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Abstract. In the present investigation, we introduce and study linear operators, which underestimate
every strongly convex function. We call them, for brevity, sp−linear (approximation) operators. We will
provide their sharp approximation errors. We show that the latter is bounded by the error approximation
of the quadratic function. We use the centroidel Voronoi tessellations as a domain partition to construct
best sp−linear operators. Finally, numerical examples are presented to illustrate the proposed method.

1. Introduction, motivation and theoretical justification

The problem of approximating a given function, that satisfies certain given conditions, is required in
many applications. Generally, to get a better approximation of the function we try to approximate it in an
appropriate candidate space, that satisfies all or a part of the given conditions. To describe our function
approximation problem more precisely, let f : Ω → R be a given function, where Ω is a compact convex
subset of Rd. In some situations, we may know that f satisfies some type of convexity, we would like to
use it in order to get a fairly good numerical integration of f . Our objective in this paper is to study linear
operators, which underestimate all strongly convex functions. The notion of strong convexity takes its roots
in the theory of numerical optimization. It is also of great use in mathematical economics, approximation
theory and machine learning. Indeed, for function optimization methods, this concept of convexity has nice
theoretical and practical properties. As we will see, one of the main advantage of using these special linear
operators is that their approximation errors can be over or under-estimated in terms of the approximation
error of the quadratic function.
To make things more concrete, let us start with a simple one dimensional motivating example. Assume
given µ > 0.One of the most successful strategy for approximating a given real µ-strongly convex function
f : [a, b] → R is first to choose a partition P := {x0, x1, . . . , xn} of the interval [a, b], such that a = x0 < x1 <
. . . < xn = b, and then to approximate f using the first-order Taylor polynomial Bn about the midpoints of
the subinterval [xi, xi+1] such that Bn interpolates f and its first derivatives at

xi + xi+1

2
, (i = 0, . . . ,n − 1).
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The operator Bn can be explicitly written in the form:

Bn[ f ](x) =
(
x −

xi + xi+1

2

)
f ′

(xi + xi+1

2

)
+ f

(xi + xi+1

2

)
, (x ∈ [xi, xi+1]) . (1)

For the quadratic function (.)2, the approximation error En := f − Bn satisfies:

En

[
(.)2

]
(x) =

(
x −

xi + xi+1

2

)2
, (x ∈ [xi, xi+1]) . (2)

In addition, for any µ -strongly convex function the following under estimate holds, for all i = 0, . . . ,n − 1,

µ

2
En

[
(.)2

]
(x) ≤ En[ f ](x), (x ∈ [xi, xi+1]) . (3)

Moreover, if the first derivative of f is Lipschitz continuous with papramter Li
(

f ′
)

in [xi, xi+1] , then the
approximation error can be under and overestimated as:

µ

2
En

[
(.)2

]
(x) ≤ En[ f ](x) ≤

Li
(

f ′
)

2
En

[
(.)2

]
(x). (4)

Hence, the approximation error of this class of operators can always estimated in terms of the Lipschitz
parameters of the first derivatives, the convexity parameter (of the strong convexity) and the error generated
using the quadratic function. This provides a good starting point for discussion and further research.
Indeed, the contributions of this paper are two-fold: first, our purpose is to extend this type of univariate
results to the general multivariate variable case. More precisely, this paper deals with the problem of
approximation of multivariable functions by using sp-linear operators. That is those which underestimate
all strongly convex functions. A natural question is: can the approximation errors for such operators satisfy
similar lower and upper bounds as given in (4) in the multivariate case?

Second, we construct a multivariate version of the operator of the form (1) in the case when the domain
is a general polytope. Indeed, we use the centroidel Voronoi tessellations as a domain partition to construct
best sp-linear operators. Finally, numerical examples are presented to illustrate the proposed method.

2. Optimal estimates of approximation errors

We will start in this section with some of the basic properties of strong convex functions. But first, we
need to introduce some notations, which follow closely those of [1]. Let Ω be a nonempty and closed convex
set of Rd. We denote by ‖.‖ the Euclidean norm in Rd and 〈x, y〉 the standard inner product of x, y ∈ Rd.
Let C1,1(Ω) denote the set of all functions f which are continuously differentiable on Ω with Lipschitz
continuous gradients, i.e., there exists L[∇ f ] such that

‖∇ f (x) − ∇ f (y)‖ ≤ L[∇ f ]‖x − y‖, (x, y ∈ Ω).

