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Abstract. We study the change of dynamics of transcendental meromorphic functions fλ = λ ez

z+1 for z ∈ C
when λ varies on the negative real axis. It is shown that there is a λ̂ such that the Fatou set of fλ is
empty for λ < λ̂ whereas the Fatou set is an invariant parabolic basin corresponding to a real rationally
indifferent fixed point x̂ if λ = λ̂ . In fact, the Fatou set is an invariant attracting basin of a real negative
fixed point âλ if λ̂ < λ < 0. Also the dynamics of f n

λ for n ≥ 2 at the fixed points is investigated for different
values of λ. As a generalization of fλ, we observed some dynamical issues for the class of entire maps
Fλ,a,m(z) = λ(z + a)m exp(z) where λ, a ∈ C and m ∈N.

1. Introduction

Let f : C → Ĉ be a transcendental meromorphic function. Then the Fatou set, denoted by F ( f ) is
defined by
F ( f ) = {z ∈ Ĉ : { f n : n ∈N} is defined and normal in some neighbourhood of z}
and the Julia set, denoted by J( f ), is the complement of F ( f ) in Ĉ. The Fatou set is open and the Julia

set is perfect. Roughly speaking, the Fatou set is the set where iterative behaviour is relatively tame. i.e.,
points close to each other behave similarly while the Julia set is the set of points where the nearby points
behave in a drastically different way under the iteration of the given function. The orbits here are extremely
sensitive to initial conditions. Another interesting property is that if the interior is nonempty, then the
Julia set coincides with Ĉ. Periodic points play very crucial role in the iteration theory because their orbits
are finite and they sometimes control the dynamics locally. A point z0 is called a periodic point of f if
f n(z0) = z0 for some n ≥ 1. The smallest n with this property is called the period of z0. For a periodic point
z0 of period n, the orbit O+(z0) = {z0, f (z0), ..., f n−1(z0)} is called the cycle of z0. The number λ = ( f n)′(z0) is
called multiplier of z0.
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Corresponding author: Gorachand Chakraborty
The second author sincerely acknowledges the financial support rendered by the RUSA Sponsored Project [Ref No.: IP/RUSA(C-

10)/16/2021; Date: 26.11.2021] running at the Department of Mathematics, University of Kalyani, Kalyani-741235, India and the third
author sincerely acknowledges the financial support rendered by DST-FIST 2020-2021 running at the Department of Mathematics,
Lady Brabourne College, Kolkata-700017, India.

Email addresses: gorachand11@gmail.com (Gorachand Chakraborty), sanjibdatta05@gmail.com (Sanjib Kumar Datta),
debasmita.dut@gmail.com (Debasmita Dutta)



G. Chakraborty et al. / Filomat 36:2 (2022), 683–693 684

A periodic point is called attracting, indifferent or repelling as in the case with |λ| < 1, |λ| = 1 or
|λ| > 1. Moreover, an attracting periodic point is called superattracting if λ = 0. An indifferent periodic
point is called rationally indifferent or irrationally indifferent according to λm = 1 for some m ∈ N or
λ = e2πiα, α ∈ Qc. A periodic point of order one is called a fixed point. The attracting periodic points are
always in the Fatou set while, repelling and rationally indifferent periodic points are in the Julia set. For
irrationally indifferent periodic points it is difficult to decide whether it is in the Fatou set or in the Julia set.

A point a ∈ Ĉ is said to be a non-singular value (of the inverse function f−1) if it has a neighbourhood V
such that f : f−1(V)→ V is an unbranched cover. We call a point a ∈ Ĉ a singular value of f if for every open
neighborhood U of a, there exists a component V of f−1(U) such that f : V → U is not bijective. Denote the
set of singular values of f by sin1( f−1). This is the set of closure of critical values and asymptotic values of f .
A critical value is the image of a critical point, that is, f (z0) where f ′(z0) = 0. A point a ∈ Ĉ is an asymptotic
value of f if there exists a curve γ : [0,∞) → C with limt→∞ |γ(t)| = ∞ such that a = limt→∞ f (γ(t)). For a
comprehensive definition of singular values, one can see [6].

