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Abstract. Let n, k be fixed natural numbers with 1 ≤ k ≤ n and let An+1,k,2k,...,sk denote an (n + 1) × (n + 1)
complex multidiagonal matrix having s = [n/k] sub- and superdiagonals at distances k, 2k, . . . , sk from the
main diagonal. We prove that the setMDn,k of all such multidiagonal matrices is closed under multiplication
and powers with positive exponents. Moreover the subset ofMDn,k consisting of all nonsingular matrices
is closed under taking inverses and powers with negative exponents. In particular we obtain that the
inverse of a nonsingular matrix An+1,k (called k-tridigonal) is inMDn,k, moreover if n + 1 ≤ 2k then A−1

n+1,k is
also k-tridigonal. Using this fact we give an explicit formula for this inverse.

1. Introduction

Multidiagonal matrices have a wide range of applications in various fields of mathematics and engi-
neering. Among them matrices with equally spaced diagonals have much nicer properties than those with
arbitrarily spaced diagonals (see [1, 9, 10] and their references). Here we study how multidiagonal matrices
with equally spaced diagonals behave under multiplication, taking inverse and powers.

Let n, k be fixed natural numbers with 1 ≤ k ≤ n and letMn denote the set of n × n complex matrices.
A matrix A = (ai j)n

i, j=0,∈ Mn+1 is called (k, 2k, . . . , sk)- multidiagonal if ai j = 0 if |i − j| , lk, for l = 0, 1, . . . , s
where sk ≤ n. Such matrices will be denoted by An+1,k,2k,...,sk (supressing for the moment their dependence
from the diagonals). Such matrices are called k-tridiagonal if s = 1 and (k, 2k)-pentadiagonal if s = 2.Clearly
the maximal number s of sub- and superdiagonals in An+1,k,2k,...,sk is [n/k].

LetMDn,k be the set of all An+1,k,2k,...,sk matrices with s = [n/k].We prove that the setMDn,k is closed under
multiplication, and taking positive and (for nonsingular matrices also) negative powers. Since matrices
An+1,k,2k,...,s′k with 1 ≤ s′ ≤ [n/k] also belong toMDn,k (by taking the diagonals (s′ + 1)k, (s′ + 2)k, . . . , sk to be
zero) we obtain that the inverse of a k-tridiagonal matrix belongs toMDn,k. Moreover, if n + 1 ≤ 2k then
the inverse of a k-tridiagonal matrix is also k-tridiagonal. Using this we find the explicit inverse of such
k-tridiagonal matrices.

The articles [2, 15] are related to the structure of the product of tridiagonal matrices. Their inves-
tigations are based on the result that the product of two different 1-tridiagonal Toeplitz matrices is a
(1, 2)-pentadiagonal imperfect Toeplitz matrix (where the first and last elements of the main diagonal are
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Email address: losonczi.laszlo@econ.unideb.hu,losonczi08@gmail.com (László Losonczi)
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different from the other ones). In [17] the authors use Toeplitz (1, 2)-pentadiagonal matrices to study
orthogonal polynomials on the unit circle.

In the paper [18] a representation is given for the powers of k-tridiagonal `-Toeplitz matrices (where
the sub- and superdiagonals are `-periodic) and a formula is derived for their eigenpairs. [16] studies
matrices with one sub- and one superdiagonal only (not necessarily symmetrically located) and proves that
its eigenvalues are constant multiples of roots of unity.

2. Multidiagonal matrices as the sum of their diagonals

In the sequel (unless otherwise said) all matrices will be inMn+1. Let now An+1,k,2k,...,sk = (ai j)n
i, j=0 where

s = [n/k]. Denote its sub-, main, superdiagonal vectors extended to n + 1 dimensional vectors by adding
the necessary number of zeros after their last coordinates by

v−s = (v−s,0, . . . , v−s,n−sk, 0, . . . , 0),
...

v−1 = (v−1,0, . . . , v−1,n−k, 0, . . . , 0),
v0 = (v0,0, . . . , v0,n),
v1 = (v1,0, . . . , v1,n−k, 0, . . . , 0),

...
vs = (vs,0, . . . , vs,n−sk, 0, . . . , 0).

(1)

This means that for i, j = 0, . . . ,n

ai j =

{
vp, j if j − i = pk, p = −s, . . . , 0, . . . , s,
0 otherwise.

