P I}$ if and only if the general solution of the equation (14) is given by the formula (11).
3) $a \in R^{S E P}$ if and only if the general solutions of the equation (15) is given by the formula (11).

Proof. (1) " $\Longrightarrow "$ Assume that $a \in R^{E P}$, then $a a^{+}=a^{+} a$, this infers that the equation (13) is same as the equation (10). Hence the general solution of the equation (13) is given by the formula (11) by Proposition 5.1.
$\Longleftarrow "$ Suppose that the general solution of the equation (13) is given by the formula (11), then $a^{*}\left(p a^{+}+\right.$ $\left.u-a a^{+} u a a^{+}\right) a=\left(a^{*} p+z-z a^{+} a\right) a a^{+}$. Choosing $z=0$ and $p=\left(a^{\#}\right)^{*}$, one obtains $a^{+} a=a a^{\#}$. Hence $a \in R^{E P}$.
(2) " \Longrightarrow " Assume that $a \in R^{P I}$, then $a^{+}=a^{*}$, this infers the equation (14) is same as the equation (10) and the formula (12) is same as the formula (11). Hence we are done by Theorem 5.2.
$" \Longleftarrow "$ If the general solution of the equation (14) is given by the formula (11), then $a^{+}\left(p a^{+}+u-a a^{+} u a a^{+}\right) a=$ $\left(a^{*} p+z-z a^{+} a\right) a^{+} a$. Choosing $p=a$, one yields $a^{+} a=a^{*} a$. Hence $a \in R^{P I}$.
(3) It is an immediate result of (1) and (2).

References

[1] A. Ben-Israel, T. N. E Greville, Generalized Inverses: Theory and Applications, 2nd. ed., Springer (New York, 2003).
[2] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal., 61(1976): 197-251.
[3] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings. Linear Algebra Appl., 431(2009): 527-535.
[4] D. Mosić, D. S. Djordjević, Further results on partial isometries and EP elements in rings with involution, Math. Comput. Modelling, 54(1)(2011): 460-465.
[5] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51(1955): 406-413.
[6] Y. C. Qu, J. C. Wei, H. Yao, Characterizations of normal elements in ring with involution, Acta. Math. Hungar., 156(2)(2018): 459-464.
[7] Y. C. Qu, H. Yao, J. C. Wei, Some characterizations of partial isometry elements in rings with involution, Filomat, 33(19)(2019): 6395-6399.
[8] S. Z. Xu, J. L. Chen, J. L. Bentez, EP elements in rings with involution, Bull. Malays. Math. Sci. Soc. 42(2019): 3409-3426.
[9] R. J. Zhao, H. Yao, J. C. Wei, Characterizations of partial isometries and two special kinds of EP elements, Czechoslovak Math. J., 70(145)(2020): 539-551.

[^0]: 2020 Mathematics Subject Classification. 16B99; 16W10;15A09;46L05
 Keywords. group inverse, MP-invertible element, partial isometry element, $E P$ element, strongly $E P$ element
 Received: 18 February 2021; Revised: 13 September 2021; Accepted: 20 September 2021
 Communicated by Dijana Mosić
 Email addresses: 2279368979@qq.com (Xinyu Yang), 19411267712@qq.com (Zhiyong Fan), jcweiyz@126.com (Wei Junchao)

