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Abstract. In this paper, we characterize each of various forms of T0, T1, T2, and pre-Hausdorff extended
pseudo-quasi-semi metric spaces as well as examine how these generalizations are related. Moreover,
we give some invariance properties of these T0, T1, and T2 extended pseudo-quasi-semi metric spaces and
investigate the relationship among each of irreducible Ti, i = 1, 2 extended pseudo-quasi-semi metric spaces.
Finally, we present Urysohn’s Lemma and Tietze Extention Theorem for extended pseudo-quasi-semi metric
spaces.

1. Introduction

The extended pseudo-quasi-semi metric spaces were defined in 1988 by E. Lowen and R. Lowen [11]
with their corresponding non-expansive mappings. They are the most general category of metric spaces
which is cartesian closed and hereditary topological [11].

There are several ways to generalize the usual T0-axiom of topology to topological categories [2, 13, 16]
which are used to define various forms of Hausdorff objects [2] in arbitrary topological categories. Also, in
1991, Baran [2] gave a generalization of the usual T1 and pre-Hausdorff axioms of topology to topological
categories that are used to define each of T3, T4, and completely regular objects of an arbitrary topological
category [7].

In General Topology, one of the most important uses of separation properties is theorems such as the
Urysohn’s Lemma and the Tietze Extension Theorem. In view of this, it is useful to be able to extend these
various notions to arbitrary topological categories.

Note that if (X, d) is an extended pseudo-quasi-semi metric space, then d does not induce a topology on
X since d does not fulfil the triangle inequality. The main goal of this paper is to characterize each of various
forms of T0, T1, T2, and pre-Hausdorff extended pseudo-quasi-semi metric spaces and give some invariance
properties of these subcategories TipqsMet of Ti-extended pseudo-quasi-semi metric spaces, i = 0, 1, 2 as
well as to present Urysohn’s Lemma and Tietze Extention Theorem for extended pseudo-quasi-semi metric
spaces and to investigate the relationship among each of irreducible Ti, i = 1, 2 extended pseudo-quasi-semi
metric spaces.
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2. Preliminaries

Recall, in [11], that an extended pseudo-quasi-semi metric space is a pair (X, d), where X is a set and
d : X × X → [0,∞] is a function which fulfills d(x, x) = 0 for all x ∈ X. Moreover, if d(x, z) ≤ d(x, y) + d(y, z)
for all x, y, z ∈ X, then (X, d) is called an extended pseudo-quasi metric space.

In addition, if for all x, y ∈ X, d(x, y) = d(y, x), then (X, d) is called an extended pseudo-metric space [12].
A map f : (X, d)→ (Y, e) between extended pseudo-quasi-semi metric spaces is said to be a non-expansive
if it fulfills the property e( f (x), f (y)) ≤ d(x, y) for all x, y ∈ X. The construct of extended pseudo-quasi-semi
metric spaces and non-expansive maps is denoted by pqsMet which is a cartesian closed and hereditary
topological category [11, 14] in the sense of [1, 15].

Proposition 2.1. (1) Let I be an index set, {(Xi, di), i ∈ I} be a class of extended pseudo-quasi-semi metric spaces, X be
a nonempty set, and { fi : X → Xi, i ∈ I} be a source in the category Set, the category of sets and functions. A source
{ fi : (X, d) → (Xi, di), i ∈ I} in pqsMet is an initial lift if and only if for all x, y ∈ X, d(x, y) = sup

i∈I
(di( fi(x), fi(y)))

[11, 14].
(2) Let {(Xi, di), i ∈ I} be a class of extended pseudo-quasi-semi metric spaces and X be a nonempty set. A sink

{ fi : (Xi, di) → (X, d), i ∈ I} is final in pqsMet if and only if for all x, y ∈ X, d(x, y) = inf{(di(xi, yi)) : there exist
xi, yi ∈ Xi such that fi(xi) = x and fi(yi) = y, i ∈ I } [11, 14]. In particular, let X =

∐
i∈I Xi and define

d((k, x), ( j, y)) =

{
dk(x, y) if k = j
∞ if k , j

for all (k, x), ( j, y) ∈ X. (X, d) is the coproduct of {(Xi, di), i ∈ I} extended pseudo-quasi-semi metric spaces, i.e.,
{ik : (Xk, dk)→ (X, d), k ∈ I} is a final lift of {ik : Xk → X, k ∈ I}, where ik are the canonical injection maps.

(3) The discrete extended pseudo-quasi-semi metric structure d on X is given by

ddis(a, b) =

{
0 if a = b
∞ if a , b

for all a, b ∈ X.

3. Separation Axioms In pqsMet

Let B be a nonempty set. Two distinct copies of B2 identified along the diagonal ∆ is called the wedge
at ∆ denoted by B2∨

∆ B2 [2]. A point (x, y) in B2
∨∆ B2 will be denoted by ((x, y)1, (x, y)2) if (x, y)1 is in the

first (resp. (x, y)2 is in the second) component of B2
∨∆ B2. Clearly (x, y)1 = (x, y)2 if and only if x = y [2]. Let

ik : B2
→ B2∐B2, k = 1, 2 be the canonical injection maps and q : B2∐B2

→ B2
∨∆ B2 be the quotient map.

The principal axis map A : B2
∨∆ B2

→ B3 is given by A(x, y)1 = (x, y, x) and A(x, y)2 = (x, x, y). The
skewed axis map S : B2

∨∆ B2
→ B3 is given by S(x, y)1 = (x, y, y) and S(x, y)2 = (x, x, y) and the fold map,

∇ : B2
∨∆ B2

→ B2 is given by ∇(x, y)i = (x, y) for i = 1, 2 [2].