A function f is said to be strongly convex with parameter µ > 0 (written µ-strongly convex) if 1 := f − µ
2 ‖ · ‖

2

is convex. Let us denote the set of continuous convex functions f : Ω → R by CC(Ω), and the set of
µ-strongly continuous convex functions on Ω by SCµ(Ω).We observe that SCµ(Ω) is obviously contained in
CC(Ω).

Definition 2.1. A linear operator L : C(Ω)→ C(Ω) is called positive on X ⊂ C(Ω) if L( f ) ≥ 0 whenever f ∈ X.

The following Lemma provides an easy but important property, it will be used extensively throughout
the reminder of this work. Indeed, it gives a necessary and sufficient condition for the positivity of linear
operators on CC(Ω). It is shown that in order to prove the positivity of a linear operator on CC(Ω), it suffices
to verify that the property is satisfied by the elements in the subset SCµ(Ω) for a given fixed strong convexity
parameter µ.
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Lemma 2.2. Given µ a arbitrary fixed positive number. If E : C(Ω) → C(Ω) is a linear operator, then E is positive
on CC(Ω) if and only if E is positive on SCµ(Ω).

Proof. The direct implication is easy, since SCµ(Ω) ⊂ CC(Ω). For the other way implication assume that E is
positive on SCµ(Ω). Let ε > 0 and let f be a convex function. Define

1 := f +
ε
2
‖ · ‖

2.

Multiplying by µ
ε and rearranging, we obtain

µ

ε
f =

µ

ε
1 −

µ

2
‖ · ‖

2

and since µ
ε f is convex, then µ

ε 1 is µ-strongly convex. But E is positive on SCµ(Ω) then

E
(µ
ε
1

)
≥ 0.

Thus by homogeneity of E, it is immediate that

E(1) ≥ 0.

It is easily derived from the linearity of E that

E( f ) ≥ −
ε
2

E
(
‖ · ‖

2
)
.

Since this inequality holds for all ε > 0, then by letting ε ↓ 0, we get

E( f ) ≥ 0.

This yields the desired result and completes the proof of Lemma 2.2.

3. Characterizations of sp-linear operators

In the following, we say that a linear operator A : X ⊂ C1(Ω) → C(Ω) underestimates the identity
operator on X if, for all f ∈ X and x ∈ Ω,A[ f ](x) ≤ f (x). We observe that a linear operator A satisfies this
property if and only if the approximation error I−A is positive on X. The characterization of positive linear
operators given by Lemma 2.2 allows us to provide an error characterization estimate of these latter.

Theorem 3.1. Let µ > 0 and let A : C1(Ω) → C(Ω) be a linear operator. Then, A underestimates the identity
operator on SCµ if and only if for every f ∈ C1,1(Ω), the approximation error E := I − A satisfies

|E[ f ](x)| ≤
L(∇ f )

2

(
E
[
‖ · ‖

2
]

(x)
)
, (x ∈ Ω), (5)

where L(∇ f ) denotes the Lipschitz constant of the gradient of f .

Proof. This result is essentially based on [2, Theorem 2.3] proved in the case of the classical convexity.
Assume that A underestimates the identity operator on SCµ. Then, it follows that E is positive on SCµ(Ω).
Therefore, by an application of Lemma 2.2 we deduce that E is also positive on CC(Ω). Now [2, Theorem
2.3] shows that (5) is satisfied. Conversely, assume that (5) holds. Then, again a simple application of [2,
Theorem 2.3] implies that E is positive on CC(Ω). Thus, Lemma 2.2 yields E is also positive on SC(Ω).