For this matrix we also use the notations

A = An+1,k,2k,...,sk = A(v−s, . . . ,v0, . . . ,vs) = An+1,k,2k,...,sk(v−s, . . . ,v0, . . . ,vs) (2)

always trying to choose the most convenient one. Here we have to remark that only the nonzero coordinates
of the diagonal vectors take part in building our matrix. Clearly all matrices ofMDn,k can be written in the
form (2).

Introduce the elementary nilpotent matrix N = (ni j) with

ni j =

{
1 if i − j = −1,
0 otherwise.

N contains one single unit superdiagonal right above the main diagonal, and its transpose NT contains one
single unit subdiagonal immediately below the main diagonal.

It is easy to check that raising N to power k > 0 moves its single unit superdiagonal to distance k above
the main diagonal.

The Moore-Penrose inverse N+ of N is its transpose, i.e N+ = NT. Let N0 := E (the unit matrix inMn+1)
and define the negative powers of N by

N−k := (N+)k = (NT)k (k ∈N).

Then N−k has a single unit subdiagonal at distance k below the main diagonal. For |k| ≥ n + 1 the matrices
Nk become zero matrices.

Let
D(v) := Diag(v0, v1, . . . , vn)

be the diagonal matrix with main diagonal v = (v0, v1, . . . , vn).
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The new form of our multidiagonal matrix is

A(v−s, . . . ,v0, . . . ,vs) =
N−skD(v−s) + · · · + N−kD(v−1) + D(v0) + D(v1)Nk + · · · + D(vs)Nsk.

(3)

Now, our matrix is the sum of matrices with a single diagonal and it is easy to identify these matrices
with their corresponding diagonals. We are grateful to Prof. Cs. Hegedűs for proposing us the use of the
nilpotent matrix N to describe multidiagonal matrices.

Define the operator τ and its inverse by

τv := (v1, . . . , vn, vn+1), τ−1v := (v−1, v0, . . . , vn−1) (4)

where for any vector v = (v0, . . . , vn) ∈ Cn+1

vk = 0 if k > n or if k < 0. (5)

This means that the effect of τk on any vector v is the increase of the subscripts of its coordinates by k.
Clearly τ jv is zero vector for | j| > n.

The ∗ product of two vectors v and w = (w0, . . . ,wn) is defined coordinate-wise by

v ∗w := (v0w0, . . . , vnwn).

The operation ∗ is commutative, associative, D(v)D(w) = D(v ∗w) and

τi(v ∗w) = (τiv) ∗ (τiw), τi(τ jv) = τi+ jv (6)

for any v,w ∈ Cn+1 and for integers i, j.
For the multiplication of powers of N we shall use the identities

NiN j = Ni+ j if i, j ≥ 0 or if i, j ≤ 0, (7)

and for nonnegative i, j the identities

NiN− j = D(τi1)Ni− j if i − j ≥ 0,
N− jNi = D(τ− j1)Ni− j if i − j ≥ 0,
NiN− j = N−( j−i)D(τ j1) if i − j ≤ 0,
N− jNi = N−( j−i)D(τ−i1) if i − j ≤ 0,

(8)

where 1 = (1, . . . , 1) ∈ Cn+1 is the unit vector. Clearly 1 ∗ v = v for any v ∈ Cn+1.
The order of factors in the products D(v)N± j can be changed by help of the identities

D(v)N− j = N− jD(τ jv), N jD(v) = D(τ jv)N j,
N− jD(v) = D(τ− jv)N− j, D(v)N j = N jD(τ− jv), (9)

valid for any v ∈ Cn+1 and for nonnegative integer values of j.

3. Products, inverses and powers of some multidiagonal matrices

Theorem 3.1. (i) The setMDn,k is closed under multiplication and taking powers with positive exponents.
(ii) The subset of MDn,k consisting of all nonsingular matrices is closed under taking inverses and powers with
negative (and also nonnegative) exponents.
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Proof. Let

V =
s∑

i=1
N−ikD(v−i) +

s∑
i=0

D(vi)Nik

W =
s∑

j=1
N− jkD(w− j) +

s∑
j=0

D(w j)N jk
(10)

be two matrices inMDn,k where the vectors vi, (i = −s, . . . , 0, . . . , s) are defined by (1), and

w j = (w j,0, . . . ,w j,n− jk, 0, . . . , 0) ( j = −s, . . . , 0, . . . , s).