Definition 3.1. ([2, 13]) Let U : E → Set be topological, X an object in Ewith U(X) = B.
(1) If the initial lift of the U-source {A : B2

∨∆ B2
→ U(X3) = B3 and ∇ : B2

∨∆ B2
→ U(D(B2)) = B2

} is
discrete, then X is called a T0 object, where D is the discrete functor which is a left adjoint to U.

(2) If the initial lift of the U-source {id : B2
∨∆ B2

→ U(B2
∨∆ B2)

′

= B2
∨∆ B2 and ∇ : B2

∨∆ B2
→

U(D(B2)) = B2
} is discrete, then X is called T′0 object, where (B2

∨∆ B2)
′

is the final lift of the U-sink
{q ◦ i1, q ◦ i2 : U(X2) = B2

→ B2
∨∆ B2

}, the maps i1, i2 and q are defined above.
(3) If X does not contain an indiscrete subspace with (at least) two points, then X is called a T0 object.
(4) If the initial lift of the U-source {S : B2

∨∆ B2
→ U(X3) = B3 and ∇ : B2

∨∆ B2
→ U(D(B2)) = B2

} is
discrete, then X is called a T1 object.

Remark 3.2. Note that for the category Top of topological spaces and continuous functions, all of T0, T′0
and T0 are equivalent and they reduce to the usual T0 separation axiom [2, 13, 16] and T1 reduces to the
usual T1 separation axiom [2].
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Theorem 3.3. (1) An extended pseudo-quasi-semi metric space (X, d) is T0 if and only if for each pair x and y in X,
d(x, y) = 0 = d(y, x) implies x = y.

(2) An extended pseudo-quasi-semi metric space (X, d) is T1 if and only if for every distinct pair x and y in X
d(x, y) = ∞ = d(y, x).

Proof. The proof of (1) is well known and the proof of (2) is given in [9].

Theorem 3.4. An extended pseudo-quasi-semi metric space (X, d) is T0 if and only if for every distinct pair x and y
in X, d(x, y) = ∞ or d(y, x) = ∞.

Proof. The proof is similar to the proof of Theorem 3.3(2) by using the principal axis map instead of the
skewed axis map.

Theorem 3.5. Every extended pseudo-quasi-semi metric space (X, d) is T′0.

Proof. Let (X, d) be an extended pseudo-quasi-semi metric space, d2 be the final extended pseudo-quasi-
semi metric structure on X2∐X2 induced by the canonical injection maps i1, i2 : (X2, d2) → X2∐X2, d1
be the quotient extended pseudo-quasi-semi metric structure on X2

∨∆ X2 induced by the quotient map
q : (X2∐X2, d2)→ X2

∨∆X2, and d̄ be the initial structure on X2
∨∆X2 induced by id : X2

∨∆X2
→ (X2

∨∆X2, d1)
and 5 : X2

∨∆ X2
→ (X2, ddis), where ddis is discrete structure on X2.

Let u and v be any points in X2
∨∆ X2.

If u = v, then d̄(u, v) = 0.
Suppose that 5(u) = (x, x) = 5(v) for some x ∈ X. It follows that u = (x, x)k = v, k = 1, 2 and q−1(u) =

{(x, x)1, (x, x)2} = q−1(v). Note that ddis(5(u),5(v)) = 0 and by Proposition 2.1, d1(u, v) = d2(q−1(u), q−1(v)) =
d2({(x, x)1, (x, x)2}, {(x, x)1, (x, x)2}) = 0. Hence, by Proposition 2.1, d̄(u, v) = 0.

Suppose that u , v and 5(u) = (x, y) = 5(v), for some (x, y) ∈ X2 with x , y. Since u , v, we must have
u = (x, y)1, v = (x, y)2 or u = (x, y)2, v = (x, y)1.

If u = (x, y)1 and v = (x, y)2, then ddis(5(u),5(v)) = 0 and by Proposition 2.1, d1(u, v) = ∞ since u = (x, y)1
and v = (x, y)2 are in different component of the wedge and x , y and consequently, d̄(u, v) = ∞. Similarly,
if u = (x, y)2 and v = (x, y)1, then d̄(u, v) = ∞.

If u , v and 5(u) , 5(v), then, by Proposition 2.1, ddis(5(u),5(v)) = ∞, and consequently, d̄(u, v) = ∞.
Hence, by Proposition 2.1, d̄ is discrete structure on X2

∨∆ X2 and by Definition 3.1, (X, d) is T′0.

Definition 3.6. ([2]) Let U : E → Set be topological and X an object in Ewith U(X) = B.
(1) If the initial structure on B2∨

∆ B2 induced from the U-source S : B2∨
∆ B2

→ U(X3) = B3 and the
final structure on B2∨

∆ B2 induced from the U-sink {q ◦ i1, q ◦ i2 : U(X2) = B2
→ B2∨

∆ B2
} coincide, then X

is called a PreT′2 object.
(2) If the initial lift of the U-source S : B2∨

∆ B2
→ U(X3) = B3 and the initial lift of the U-source

A : B2∨
∆ B2
→ U(X3) = B3 coincide, then X is called a PreT2 object.

Remark 3.7. (1) For the category Top of topological spaces both PreT2 and PreT′2 are equivalent and they
reduce to for any two distinct points, if there is a neighborhood of one missing the other, then the two points
have disjoint neighborhoods [2].

(2) In any topological category, by Theorem 3.1 of [6], it is shown that PreT′2 implies PreT2, but the reverse
implication is not true, in general.

Lemma 3.8. Suppose a, b, c ∈ [0,∞]. Then, sup{a, b} = sup{a, c} = sup{b, c} = sup{a, b, c} if and only if we have
either a = b ≥ c or a = c ≥ b or b = c ≥ a.

Proof. If b = sup{a, b} = sup{a, c}, then b = c ≥ a and if a = sup{a, b} = sup{b, c}, then a = c ≥ b. If
a = sup{a, c} = sup{b, c}, then a = b ≥ c.