For any transcendental function f , we have sin1( f−1) , φ. If f is transcendental entire function then
∞ ∈ sin1( f−1). If f is transcendental meromorphic function then it has at least one singular value. One of
the main reason for which singular values are important is the fact that any attracting fixed point or cycle
must have a singular value in its immediate basin of attraction. It follows that if f has n singular values,
then it has at most n attracting cycles. Same is the case for rationally indifferent cycles.

A maximal connected domain U of normality of the iterates of f is called a component of the Fatou set.
Then f n(U) is contained in a component of F ( f ) which we denote by Un. A component U is preperiodic
if there exists n > m ≥ 0 such that Un = Um. If this happens for m = 0 and with smallest n ≥ 1, then U is
called periodic with period n, and {U,U1, ...,Un−1} is called a cycle of components. If n = 1 that is, U1 = U
then U is called invariant.

If U is a periodic component of period p then we have one of the following possibilities: Attracting
domain, Parabolic domain, Siegel disk, Herman ring and Baker domain. A component that is not preperi-
odic is called a wandering component. A Baker wandering domain is a particular type of wandering Fatou
component U of a function f such that for large n, f n(U) is contained in a bounded multiply connected
Fatou component Un that surrounds the origin and Un →∞ as n→∞.

Study of change in dynamics in a one parameter family is a well pursued theme. For example the
exponential family (λez, λ ∈ C) has been investigated by many researchers [8, 15]. It was shown by
Devaney et al.[8] that for the exponential family λez with λ > 0, there are two different dynamical behaviors,
depending on whether 0 < λ < 1/e or λ > 1/e. The Julia sets of these maps have the interesting property
that they explode as the parameter λ crosses the value 1/e. Precisely, they have shown that when λ < 1/e
the Julia set is a connected nowhere dense subset of the right half plane, but when λ > 1/e, the Julia set is
the whole plane. This is well known as chaotic burst in the Julia sets and it has been observed in [12] for the
one parameter family of Joukowski-exponential maps {1λ = λ(ez + 1 + 1

ez+1 ) : λ > 0} at the parameter value
λ∗ ≈ 0.266. In spite of this similarity, it is observed that the Julia set of 1λ is disconnected. In fact it is a disjoint
union of two completely invariant subsets one of which is totally disconnected. Joukowski-exponential
maps have two asymptotic values,∞ and 2λ (finite) like exponential maps and have an additional singular
(critical) value −2λ. Additionally, each function in these two families are periodic. This paper is an attempt
to study a similar family of meromorphic maps which are not periodic.

Let fλ(z) = λ ez

z+1 , λ < 0. It has a single pole at −1 which is not an omitted value. The set of singular
values of fλ, denoted by sin1( f−1

λ ), is {λ, 0,∞}. The asymptotic values are 0 and∞. The finite singular values
have a single forward orbit. We see that the asymptotic value 0 is also the omitted value for the function.
Since all the singular values are on the real line, it is important to know how the function behaves on R.
The dynamics of the one parameter family of transcendental meromorphic functions fλ(z) = λ ez

z+1 for z ∈ C,
λ > 0 is already studied in [7].

The dynamics of the family of transcendental meromorphic functions K = { fλ(z) = λ f (z) : f (z) =
ez

z+1 for z ∈ C and λ ∈ R \ {0}} is studied in this paper. The function fλ and λez have some properties in
common. For example, each of them has exactly two transcendental singularities, one over 0 and another
over∞.
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The singular values of a function influence the dynamics of the function in a number of ways. For a
survey on these one can refer to [10], [13] & [4]. Functions with finitely many singular values has been
studied in [1]. In this line, the study of exponential family gives much richness into the literature. Some
of the key contributors in this direction are L. Rempe [9, 15], Schleicher & Zimmer [16] & Devaney [8] to
name a few. One of the main motivation behind considering this family of functions is that, it is in some
sense a simpler function than functions where the set of essential singularities form a compact set. The
exponential family λez, λ ∈ C has only one finite singular value which is the asymptotic value. But for
the family fλ(z) = λ ez