The following Corollary, which is in part is a consequence of Theorem 3.1 improves estimate (5) when the
strong convexity is also imposed on the function, which we want to approximate.
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Corollary 3.2. Let µ > 0. Let A : C1(Ω) → C(Ω) be a linear operator. Assume that A underestimates the identity
operator on SCµ(Ω). Then for every f ∈ SCµ(Ω) ∩ C1,1(Ω), the approximation operator E := I − A satisfies

µ

2

(
E
[
‖ · ‖

2
]

(x)
)
≤ E[ f ](x) ≤

L(∇ f )
2

(
E
[
‖ · ‖

2
]

(x)
)
, (x ∈ Ω). (6)

Proof. By Theorem 3.1 it remains to show that the lower bound holds. Assume that A underestimates the
identity operator on SC(Ω) and let us fix f ∈ SCµ(Ω). By Lemma 2.2 the approximation error I−A is positive
on CC(Ω). Since 1 = f − µ

2 ‖ · ‖
2 is convex, then Lemma 2.2 applied to I − A implies

f −
µ

2
‖ · ‖

2
≥ A[ f ] −

µ

2
A

[
‖ · ‖

2
]

and therefore, we get after some manipulations

µ

2

(
‖ · ‖

2
− A

[
‖ · ‖

2
])
≤ f − A[ f ].

This yields the desired result. The case of equality can be verified by a simple calculation.

The over and underestimates (6) tell us that if the approximation error associated to the quadratic function
is small, then we are confident that those of strongly convex functions is also small.

4. Applications to the weighted averaging approximation

Let us assume that Xm = {xi}
m
i=0 ⊂ Ω ⊂ Rd, with Ω = conv (Xm) . We are interested in approximating an

unknown function f : Ω→ R from given function values and its gradient f
(
y0

)
,∇ f

(
y0

)
, . . . , f

(
yn

)
,∇ f

(
yn

)
where Yn :=

{
yi
}n
i=0 ⊂ Ω. Consider the weighted averaging operator (WAO)

Bn[ f ](x) =

n∑
i=0

λi(x)
(

f
(
yi
)

+
〈
∇ f

(
yi
)
, x − yi

〉)
. (7)

This means that we impose the normalizing condition on the system of functions λ := {λi}
n
i=0 for all x ∈ Ω

λi(x) ≥ 0, i = 0, . . . ,n
n∑

i=0

λi(x) = 1.
(8)

We will describe here our approach for constructing a set of functions λ := {λi}
n
i=0 , that yields a good

approximation operator Bn. To that end, let us introduce the notion of the Voronoi tessellations for a set of
distinct points y0, . . . , yn ∈ Ω. The Voronoi sets generated by these points are defined for i = 0, . . . ,n, by

Ωi =
{
x ∈ Ω :

∥∥∥x − yi

∥∥∥ ≤ ∥∥∥x − y j

∥∥∥ , j = 0, . . . ,n, j , i
}
.

The domain partition Ω0, . . . ,Ωn of Ω is called a Voronoi tessellation. It is said to be centroidal if

yi =
1
|Ωi|

∫
Ωi

xdx.

This means that the centre of gravity will always be the same as the generator of any Voronoi region in a
centroidal Voronoi tessellation (CVT).
For any function f ∈ C1,1(Ω), we define the associated error to Bn as

En[ f ](x) := En[ f ,λ](x) = f (x) − Bn[ f ](x), (x ∈ Ω). (9)

The following lemma provides a simple explicit expression of the approximation error En

[
‖ · ‖

2
]
.



O. Alabdali, A. Guessab / Filomat 36:2 (2022), 695–701 699

Lemma 4.1. The approximation error En

[
‖.‖2

]
has the convenient form:

En

[
‖ · ‖

2
]

(x) =

n∑
i=0

λi(x)
∥∥∥x − yi

∥∥∥2
. (10)

Proof. If f (x) = ‖x‖2, we easily get

f
(
yi

)
+

〈
∇ f

(
yi

)
, x − yi

〉
= ‖x‖2 −

∥∥∥x − yi

∥∥∥2
.

Hence, multiplying on each side by λi, summing up with respect to i from 0 to n,we get desired result after
arrangement.

We also have:

Lemma 4.2. Let µ > 0. Then, the operator Bn underestimates the identity operator on SCµ. Moreover, for every
f ∈ SCµ(Ω), it holds

µ

2
En

[
‖ · ‖

2
]

(x) =
µ

2

n∑
i=0

λi(x)
∥∥∥x − yi

∥∥∥2
≤ En[ f ](x), (x ∈ Ω). (11)

Proof. The equality sign in (11) has already proved in Lemma 4.1. Let us fix f a µ-strongly convex function.
By the Jensen-convexity for µ-strongly convex functions, see [4] we get

f (x) ≥ f
(
yi
)

+
〈
∇ f

(
yi
)
, x − yi

〉
+
µ

2

∥∥∥x − yi

∥∥∥2
.