The converse is clear.
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Lemma 3.9. Suppose a, b, c, d ∈ [0,∞]. sup{a, b, c} = sup{a, b, d} = sup{a, c, d} = sup{b, c, d} if and only if either
a = b ≥ c, d or a = c ≥ b, d or a = d ≥ b, c or b = c ≥ a, d or b = d ≥ a, c or c = d ≥ a, b.

Proof. Suppose a = sup{a, b, c} = sup{b, c, d}. Then a = b ≥ c, d or a = c ≥ b, d or a = d ≥ b, c. b = sup{a, b, c} =
sup{a, c, d} implies b = a ≥ c, d or b = c ≥ a, d or b = d ≥ a, c. If c = sup{a, b, c} = sup{a, b, d}, then, c = a ≥ b, d
or c = b ≥ a, d or c = d ≥ a, b. If d = sup{a, b, d} = sup{a, b, c}, then, d = a ≥ b, c or d = b ≥ a, c or d = c ≥ a, b.

The converse is clear.

Theorem 3.10. An extended-pseudo-quasi-semi metric space (X, d) is PreT2 if and only if the following conditions
are satisfied.

(1) d is symmetric.
(2) For any three distinct points x, y, z of X, we have either d(x, y) = d(y, z) ≥ d(x, z) or d(x, y) = d(x, z) ≥ d(y, z)

or d(x, z) = d(z, y) ≥ d(x, y).
(3) For any four distinct points x, y, z,w of X, we have either d(x, z) = d(y, z) ≥ d(x,w), d(y,w) or d(x, z) =

d(x,w) ≥ d(y, z), d(y,w) or d(x, z) = d(y,w) ≥ d(y, z), d(x,w) or d(y, z) = d(x,w) ≥ d(x, z), d(y,w) or d(y, z) =
d(y,w) ≥ d(x, z), d(x,w) or d(x,w) = d(y,w) ≥ d(x, z), d(y, z).

Proof. Suppose (X, d) is PreT2 and x, y ∈ X with x , y. Let u = (x, y)1 and v = (x, y)2. Note that u, v ∈ X2
∨∆ X2

and since (X, d) is PreT2, it follows from Proposition 2.1 and Definition 3.6 that

d(y, x) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3}
= sup{d(πiA(u), πiA(v)), i = 1, 2, 3}
= sup{d(x, y), d(y, x)}
= sup{d(πiA(v), πiA(u)), i = 1, 2, 3}
= sup{d(πiS(v), πiS(u)), i = 1, 2, 3}
= d(x, y)

where πi : X3
→ X, i = 1, 2, 3 are the projection maps and consequently, d(x, y) = d(y, x), i.e., d is symmetric.

Let x, y, z be any three distinct points of X. Since (X, d) is PreT2, it follows from Proposition 2.1 and
Definition 3.6 that

sup{d(y, x), d(z, x)} = sup{d(πiS((y, z)1), πiS((x, z)2)), i = 1, 2, 3}
= sup{d(πiA((y, z)1), πiA((x, z)2)), i = 1, 2, 3}
= sup{d(y, x), d(z, x), d(y, z)}, sup{d(x, y), d(z, y)}
= sup{d(πiS((x, z)1), πiS((y, z)2)), i = 1, 2, 3}
= sup{d(πiA((x, z)1), πiA((y, z)2)), i = 1, 2, 3}
= sup{d(x, y), d(z, y), d(x, z)},

and

sup{d(x, z), d(y, z)} = sup{d(πiS((x, y)1), πiS((z, y)2)), i = 1, 2, 3}
= sup{d(πiA((x, y)1), πiA((z, y)2)), i = 1, 2, 3}
= sup{d(x, z), d(y, z), d(x, y)}.

Since d is symmetric,

sup{d(y, x), d(z, x)} = sup{d(y, x), d(z, x), d(y, z)}
= sup{d(x, y), d(z, y)}
= sup{d(z, x), d(y, z)}

and in Lemma 3.8, taking a = d(x, y), b = d(x, z), c = d(y, z), we get either d(x, y) = d(y, z) ≥ d(x, z)} or
d(x, y) = d(x, z) ≥ d(y, z) or d(x, z) = d(z, y) ≥ d(x, y).
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Let x, y, z,w be any four distinct points of X. Since (X, d) is PreT2, by Proposition 2.1 and Definition 3.6,

sup{d(x, z), d(y, z), d(y,w)} = sup{d(πiS((x, y)1), πiS((z,w)2)), i = 1, 2, 3}
= sup{d(πiA((x, y)1), πiA((z,w)2)), i = 1, 2, 3}
= sup{d(x, z), d(y, z), d(x,w)},

sup{d(x,w), d(y, z), d(y,w)} = sup{d(πiS((x, y)1), πiS((w, z)2)), i = 1, 2, 3}
= sup{d(πiA((x, y)1), πiA((w, z)2)), i = 1, 2, 3}
= sup{d(x, z), d(y,w), d(x,w)},

and

sup{d(w, y), d(z, y), d(z, x)} = sup{d(πiS((w, z)1), πiS((y, x)2)), i = 1, 2, 3}
= sup{d(πiA((w, z)1), πiA((y, x)2)), i = 1, 2, 3}
= sup{d(w, y), d(z, y), d(w, x)}.

Since d is symmetric, we have

sup{d(x, z), d(y, z), d(y,w)} = sup{d(x, z), d(y, z), d(x,w)}
= sup{d(x,w), d(y, z), d(y,w)}
= sup{d(x, z), d(y,w), d(x,w)}.