z+1 for z ∈ C, λ < 0 has two finite singular values one of which is the asymptotic
value. The dynamics here is less complicated in comparison to functions with more singular values and
a clear understanding of exponential dynamics can give some intuition for further study of meromorphic
functions. In Section 3 of this paper we have investigated some dynamical issues of the class of functions
M = {Fλ,a,m(z) = λ(z + a)mez : λ, a ∈ C, m ∈N}.

Let f (z) = ez

z+1 . The following result regarding the nature of singularities of the inverse function from [7]
is an important observation and will be used later.

Proposition 1.1. The number of singularities of f−1 lying each over 0 and ∞ are exactly one which are direct.
Moreover, both the singularities are of logarithmic type.

The escaping set of transcendental meromorphic functions is defined as, I( f ) = {z : f n(z) is defined for n ∈
N, f n(z)→∞ as n→∞}. The following remark follows from [2].

Remark 1.2. Since f is a meromorphic function with a direct singularity over infinity, I( f ) ∩ J( f ) contains a
continua and I( f ) has an unbounded component.

So for f (z) = ez

z+1 , I( f ) has an unbounded component and I( f ) ∩ J( f ) contains a continua.

2. Dynamics of fλ(z) when λ < 0

Let us consider the function f (x) = ex

1+x when x ∈ R. It is clear that f (x) > 0 when x > −1, f (x) < 0 when
x < −1 and f (x) is continuous everywhere except at the point x = −1. Since f ′(x) = xex

(1+x)2 , the function f (x) is

strictly increasing in (0,∞) and is strictly decreasing in (−∞,−1) and (−1, 0). As f ′′(x) =
(1+x2)ex

(1+x)3 < 0 for x < −1,
f ′(x) is decreasing in (−∞,−1) and is increasing in (−1,∞). Note that lim

x→−1
f ′(x) = −∞, lim

x→∞
f ′(x) = ∞ and

lim
x→−∞

f ′(x) = 0. As f is decreasing in (−∞, 0) and increasing (0,∞), it attains its local minima at x = 0 and

the minimum value is f (0) = 1. Moreover, f (x)→ 0 when x→ −∞ and f (x)→ +∞when x→ +∞.
The function φ(x) = f (x)− x f ′(x) is continuous except at x = −1. We have φ(0) = 1, φ(x)→ −∞ as x→∞

and φ(x) → −∞ as x → −1. Again φ′(x) = −x f ′′(x) is positive when −1 < x < 0 and negative when x > 0.
φ(x) is increasing when −1 < x < 0 and decreasing when x > 0 (see Figure 1). So by Intermediate value
theorem, φ(x) has a zero namely, x̂ in the interval (−1, 0) and has another zero namely x∗ in the interval
(0,∞) such that,

φ(x)



< 0 for x∗ < x < ∞,
= 0 for x = x∗,
> 0 for x̂ < x < x∗,
= 0 for x = x̂ ,
< 0 for −1 < x < x̂ < 0,
< 0 for −∞ < x < −1 .

(2.1)

Clearly x̂ ∈ (−1, 0) is the solution of φ(x). Then we have f (x̂) = x̂ f ′(x̂). This implies f ′(x̂) =
f (x̂)
x̂ . Now

fλ(x) = λex

1+x = λ f (x). If we put x = x̂ then fλ(x̂) = λ f (x̂) = λx̂ f ′(x̂). If λ f ′(x̂) = 1 then fλ(x̂) = x̂ i.e., x̂ is
the fixed point of fλ. Thus for making x̂ as fixed point of fλ, we choose λ = 1

f ′(x̂) = λ̂ (say). Numerical

computation gives us, x̂ = ( 1
2 −

√
5

2 ) � −0.618033988749895 which is incidentally the golden ratio and
λ̂ � −0.437971479322040.
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Figure 1: Graphs of (a) f ′(x) and (b) φ(x)