Hence, multiplying on each side by λi, summing up with respect to i from 0 to n and rearranging, we get
the required result.

The following Lemma gives an upper bound for the absolute value of the approximation error.

Lemma 4.3. For every f ∈ C1,1(Ω), it holds

∣∣∣En[ f ](x)
∣∣∣ ≤ L(∇ f )

2

n∑
i=0

λi(x)
∥∥∥x − yi

∥∥∥2
, (x ∈ Ω). (12)

Proof. This Lemma is an immediate consequence of Theorem 3.1 and Lemma 4.1

The following result, which shows that the approximation error is dominated by the approximation error
of the quadratic function, will be important for the applications in the next section.

Theorem 4.4. Let µ > 0. Then, for every function f ∈ SCµ(Ω) ∩ C1,1
µ (Ω) and any x ∈ Ω, it holds:

µ

2
En

[
‖ · ‖

2
]

(x) ≤ En[ f ](x) ≤
L(∇ f )

2
En

[
‖ · ‖

2
]

(x). (13)

Proof. This is an immediate consequence of Lemmas 4.2, 4.3 and Theorem 3.1. The case of equality is easily
verified.

From the over and underestimates (13), it is important to find a good approximate for the quadratic function.
By Lemma 4.1, the quality of our approximation depends critically not only on the partition of unity λ but
also on the interpolation points y0, . . . , yn. Thus, a natural question now arises: how small can En

[
‖.‖2

]
be

over all possible choices for the partition of unity λ and the points y0, . . . , yn?

The answer for any p ≥ 1 can be found in [3, Theorem 2.11].
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Theorem 4.5. For p ∈ [1,∞) there exists an operator Bn of the form (8) which is optimal with respect to the Lp norm.
Denoting by Ω0, . . . ,Ωn the CVT by y0, . . . , yn, we have λi = 1Ωi almost everywhere on Ω for i = 0, . . . ,n and, in
addition, the equations

yi

∫
Ωi

∥∥∥x − yi

∥∥∥2p−2
dx =

∫
Ωi

x
∥∥∥x − yi

∥∥∥2p−2
dx, (i = 0, . . . ,n)

are satisfied.

5. Numerical experiments

We have seen above (Section 4) that an interesting weighted averaging approximation operator would
be to simply construct a centroidal voronoi diagram generated by a set of random points

Yn =
{
yi

}N

i=0
.

In order to give numerical illustrations of the performance of the implementation of our approach, we
apply the method to the reconstruction of two test functions 1k, k = 1, 2, when the domain Ω is the unit
square [0, 1]× [0, 1], and the function 1k exhibits the following features: it is sufficiently regular, it is strongly
convex, and can be evaluated at any point of the domain. For each of the two test functions 1k, we take N
scattered points

{
yi
}N
i=1 , which are the generators of a centroidal Voronoi tessellation on Ω, and construct

the operator BN
[
1k

]
. We then determine the mean square error (MSE) by evaluating√√√√

N∑
i=1

(
fk

(
yi

)
− BN

[
1k

] (
yi

))2

N
.

at N

Example 5.1. We take:

11(x, y) = 0.3
(
(x − 0.5)2 + (y + 0.6)2

)
+ 0.3 exp

(
(x − 0.3)2 + (y − 0.3)2

)
and D := [0, 1] × [0, 1]

Function Number of scatter data MSE
11(x, y) 50 5.8 × 10−3

250 6.8005 × 10−4

1300 5.6326 × 10−5

Example 5.2. Here, we take the following strongly convex function

12(x, y) = 0.4
(
(x − 0.5)2 + (y + 0.6)2

)
.

Function Number of scatter data MSE
12(x, y) 50 1.8 × 10−3

300 1.9338 × 10−4

700 6.4765 × 10−5

In summary, we obtain encouraging results with few random points on the domain.
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