In Lemma 3.9, take a = d(x, z), b = d(y, z), c = d(x,w), and d = d(y,w). Then we get either d(x, z) = d(y, z) ≥
d(x,w), d(y,w) or d(x, z) = d(x,w) ≥ d(y,w), d(y, z) or d(x, z) = d(y,w) ≥ d(x,w), d(y, z) or d(y, z) = d(x,w) ≥
d(x, z), d(y,w) or d(y,w) = d(y, z) ≥ d(x, z), d(x,w) or d(y,w) = d(x,w) ≥ d(x, z), d(y, z).

Conversely, suppose that the conditions hold. Then, we will show that (X, d) is PreT2, i.e., by Definition
3.6, for any points u and v of the wedge X2∨

∆ X2, dA(u, v) = dS(u, v), where dA and dS are the initial structures
on X2

∨∆ X2 induced by A : X2
∨∆ X2

→ (X3, d3) and S : X2
∨∆ X2

→ (X3, d3), respectively (d3 is the product
extended pseudo-quasi-semi metric structure on X3).

First, note that dA and dS are symmetric since d is symmetric by the assumption (1).
If u = v, then dA(u, v) = 0 = dS(u, v).
Suppose the distinct points u and v are in the same component of the wedge.
If u = (x, y)k and v = (z,w)k for x, y, z,w ∈ X and k = 1, 2, then, by Proposition 2.1,

dA(u, v) = sup{d(πiA(u), πiA(v)), i = 1, 2, 3} = sup{d(y,w), d(x, z)}, and
dS(u, v) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = sup{d(y,w), d(x, z)} .

and consequently, dA(u, v) = dS(u, v)
Suppose the distinct points u and v are in the different component of the wedge. We have the following

cases for u and v :
Case 1. u = (x, y)k or (y, x)k and v = (x, y) j or (y, x) j for x , y, k , j and k, j = 1, 2.
If u = (x, y)1 and v = (x, y)2 (resp. v = (y, x)2), then dA(u, v) = sup{d(y, x), d(x, y)} and dS(u, v) = d(y, x)

( resp. dS(u, v) = sup{d(y, x), d(x, y)} and dA(u, v) = d(y, x)), and consequently, dA(u, v) = dS(u, v) since d is
symmetric.

Similarly if u = (y, x)1 and v = (x, y)2 (v = (y, x)2), then dA(u, v) = dS(u, v).
Case 2. u = (x, y)k, (x, z)k, (y, z)k, (y, x)k, (z, x)k or (z, y)k and v = (x, y) j, (x, z) j, (y, z) j, (y, x) j, (z, x) j or (z, y) j

for three distinct points x, y, z of X, k , j and k, j = 1, 2. If u = (x, z)1 and v = (x, y)2 or (z, y)2,(resp. u = (x, y)1
and v = (x, z)2 or (y, z)2, u = (y, z)1 and v = (x, y)2, u = (z, y)1 and v = (x, z)2), then

dA(u, v) = sup{d(x, y), d(x, z)} and dS(u, v) = sup{d(y, z), d(x, z)},
(resp. dS(u, v) = sup{d(x, y), d(y, z)}, dS(u, v) = sup{d(x, z), d(y, z), d(x, y)}).
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If d(x, y) = d(y, z) ≥ d(x, z), then dA(u, v) = sup{d(x, y), d(x, z)} = d(x, y) = d(y, z) = dS(u, v).
If d(x, y) = d(x, z) ≥ d(y, z), then dA(u, v) = sup{d(x, y), d(x, z)} = d(x, y) = d(x, z) = dS(u, v).
If d(x, z) = d(z, y) ≥ d(x, y), then dA(u, v) = sup{d(x, y), d(x, z)} = d(x, z) = d(y, z) = dS(u, v).
If u = (x, z)1 and v = (y, x)2 or (y, z)2 (resp. u = (y, x)1 and v = (x, z)2 or (y, z)2, u = (y, z)1 and

v = (y, x)2 or (z, x)2), then dA(u, v) = sup{d(x, y), d(y, z)} and dS(u, v) = sup{d(x, y), d(x, z), d(y, z)}, dS(u, v) =
sup{d(x, y), d(x, z)} (resp. dS(u, v) = sup{d(x, z), d(y, z)}).

If d(x, y) = d(y, z) ≥ d(x, z), then dA(u, v) = sup{d(x, y), d(x, z)} = d(x, y) = d(y, z) = dS(u, v).
If d(x, y) = d(x, z) ≥ d(y, z), then dA(u, v) = sup{d(x, y), d(x, z)} = d(x, y) = d(x, z) = dS(u, v).
If d(x, z) = d(z, y) ≥ d(x, y), then dA(u, v) = sup{d(x, y), d(x, z)} = d(x, z) = d(y, z) = dS(u, v).
If u = (z, x)1 and v = (x, y)2 or (z, y)2 ( resp. u = (z, y)1 and v = (y, x)2) or (z, x)2), u = (y, x)1 and

v = (z, y)2, u = (y, x)1 and v = (z, y)2), then dA(u, v) = sup{d(y, z), d(x, z)} and dS(u, v) = sup{d(x, z), d(x, y)}
(resp. dS(u, v) = sup{d(x, y), d(y, z)}, dS(u, v) = sup{d(x, y), d(x, z)d(y, z)} ).

If u = (x, z)1 and v = (y, z)2 or u = (z, x)1 and v = (y, x)2 ( resp. u = (y, z)1 and v = (x, z)2), u = (z, y)1 and
v = (x, y)2), u = (x, y)1 and v = (z, y)2, u = (y, x)1 and v = (z, x)2), then dA(u, v) = sup{d(x, y), d(y, z), d(x, z)}
and dS(u, v) = sup{d(y, z), d(x, y)} (resp. dS(u, v) = sup{d(x, y), d(x, z)}, dS(u, v)).

If d(x, y) = d(y, z) ≥ d(x, z) or d(x, y) = d(x, z) ≥ d(y, z) or d(x, z) = d(z, y) ≥ d(x, y), then it follows easily
that dA(u, v) = dS(u, v).