The product VW can be decomposed into four sums

VW =
s∑

i=1

s∑
j=1

N−ikD(v−i)N− jkD(w− j) +
s∑

i=1

s∑
j=0

N−ikD(v−i)D(w j)N jk

+
s∑

i=0

s∑
j=1

D(vi)NikN− jkD(w− j) +
s∑

i=0

s∑
j=0

D(vi)NikD(w j)N jk.
(11)

We transform the summands by help of the relations (8) and (9) as follows:

N−ikD(v−i)N− jkD(w− j) = N−ikN− jkD(τikv−i)D(w− j) = N−(i+ j)kD(τikv−i ∗w− j),
N−ikD(v−i)D(w j)N jk = N−ikD(v−i ∗w j)N jk = D(τ−ik(v−i ∗w j))N−ikN jk,
D(vi)NikN− jkD(w− j) = NikD(τ−ikvi)N− jkD(w− j) = NikN− jkD(τ( j−i)kvi ∗w− j),
D(vi)NikD(w j)N jk = D(vi ∗ τikw j)N(i+ j)k.

The expressions in the second and third line require further transformations using again (8),(9) and the
properties of the ∗. The last expression in the second line is transformed as follows.

If i − j ≤ 0 then we get

D(τ−ik(v−i ∗w j)N−ikN jk = D(τ−ik(v−i ∗w j))D(τ−ik1)N( j−i)k

= D(τ−ik(v−i ∗w j))N( j−i)k,

since
τ−ik(v−i ∗w j) ∗ τ−ik1 = τ−ik(v−i ∗w j ∗ 1) = τ−ik(v−i ∗w j).

If i − j > 0 then we obtain

D(τ−ik(v−i ∗w j))N−ikN jk = D(τ−ik(v−i ∗w j))D(τ− jk1)N−(i− j)k

= D
(
τ−ik(v−i ∗w j) ∗ τ− jk1

)
N−(i− j)k

= N−(i− j)kD
(
τ(i− j)k(τ−ik(v−i ∗w j) ∗ τ− jk1)

)
= N−(i− j)kD(τ− jk(v−i ∗w j)),

since
τ(i− j)k

(
τ−ik(v−i ∗w j) ∗ τ− jk1

)
= τ(i− j)k(τ−ikv−i ∗ τ−ikw j ∗ τ− jk1)

= τ(i− j)k
(
τ−ikv−i ∗ τ− jk(τ( j−i)kw j ∗ 1)

)
= τ(i− j)k(τ−ikv−i ∗ τ−ikw j)

= τ− jk(v−i ∗w j).

We transform the last expression in the third line similarly.
If i − j ≤ 0 then we get

NikN− jkD(τ( j−i)kvi ∗w− j) = N−( j−i)kD(τ jk1)D(τ( j−i)kvi ∗w− j)
= N−( j−i)kD(τ jk1 ∗ τ( j−i)kvi ∗w− j) = N−( j−i)kD(τ jk(1 ∗ τ−ikvi) ∗w− j)

= N−( j−i)kD(τ( j−i)kvi ∗w− j).

For i − j > 0 we have

NikN− jkD(τ( j−i)kvi ∗w− j) = D(τik1)N(i− j)kD(τ( j−i)kvi ∗w− j)
= D(τik1)D

(
τ(i− j)k(τ( j−i)kvi ∗w− j)

)
N(i− j)k = D(vi ∗ τ(i− j)kw− j)N(i− j)k
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since
τik1 ∗ τ(i− j)k(τ( j−i)kvi ∗w− j) = τik1 ∗ vi ∗ τ(i− j)kw− j

= τik(1 ∗ τ−ikvi) ∗ τ(i− j)kw− j = vi ∗ τ(i− j)kw− j.

Using these new forms of the summands and splitting the second and third sums into two we can rewrite
(11) as

VW =
s∑

i=1

s∑
j=1

N−(i+ j)kD(τikv−i ∗w− j) +
s∑

i=1

s∑
j=0,i≤ j

D(τ−ik(v−i ∗w j))N( j−i)k

+
s∑

i=1

s∑
j=0,i>j

N−(i−j)kD(τ−jk(v−i∗w j))+
s∑

i=0

s∑
j=1,i≤j

N−( j−i)kD(τ( j−i)kvi∗w−j)

+
s∑

i=0

s∑
j=1,i> j

D(vi ∗ τ(i− j)kw− j)N(i− j)k +
s∑

i=0

s∑
j=0

D(vi ∗ τikw j)N(i+ j)k.