Now let us define 1λ(x) = fλ(x) − x for x ∈ R. Then 1′λ(x) = λ xex

(1+x)2 − 1 and 1′′λ (x) = λ (1+x2)ex

(1+x)3 < 0 for λ < 0
and x ∈ (−1, 0). Therefore, 1′λ(x) is decreasing in (−1, 0) and lim

x→−1+
1′λ(x) = ∞. Since f ′(0) = 0, 1′λ(0) = −1 and

1′λ(x) is continuous and strictly decreasing in (−1, 0), there exists a point xλ ∈ (−1, 0) such that, for λ < 0

1′λ(x)

 > 0 for x ∈ (−1, xλ),
= 0 for x = xλ,
< 0 for x ∈ (xλ, 0).

(2.2)

Thus 1λ(x) for λ < 0, increases strictly in (−1, xλ) and decreases strictly in (xλ, 0). Thus 1λ attains its
maximum at xλ. Thus 1′λ(xλ) = 0. This implies f ′λ(xλ)− 1 = 0. Then by some elementary calculations we get
that λ = 1

f ′(xλ) . Also we can see that lim
x→−1+

1λ(x) = −∞.

The Julia set of fλ undergoes a change as λ passes through the value λ̂. When λ = λ̂ the graph of fλ is
tangent to the diagonal line at x = x̂, so that the two fixed points Òaλ and Òrλ coincide to become one neutral
fixed point (see Figure 2). For λ̂ < λ < 0 then fλ has two negative real fixed points. For λ < λ̂ the fixed
points disappear from the real line. This phenomenon is famously known as saddle-node bifurcation. The
following theorem describes the dynamics of fλ as λ passes through λ̂.

Theorem 2.1. Let fλ ∈ K , and λ < 0. Then, the following are true. (see Figure 2)

1. For λ̂ < λ < 0, fλ has two negative real fixed points âλ and r̂λ with âλ > r̂λ, where âλ is attracting and r̂λ is
repelling. Further, lim

n→∞
f n
λ (x) = âλ for r̂λ < x < 0.

2. For λ = λ̂, fλ has only one negative real fixed point x = x̂ and x = x̂ is rationally indifferent. Further,
lim
n→∞

f n
λ (x) = x̂ for x̂ ≤ x < 0.

3. For λ < λ̂, fλ has no real fixed point.

Proof. 1. If λ̂ < λ < 0, then 1
f ′(x̂) <

1
f ′(xλ) < 0. Since f ′ is increasing in (−1,∞), we have xλ < x̂. So φ(xλ) < 0

by Equation 2.1. Now φ(xλ) = f (xλ) − xλ f ′(xλ) < 0. That is, f (xλ)
f ′(xλ) − xλ > 0 as f ′(xλ) < 0. This implies that
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1λ(xλ) = fλ(xλ) − xλ = λexλ

1+xλ
− xλ = λ f (xλ) − xλ =

f (xλ)
f ′(xλ) − xλ > 0. But 1λ(0) = λ < 0 and by Equation 2.2,

there exists two real numbers −1 < r̂λ < xλ < âλ < 0 such that 1λ(âλ) = 1λ(r̂λ) = 0. Thus fλ has exactly
two fixed points âλ and r̂λ in the interval (−1, 0). Again as f ′ is increasing in (−1, 0) and λ < 0, we get
f ′λ(âλ) < f ′λ(xλ) = 1 < f ′λ(r̂λ). So âλ is the attracting fixed point and r̂λ is the repelling fixed point of fλ for
λ < 0. Again fλ(x) < x for âλ ≤ x < 0 and fλ(x) > x for r̂λ < x < âλ. Since fλ(x) is increasing in (−1, 0),
the sequence { f n

λ (x)}n≥0 is decreasing and bounded below by âλ for âλ < x ≤ 0. Also { f n
λ (x)}n≥0 is increasing

and bounded above by âλ for r̂λ < x < âλ. Hence by the monotone convergence theorem lim
n→∞

f n
λ (x) = âλ for

r̂λ < x ≤ 0.