If u = (a, b)k or u = (b, a)k and v = (a, b) j or v = (b, a) j for a , b, a, b = x, y, z, k , j and k, j = 1, 2, then by the
case 1, we have dA(u, v) = dS(u, v).

Case 3. Let x, y, z,w be four distinct points of X. If u = (x, y)1 and v = (z,w)2 or u = (z,w)1 and
v = (x, y)2, then dA(u, v) = sup{d(y, z), d(x,w), d(x, z)} and dS(u, v) = sup{d(y,w), d(x, z), d(y, z)} (resp. dS(u, v) =
sup{d(y,w), d(x, z), d(x,w)}).

If u = (x, y)1 and v = (w, z)2 or u = (w, z)1 and v = (x, y)2, then dA(u, v) = sup{d(y,w), d(x,w), d(x, z)} and
dS(u, v) = sup{d(x,w), d(y,w), d(y, z)} (resp. dS(u, v) = sup{d(y, z), d(x, z), d(x,w)}).

If u = (y, x)1 and v = (z,w)2 or u = (z,w)1 and v = (y, x)2, then dA(u, v) = sup{d(y, z), d(y,w), d(x, z)} and
dS(u, v) = sup{d(x,w), d(x, z), d(y, z)} (resp. dS(u, v) = sup{d(y, z), d(y,w), d(x,w)}).

If u = (y, x)1 and v = (w, z)2 or u = (w, z)1 and v = (y, x)2, then dA(u, v) = sup{d(y,w), d(x,w), d(y, z)} and
dS(u, v) = sup{d(x,w), d(y,w), d(x, z)} (resp. dS(u, v) = sup{d(y, z), d(y,w), d(x, z)}).

If d(x, z) = d(y, z) ≥ d(x,w), d(y,w), then dA(u, v) = d(x, z) = d(x,w) = dS(u, v).
If d(x, z) = d(x,w) ≥ d(y, z), d(y,w), then dA(u, v) = d(x, z) = d(y,w) = dS(u, v).
If d(x, z) = d(y,w) ≥ d(y, z), d(x,w), then dA(u, v) = d(x, z) = d(y,w) = dS(u, v).
If d(y, z) = d(x,w) ≥ d(x, z), d(y,w), then dA(u, v) = d(y, z) = d(x,w) = dS(u, v).
If d(y, z) = d(y,w) ≥ d(x, z), d(x,w), then dA(u, v) = d(y, z) = d(y,w) = dS(u, v).
If d(x,w) = d(y,w) ≥ d(x, z), d(y, z), then dA(u, v) = d(x,w) = d(y,w) = dS(u, v).
Similarly, if u = (x, z)1 and v = (y,w)2 (resp. u = (y,w)1 and v = (x, z)2, u = (x, z)1 and v = (w, y)2,

u = (w, y)1 and v = (x, z)2, u = (w, y)1 and v = (z, x)2, u = (z, x)1 and v = (w, y)2, u = (z, x)1 and v = (y,w)2,
u = (y,w)1 and v = (z, x)2) and if u = (x,w)1 and v = (y, z)2 (resp. u = (y, z)1 and v = (x,w)2, u = (x,w)1 and
v = (z, y)2, u = (z, y)1 and v = (x,w)2, u = (w, x)1 and v = (y, z)2, u = (y, z)1 and v = (w, x)2, u = (w, x)1 and
v = (z, y)2, u = (z, y)1 and v = (w, x)2), by the assumption (3), dA(u, v) = dS(u, v).

Hence, for all points u and v in the wedge X2∨
∆ X2, dA(u, v) = dS(u, v) and by Definition 3.6, (X, d) is

PreT2.

Theorem 3.11. An extended pseudo-quasi-semi metric space (X, d) is PreT′2 if and only if for all x, y ∈ X with x , y,
d(x, y) = ∞ and d(y, x) = ∞.

Proof. Suppose that (X, d) is PreT′2 and x, y ∈ X with x , y. Let d2 be the final extended pseudo-quasi-
semi metric structure on X2∐X2 induced by the canonical injection maps i1, i2 : (X2, d2) → X2∐X2 and
d1 be the quotient extended pseudo-quasi-semi metric structure on X2

∨∆ X2 induced by the quotient
map q : (X2∐X2, d2) → X2

∨∆ X2. Suppose that for u = (x, y)1 and v = (x, y)2 with x , y. Then
sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = d(y, x), where πi : X3

→ X, i = 1, 2, 3 are the projection maps and by
Proposition 2.1,

d1(u, v) = d2(q−1(u), q−1(v)) = d2({(x, y)1}, {(x, y)2}) = ∞.
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Since (X, d) is PreT′2, by Definition 3.6,
d(y, x) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = d1(u, v) = ∞which shows d(y, x) = ∞.
Similarly, if u = (x, y)2 and v = (x, y)1 with x , y, then
d(x, y) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = d1(u, v) = ∞, i.e., d(x, y) = ∞.
Conversely, suppose that d(x, y) = ∞ and d(y, x) = ∞ for all x, y ∈ X with x , y. Let dS be the initial

structure on X2
∨∆ X2 induced from the principle axis map S : X2

∨∆ X2
→ (X3, d3), where d3 is the product

extended pseudo-quasi-semi metric structure on X3, d1 and d2 be extended pseudo-quasi-semi metric
structures defined as above. Note that the composition of final lifts is final.

We need to show that (X, d) is PreT′2, i.e., by Definition 3.6, the initial structure dS and the final structure
d1 are equal, i.e., d1 = dS.

Let u and v be any points in X2
∨∆ X2.