(12)

Using the rules D(v)Np +D(w)Np = D(v+w)Np,N−pD(v)+N−pD(w) = N−pD(v+w) for p ≥ 0,v,w ∈ Cn+1

we add those terms of (12) for which the exponents of N are the same nonnegative or negative numbers
and omit those terms where the absolute value of the exponents of N is greater than n.

The result is

VW =

s∑
p=1

N−pkD(z−p) + D(z0) +

s∑
p=1

D(zp)Npk (13)

with suitable vectors zp (p = −s, . . . , 0, . . . , s) proving that the set MDn,k is closed under taking products.
This clearly implies that it is also closed under taking powers with positive exponents, completing the proof
of (i).

To prove (ii) take a nonsingular matrix V ∈ MDn,k and let

det(V − λE) =

n+1∑
j=0

ν jλ
j

be the characteristic polynomial of V, where ν j ∈ C, in particular νn+1 = (−1)n+1 and ν0 = det(V) , 0. By the

Cayley-Hamilton theorem we have
n+1∑
j=0
ν jV j = O (where O is the zero matrix) therefore

E = V

− n+1∑
j=1

ν j

ν0
V j−1

 =

− n+1∑
j=1

ν j

ν0
V j−1

 V

showing that

V−1 = −

n+1∑
j=1

ν j

ν0
V j−1

∈ MDn,k

and completing the proof.

4. Inverse of the k-tridiagonal matrix An+1,k if n + 1 ≤ 2k

On k-tridiagonal matrices see the recent survey [8]. The evaluation of the inverse of k-tridiagonal
matrices is a very common subject. In [3–7] numerical methods, formulae, algorithms were given for such
inverses. Most complicated inverses of k-tridiagonal matrices are for k = 1, if k is larger then the inverses
are getting simpler as several sub- superdiagonals will be zero vectors.

Fonseca and Petronilho [11] (using results of [13, 19]) found explicit formula for the inverse of a general
1-tridiagonal matrix, while Fonseca and Yılmaz [12] proved that any k-tridiagonal matrix is congruent to
the direct sum of 1-tridiagonal matrices.
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To be more precise let n + 1 = kq + p, 0 ≤ p < k then any k-tridiagonal matrix is permutational equivalent
to the direct sum of p pieces of (q + 1) × (q + 1) and k − p pieces of q × q type 1-tridiagonal matrices (see
[12] also [14]) and the same is true for the inverses. Using these and [11] one could obtain formulae for
the entries of the inverse of a k-tridiagonal matrix. But these inverse-entries were given by help of two
recursive sequences built up from the entries of the original matrix, thus to express the inverse-entries in
terms of the entries of An+1,k would be simply too complicated, hence useless.

The inverse of An+1,k is the simplest if n + 1 ≤ 2k since in this case the inverse is also k-tridiagonal. In
the next theorem the entries of A−1

n+1,k are expressed by simple formulae in terms of the entries of An+1,k

provided that n + 1 ≤ 2k. If 2k < n + 1 ≤ 3k the inverse of An+1,k is (k, 2k)-pentadiagonal, if 3k < n + 1 ≤ 4k
the inverse is (k, 2k, 3k)-heptadiagonal, calculation of their entries in terms of the entries of An+1,k is possible,
but would require much more efforts. These inverses (if found) could help to find simpler formulae for the
inverses of k-tridiagonal matrices as the existing ones (see [6] Theorem 2.2,[7]).

Theorem 4.1. (j) If n + 1 ≤ 2k then the k-tridiagonal matrix

A = N−kD(a) + D(b) + D(c)Nk (14)

where
a = (a0, . . . , an−k, 0, . . . , 0),b = (b0, . . . , bn), c = (c0, . . . , cn−k, 0, . . . , 0)

is nonsingular if and only if

b j , 0 ( j = n + 1 − k, . . . , k − 1)
b jb j+k − a jc j , 0, ( j = 0, . . . ,n − k)). (15)

(jj) If (15) holds then A−1 is also k-tridiagonal and is of the form

A−1 =N−kD(x) + D(y) + D(z)Nk

where
x=

(
−a0

b0bk−a0c0
, . . . ,

−an−k

bn−kbn−an−kcn−k
, 0, . . . , 0

)
,

y=

(
bk

b0bk−a0c0
, . . . ,

bn

bn−kbn−an−kcn−k
,

1
bn+1−k

, . . . ,
1

bk−1
,

b0

bkb0−a0c0
, . . . ,

bn−k

bnbn−k−an−kcn−k

)
,

z=
(
−c0

b0bk−a0c0
, . . . ,

−cn−k

bn−kbn−an−kcn−k
, 0, . . . , 0

)
.

Proof. The determinant of A is by the known formula (see e.g. [6, 7])

det A =

n∏
j=0

f j (16)

where

f j =

{
b j if j = 0, . . . , k − 1,
b j − a j−kc j−k/ f j−k if j = k, . . . ,n.

To define f j for j = k, . . . ,n we have to assume f j , 0 for j = 0, . . . ,n − k. However formula (16) is valid
without this assumption as after simplifications the fractions disappear (see [9]). In our case n − k ≤ k − 1
and the product in (16) can be simplified to

det A =

k−1∏
j=0

b j

  n∏
j=k

(
b j−a j−kc j−k/ f j−k

)=

k−1∏
j=0

b j

 n−k∏
j=0

(
b j+k−a jb j/b j

)
=

 k−1∏
j=n+1−k

b j

 n−k∏
j=0

(
b jb j+k−a jc j

) .
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This shows that A is nonsingular if and only if (15) holds, proving (j).

If n + 1 ≤ 2k and (15) holds then we have seen that A−1 is also k-tridiagonal thus we may write it as

A−1 = X = N−kD(x) + D(y) + D(z)Nk

where
x = (x0, . . . , xn−k, 0, . . . , 0), y = (y0, . . . , yn), z = (z0, . . . , zn−k, 0, . . . , 0).

Expanding the product AX we get

AX = N−kD(a)N−kD(x) + N−kD(a)D(y) + N−kD(a)D(z)Nk

+D(b)N−kD(x) + D(b)D(y) + D(b)D(z)Nk

+D(c)NkN−kD(x) + D(c)NkD(y) + D(c)NkD(z)Nk.
(17)

Using suitable relations of (9) we rewrite the first term of (17) as

N−kD(a)N−kD(x) = N−kN−kD(τka)D(x) = N−2kD(τka ∗ x),

the second term as N−kD(a ∗ y).
The third term can be written as

N−kD(a)D(z)Nk = D(τ−ka)N−kD(z)Nk = D(τ−ka)D(τ−kz)N−kNk

= D(τ−k(a ∗ z)D(τ−k1)N0 = D(τ−k(a ∗ z)).

Rewriting the other terms in a similar way we finally get that

AX = N−2kD(τka ∗ x) + N−kD(a ∗ y + τkb ∗ x)
+D(τ−k(a ∗ z) + b ∗ y + c ∗ x)
+D(b ∗ z + c ∗ τky)Nk + D(c ∗ τkz)N2k.

(18)

In our case N±2k= zero matrix, hence the equations of the linear inhomogeneous system AX = E can be
written as

a ∗ y + τkb ∗ x = 0, b ∗ z + c ∗ τky = 0,
τ−k(a ∗ z) + b ∗ y + c ∗ x = 1 (19)

where 0 is the n+1 dimensional zero vector. The unknowns are the nonzero coordinates of x,y, z numbering
to n + 1 + 2(n + 1 − k) = 3(n + 1) − 2k. System (19) is in detailed form

0 = a ∗ y + τkb ∗ x = (a0, . . . , an−k, 0, . . . , 0) ∗ (y0, . . . , yn)
+(bk, . . . , bn, 0, . . . , 0) ∗ (x0, . . . , xn−k, 0, . . . , 0)
= (bkx0 + a0y0, . . . , bnxn−k + an−kyn−k︸                                    ︷︷                                    ︸

n+1−k

, 0, . . . , 0︸  ︷︷  ︸
k

))

0 = b ∗ z + c ∗ τky = (b0, . . . , bn) ∗ (z0, . . . , zn−k, 0, . . . , 0
+(c0, . . . , cn−k, 0, . . . , 0) ∗ (yk, . . . , yn, 0, . . . , 0)
= (c0yk + b0z0, . . . , cn−kyn + bn−kzn−k︸                                    ︷︷                                    ︸

n+1−k

, 0, . . . , 0︸  ︷︷  ︸
k

)