If u = v, then d1(u, v) = 0 = dS(u, v). Suppose that u , v and they are in the same component of the
wedge with u , v, i.e., u = (x, y)k and v = (z,w)k for k = 1, 2 and x, y, z,w ∈ X.

If x , y and z = w, then by Proposition 2.1,

dS(u, v) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = sup{d(x, z)d(y, z)}and

d1(u, v) = d2(q−1(u), q−1(v))
= d2({(x, y)k}, {(z, z)1, (z, z)2})
= inf{d2((x, y)k, (z, z)1), d2((x, y)k, (z, z)2), k = 1, 2}
= d2((x, y)k, (z, z)k) = d2((x, y)k, (z, z)k)
= sup{d(x, z), d(y, z)}

and consequently, d1(u, v) = dS(u, v).
If x = y and z , w, then by Proposition 2.1,

dS(u, v) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = sup{d(x, z)d(x,w)}

and

d1(u, v) = d2(q−1(u), q−1(v))
= d2({(x, x)1, (x, x)2}, {(z,w)k})
= d2((x, y)k, (z, z)k)
= d2((x, x)k, (z,w)k)
= sup{d(x, z), d(x,w)}

and consequently, d1(u, v) = dS(u, v).
If x = y , z = w, then by Proposition 2.1,

dS(u, v) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = d(x, z)

and

d1(u, v) = d2(q−1(u), q−1(v))
= d2({(x, x)1, (x, x)2}, {(z, z)1, (z, z)2})
= d2((x, x)k, (z, z)k)
= d2((x, x)k, (z, z)k)
= d(x, z)

for k = 1, 2 and consequently, d1(u, v) = dS(u, v).
If x , y and z , w, then by Proposition 2.1,

dS(u, v) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = sup{d(x, z)d(y,w)} and
d1(u, v) = d2(q−1(u), q−1(v)) = d2({(x, y)k}, {(z,w)k}) = d2((x, y)k, (z,w)k) = sup{d(x, z), d(y,w)}
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and consequently, d1(u, v) = dS(u, v).
Suppose that u , v and they are in the different component of the wedge X2

∨∆ X2, i.e., u = (x, y)i
and v = (z,w) j for i, j = 1, 2, with i , j and x, y, z,w ∈ X. If x = z , y = w, u = (x, y)1 and v = (x, y)2
(resp. u = (x, y)2 and v = (x, y)1), then by Proposition 2.1, dS(u, v) = d(y, x) (resp. d(x, y)) and d1(u, v) =
d2(q−1(u), q−1(v) = d2(u, v) = ∞ (resp. d1(u, v) = ∞). Since x , y, by the assumption d(y, x) = ∞ = d(x, y) =,
and consequently, d1(u, v) = dS(u, v).

Similarly, if z = y , w = x, then, by Proposition 2.1, d1(u, v) = dS(u, v).
Suppose that (x, y) , (z,w).
Assume that x , z , y = w. If u = (x, y)1 and v = (z, y)2, then

dS(u, v) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = sup{d(y, z)d(x, z)} = ∞

by the assumption d(x, z) = ∞ since x , z and d1(u, v) = ∞ and consequently, d1(u, v) = dS(u, v).
Assume that x = z , y , w. If u = (x, y)1 and v = (x,w)2, then by assumption and Proposition 2.1,

dS(u, v) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = sup{d(y, x)d(y,w)} = ∞ and
d1(u, v) = d2(q−1(u), q−1(v) = d2(u, v) = ∞.
Suppose that x , z, y , w. If u = (x, y)1 and v = (z,w)2, then, by Proposition 2.1 and assumption,

dS(u, v) = sup{d(πiS(u), πiS(v)), i = 1, 2, 3} = sup{d(x, z), d(y, z), d(y,w)} = ∞ and d1(u, v) = d2(u, v) = ∞.
Hence, for all points u and v on the wedge X2∨

∆ X2, we have d1(u, v) = dS(u, v) and by Definition 3.6,
(X, d) is PreT′2.

Definition 3.12. ([5]) Let E be a topological category and X an object in E.
(1) If X is T′0 and PreT′2, then X is called T′2,
(2) If X is T0 and PreT2, then X is called T2,
(3) If X is T′0 and PreT2, then X is called KT2,
(4) If X is T0 and PreT2, then X is called NT2.

Theorem 3.13. An extended-pseudo-quasi-semi metric space (X, d) is KT2 if and only if (X, d) is PreT2.

Proof. It follows from Theorems 3.4, 3.10, and Definition 3.12.

Theorem 3.14. An extended-pseudo-quasi-semi metric space (X, d) is NT2 if and only if the following conditions are
satisfied.

(1) (X, d) an extended-semi metric space.
(2) For any three distinct points x, y, z of X, we have either d(x, y) = d(y, z) ≥ d(x, z) or d(x, y) = d(x, z) ≥ d(y, z)

or d(x, z) = d(z, y) ≥ d(x, y).
(3) For any four distinct points x, y, z,w of X, we have either d(x, z) = d(y, z) ≥ d(x,w), d(y,w) or d(x, z) =

d(x,w) ≥ d(y, z), d(y,w) or d(x, z) = d(y,w) ≥ d(y, z), d(x,w) or d(y, z) = d(x,w) ≥ d(x, z), d(y,w) or d(y, z) =
d(y,w) ≥ d(x, z), d(x,w) or d(x,w) = d(y,w) ≥ d(x, z), d(y, z).

Proof. It follows from Theorems 3.3, 3.10 and Definition 3.12.

Theorem 3.15. An extended-pseudo-quasi-semi metric space (X, d) is T2 (resp. T′2 ) if and only if (X, d) is discrete.

Proof. It follows from Theorems 3.3-3.5, 3.10, 3.11, and Definition 3.12.

Theorem 3.16. Let E be a topological category and X an object in E. If X is T′2, then X is KT2.

Proof. Suppose X is T′2. By Definition 3.12, X is T′0 and PreT′2. By Theorem 3.1 of [6], X is PreT2 and
consequently, X is T′0 and PreT2, i.e., by Definition 3.12, X is KT2.

Let TpqsMet be the full subcategory of a topological category pqsMet consisting of all T extended
pseudo-quasi-semi metric spaces, where T = PreT2,T′0,NT2,T2,T′2,KT2.
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Theorem 3.17. (1) KT2pqsMet is a topological category and the full subcategories PreT2pqsMet and KT2pqsMet
are isomorphic.

(2) T′0pqsMet is a cartesian closed and hereditary topological category.
(3) The full subcategories T2pqsMet and T′2pqsMet are isomorphic.

Proof. (1) By Theorem 3.4 of [8], PreT2pqsMet is a topological category. By Theorem 3.10 and Theorem
3.13, both PreT2pqsMet and KT2pqsMet are isomorphic categories and consequently, KT2pqsMet is a
topological category.

(2) By Theorem 3.5, both T′0pqsMet and pqsMet are isomorphic categories and consequently, T′0pqsMet
is a cartesian closed and hereditary topological category [11].

(3) By Theorem 3.15, the full subcategories T2pqsMet and T′2pqsMet of pqsMet are isomorphic.

Remark 3.18. (1) Note that for the category Top of topological spaces, by Definition 3.12, Remark 3.2, and
Remark 3.7, all of T2, T′2, NT2, and KT2 are equivalent and they reduce to the usual T2 separation axiom.

(2) In pqsMet, by Theorems 3.13-3.15, T2 ⇔ T′2 ⇒ NT2 ⇒ KT2 but the reverse implication is not true, in
general. As an example, if (R, d) is the indiscrete extended pseudo-quasi-semi metric space, i.e., d(a, b) = 0
for all a, b ∈ R, where R is the set of reel numbers, then by Theorem 3.13, (R, d) is KT2 but by Theorems 3.13-
3.15, (R, d) is not T2,T′2 and NT2. Also, if X = {x, y, z} and d is defined as d(x, x) = 0 = d(y, y) = d(z, z), d(x, y) =
1 = d(y, x), d(x, z) = 3 = d(z, x) = d(y, z) = d(z, y). By Theorem 3.14, (X, d) is NT2 but by Theorem 3.15, (X, d)
is not T2 (resp. T′2).

(3) By Theorem 3.17, the categories PreT2pqsMet, T′0pqsMet, and KT2pqsMet have all limits and
colimits. By Theorems 3.3, 3.4, and 3.15, the categories T2pqsMet, T1pqsMet, T0pqsMet, T0pqsMet, and
T′2pqsMet are hereditary and productive.

(4) In any topological category, by Theorem 3.16, Theorem 2.7 of [5] and Remark 3.2 of [6], both T′2 and
T2 implies KT2. The relationships among T2, T′2, NT2, and KT2 objects in some well known topological
categories are investigated in Remark 2.8(1-7) of [5]. Moreover, for an arbitrary topological category, we
have T0 implies T′0 ([4], Theorem 3.2) but the reverse implication is generally not true by Theorem 3.4,
Theorem 3.5 and Remark 3.18. Also, there are no implications between T0 and each of T0 and T′0 ([4],
Remark 3.6).

Let U : E → Set be topological functor and X be an object in E with U(X) = B. Let M be a nonempty
subset of B. We denote by X/M the final lift of the epi U-sink q : U(X) = B→ B/M = (B\M) ∪ {∗}, where q is
the epi map that is the identity on B\M and identifying M with a point * [3].

Recall, in [3], that M ⊂ X is strongly closed if and only if X/M is T1 at * and M ⊂ X is closed if and only
if {∗}, the image of M, is closed in X/M.

Theorem 3.19. ([10]) Let (X, d) be an extended pseudo-quasi-semi metric space and ∅ ,M ⊂ X .
(1) M is strongly closed if and only if d(M, x) = ∞ = d(x,M) for all x ∈ X with x <M.
(2) M is closed if and only if d(M, x) = ∞ or d(x,M) = ∞ for all x ∈ X with x <M.

Theorem 3.20. Let (X, d) be an extended pseudo-quasi-semi metric space.
(1) If (X, d) is T2 (resp. T′2 or T1), then each subset of X is (strongly) closed.
(2) If N ⊂ X is (strongly) closed and M ⊂ N is (strongly) closed, then M ⊂ X is (strongly) closed.
(3) If (X, d) is KT2 (resp. NT2), then a subset M of X is strongly closed if and only if it is closed.

Proof. (1) follows from Theorems 3.3, 3.15, and 3.18.
(2) Suppose N ⊂ X and M ⊂ N are strongly closed. Let dN be the initial extended pseudo-quasi-semi

metric structure on N induced by the inclusion map i : N → (X, d) and dM be the initial extended pseudo-
quasi-semi metric structure on M induced by the inclusion map i : M→ (N, dN). Let x ∈ X, x <M and x < N.
By Proposition 2.1, dM(x,M) = dN(x,M) = d(x,M) and dM(M, x) = dN(M, x) = d(M, x) and by Theorem 3.19,
d(M, x) = ∞ = d(x,M) since N ⊂ X is strongly closed.
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Suppose x ∈ N. Since x < M and M ⊂ N is strongly closed by Theorem 3.19, dN(x,M) = ∞ = dN(M, x)
and by Proposition 2.1, d(x,M) = ∞ = d(M, x). Hence, by Theorem 3.19, M ⊂ X is strongly closed.

The proof for closedness is similar.
(3) Suppose ∅ , M ⊂ X and x ∈ X with x < M. By Theorems 3.13 and 3.14, d(x, y) = d(y, x) for all y ∈ M.

By Theorem 3.19, M is strongly closed if and only if it is closed.