1 = τ−k(a ∗ z) + b ∗ y + c ∗ x = (0, . . . , 0, a0z0, . . . , an−kzn−k)
+(b0, . . . , bn) ∗ (y0, . . . , yn) + (c0, . . . , cn−k, 0, . . . , 0) ∗ (x0, . . . , xn−k, 0, . . . , 0)
= (c0x0 + b0y0, . . . , cn−kxn−k + bn−kyn−k︸                                       ︷︷                                       ︸

n+1−k

, 0, . . . , 0︸  ︷︷  ︸
k

)

+(0, . . . , 0︸  ︷︷  ︸
n+1−k

, bn+1−kyn+1−k, . . . , bk−1yk−1︸                          ︷︷                          ︸
2k−(n+1)

, 0, . . . , 0︸  ︷︷  ︸
n+1−k

)

+(0, . . . , 0︸  ︷︷  ︸
k

, bkyk + a0z0, . . . , bnyn + an−kzn−k︸                                 ︷︷                                 ︸
n+1−k

).
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In the first and second group the last k equations are trivial (0 = 0) thus these are omitted. The remaining
number of our (non trivial) equations is 2(n + 1 − k) + n + 1 = 3(n + 1) − 2k, the same as the number of
unknowns.

Next we solve this system. The unknowns yn+1−k, . . . , yk−1 obtained easily as

y j =
1
b j

( j = n + 1 − k, . . . , k − 1).

Collect the remaining unknowns into one column vector and the corresponding free terms also into one
vector

x∗ = (x0, . . . , xn−k, y0, . . . , yn−k, yk, . . . , yn, z0, . . . , zn−k)T

b∗ = (0, . . . , 0︸  ︷︷  ︸
2(n+1−k)

, 1, . . . , 1︸  ︷︷  ︸
2(n+1−k)

)T.

Denoting by U the matrix of the reduced system it can be written as Ux∗ = b∗.
This reduced system has 4(n + 1 − k) equations and unknowns. In detailed form

bkx0 a0y0
. . .

. . .
bnxn−k an−kyn−k

c0yk b0z0
. . .

. . .
cn−kyn bn−kzn−k

c0x0 b0y0
. . .

. . .
cn−kxn−k bn−kyn−k

bkyk a0z0
. . .

. . .
bnyn an−kzn−k



=



0
...
0
0
...
0
1
...
1
1
...
1


which shows that our system consists of four groups of equations, each of them with n + 1 − k equations of
similar structures. Number the equations starting by zero. Multiply the jth equations of the first system by
−c j and add these to the jth equations of the third system multiplied by bk+ j for j = 0, . . . ,n− k. Our system
goes over into

bkx0 a0y0
. . .

. . .
bnxn−k an−kyn−k

c0yk b0z0
. . .

. . .
cn−kyn bn−kzn−k

(b0bk−a0c0)y0
. . .

(bn−kbn−an−kcn−k)yn−k
bkyk a0z0

. . .
. . .

bnyn an−kzn−k



=



0
...
0
0
...
0
bk
...

bn
1
...
1


From the third group of equations we get immediately that

y j =
bk+ j

b jbk+ j − a jc j
( j = 0, . . . ,n − k).
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To continue our calculations we temporally assume that bk+ j , 0, ( j = 0, . . . ,n−k). Then from the first group
of equations we obtain that

x j =
−a jy j

bk+ j
=

−a j

b jbk+ j − a jc j
( j = 0, . . . ,n − k). (20)

Multiply the jth equations of the second group by −a j and add them to the jth equations of the fourth group
multiplied by b j for j = 0, . . . ,n − k. Then the fourth group of equations go over into

(bk+ jb j − a jc j)yk+ j = b j,

hence

yk+ j =
b j

bk+ jb j − a jc j
, ( j = 0, . . . ,n − k).

Finally multiply the jth equations of the second group by −b j+k and add them to the jth equations of the
fourth group multiplied by c j for j = 0, . . . ,n − k. Then the fourth group of equations become

(−bk+ jb j + a jc j)z j = c j,

thus
z j =

−c j

bk+ jb j − a jc j
, ( j = 0, . . . ,n − k).

Now we justify (20) without our temporally assumption. Namely if bk+ j = 0 for some j = 0, . . . ,n − k then
change it a little to b′k+ j , 0 such that the factor b jb′j+k − a jc j , 0. Then we obtain

x′j =
−a j

b jb′k+ j − a jc j

taking the limit b′k+ j → 0 = bk+ j justifies the validity of the final formula for x j.
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