Theorem 3.21. (Urysohn’s Lemma) Let (X, d) be a KT2 (resp. NT2 ) extended pseudo-quasi-semi metric space and
M,N ⊂ X be nonempty disjoint closed subset of X. Then, there exists a non-expansive mapping f : (X, d)→ ([0, 1], e),
where e is any extended pseudo-quasi-semi metric structure on [0, 1], such that f (M) = {0} and f (N) = {1}.

Proof. Define f : (X, d)→ ([0, 1], e), where e is any extended pseudo-quasi-semi metric structure on [0, 1] by

f (x) =

{
0 if x ∈M
1 if x <M

for x ∈ X.
Note that f (M) = {0} and f (N) = {1}. We show that f is a non-expansive mapping.
Let x, y ∈ X. If x, y ∈ M or x, y ∈ MC, then e( f (x), f (y)) = 0 = e( f (y), f (x)) ≤ d(x, y). If x ∈ M and y ∈ MC

(resp. y ∈M and x ∈MC), then by Theorem 3.19 , e( f (x), f (y)) ≤ d(x, y) = ∞.
Hence, f is a non-expansive mapping such that f (M) = {0} and f (N) = {1}.

Theorem 3.22. Let (X, d) be a T2 (resp. T′2 or T1) extended pseudo-quasi-semi metric space and M,N ⊂ X be
nonempty disjoint subset of X. Then, there exists a non-expansive mapping f : (X, d) → ([0, 1], e), where e is any
extended pseudo-quasi-semi metric structure on [0, 1], such that f (M) = {0} and f (N) = {1}.

Proof. The proof is similar to the proof of Theorem 3.21 by using Theorems 3.3(2), 3.15, and 3.20.

Theorem 3.23. (Tietze Extention Theorem) Let (X, d) be a KT2 (resp. NT2) extended pseudo-quasi-semi metric
space and A ⊂ X be nonempty closed subspace of X. Then, every non-expansive mapping f : (A, d) → ([0, 1], e),
where e is any extended pseudo-quasi-semi metric structure on [0, 1] has a non-expansive extention mapping 1 :
(X, d)→ ([0, 1], e).

Proof. Suppose (X, d) is a KT2 (resp. NT2) extended pseudo-quasi-semi metric space, A is nonempty closed
subspace of X, and f : (A, dA) → ([0, 1], e) is a non-expansive mapping, where dA is the initial extended
pseudo-quasi-semi metric structure on A induced by the inclusion map i : A → (X, d) and where e is any
extended pseudo-quasi-semi metric structure on [0, 1].

Define 1 : (X, d)→ ([0, 1], e) by

1(x) =

{
f (x) if x ∈ A
0 if x < A

for x ∈ X.
Note that 1(x) = f (x) for all x ∈ A. We show that 1 is a non-expansive mapping.
Let x, y ∈ X. If x, y ∈ A, then e(1(x), 1(y)) = e( f (x), f (y)) ≤ d(x, y) since f is a non-expansive mapping. If

x ∈ A and y ∈ AC (resp. y ∈ A and x ∈ AC), then by Theorems 3.13 and 3.14, e(1(x), 1(y)) ≤ d(x, y) = ∞. If
x, y ∈ AC, then e( f (x), f (y)) = 0 ≤ d(x, y).

Hence, 1 is a non-expansive extention mapping of f .

Theorem 3.24. Let (X, d) be a T2 (resp. T′2 or T1) extended pseudo-quasi-semi metric space and A be any nonempty
subspace of X. Then, every non-expansive mapping f : (A, d)→ ([0, 1], e), where e is any extended pseudo-quasi-semi
metric structure on [0, 1] has a non-expansive extention mapping 1 : (X, d)→ ([0, 1], e).

Proof. The proof is similar to the proof of Theorem 3.23 by using Theorems 3.3(2), 3.15, and 3.20.
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Let U : E → Set be a topological functor and X be an object in E. Recall, in [10], that X is said to be
(strongly) irreducible if M,N are (strongly) closed subobjects of X and X = M ∪N, then M = X or N = X.

Note that if a topological space (X, τ) is T1, then the notions of irreducible spaces and strongly irreducible
spaces coincide and if (X, τ) is nonempty irreducible and T2, then (X, τ) must be a one-point space [10].

Theorem 3.25. Let (X, d) be an extended pseudo-quasi-semi metric space.
(1) If (X, d) is a nonempty (strongly) irreducible and T2 (resp. T′2 or T1), then (X, d) must be a one-point space.
(2) If (X, d) is (strongly) irreducible and KT2 (resp. NT2), then (X, d) may not be a one-point space.
(3) If (X, d) is KT2 (resp. NT2), then (X, d) is strongly irreducible if and only if (X, d) is irreducible.

Proof. (1) Suppose that (X, d) is nonempty (strongly) irreducible T2 (resp. T′2 or T1) and X has at least two
points, x and y. Let M = {x}. By Theorem 3.20, M and MC are proper (strongly) closed and X = M ∪MC, a
contradiction. Hence, (X, d) must be a one-point space.

(2) Let X = {x, y} and d is defined as d(x, x) = 0 = d(y, y), d(x, y) = 1 = d(y, x). By Theorems 3.13 and 3.14,
(X, d) is KT2 and NT2. By Theorem 3.19, (X, d) is (strongly) irreducible but (X, d) is not a one-point space.

(3) By Theorem 5.4 of [10], if (X, d) is irreducible, then (X, d) is strongly irreducible. Suppose that (X, d)
is strongly irreducible KT2 (resp. NT2) and X = M ∪ N, where M,N are closed subsets of X. By Theorem
3.20, M and N are strongly closed subsets of X. Since (X, d) is strongly irreducible, then M = X or N = X
and consequently, (X, d) is irreducible.
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