2. If λ = λ̂, then f ′(xλ) = f ′(x̂) and injectivity of f ′ implies that xλ = x̂. We can see that 1λ̂(x̂) = fλ̂(x̂) − x̂ =
λ̂ex̂

1+x̂ − x̂ = λ̂ f (x̂) − x̂ =
f (x̂)
f ′(x̂) − x̂. Now φ(x̂) = f (x̂) − x̂ f ′(x̂) = 0. Thus f (x̂) = x̂ f ′(x̂). Therefore, 1λ̂(x̂) = 0.

Hence fλ̂(x) has only one fixed point in the negative real axis and it is rationally indifferent. The sequence
{ f n
λ̂

(x)}n≥0 is decreasing and bounded below by x̂ for x̂ < x ≤ 0. By monotone convergence theorem, we have
lim
n→∞

f n
λ̂

(x) = x̂ for x̂ ≤ x < 0.

3. If λ < λ̂ < 0, then 1
f ′(xλ) <

1
f ′(x̂) and it follows that x̂ < xλ since f ′ is increasing in (−1,∞). So, by Equation

2.1, φ(xλ) = f (xλ) − xλ f ′(xλ) > 0. Since f ′(xλ) < 0 thus f (xλ)
f ′(xλ) − xλ < 0. Now 1λ(xλ) = fλ(xλ) − xλ =

λ f (xλ)− xλ =
f (xλ)
f ′(xλ) − xλ < 0. Since the maximum value of 1λ in (−1, 0) is less than zero thus 1λ(x) is negative

for all x ∈ (−1, 0). This proves that fλ has no real fixed point.

2.1. The Fatou set of fλ when λ < 0

It is known that functions which have finite number of singular values do not have wandering domain
nor Baker domain [3]. So fλ when λ < 0, has no wandering domain nor Baker domain. In particular, fλ has
no Baker wandering domain. Each function in the class K is with only one pole and that is why it can not
have a Herman ring as well [11].

Theorem 2.2. Let fλ ∈ K and λ < 0. Then, the dynamics of fλ is as follows.

1. If λ̂ < λ < 0, then the Fatou set F ( fλ) is an invariant attracting basin of a real negative fixed point âλ.

2. If λ = λ̂, then the Fatou set F ( fλ) is an invariant parabolic basin corresponding to a real rationally indifferent
fixed point x̂.

3. If λ < λ̂, then the Fatou set F ( fλ) does not contain any invariant attracting or parabolic basin and hence show
that F ( fλ) = φ.

Proof. Here, sin1( f−1
λ ) = {λ, 0,∞} ⊆ R ∪ {∞}. Thus O+(sin1 f−1

λ ) ⊆ R ∪ {∞}. We know that if fλ has Herman

ring or Siegel disc then U j ⊆ O+(sin1 f−1
λ ) where U j is the boundary of Herman ring or Siegel disc. But

U j ⊆ O+(sin1 f−1
λ ) ⊆ R ∪ {∞} is not possible by [14]. Therefore fλ has no Herman ring or Siegel disc. Since

fλ has finitely many singular values so the function fλ has neither wandering domain nor a Baker domain.
So any periodic Fatou components corresponds to a real non-repelling periodic point.

If λ̂ < λ < 0, then fλ has only one real negative fixed point âλ. Then the Fatou set F ( fλ) is an invariant
attracting basin of the fixed point âλ.

If λ = λ̂, then fλ has a real rationally indifferent fixed point x̂ and there corresponds the Fatou set F ( fλ)
which is an invariant parabolic basin.

If λ < λ̂, then fλ has no real fixed point. In this case F ( fλ) does not contain any invariant attracting or
parabolic basin. Here F ( fλ) = φ.
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Figure 2: Graphs of fλ(x) = λ ex

1+x , λ < 0 for (a) λ > λ̂ (b) λ = λ̂ (c) λ < λ̂
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Figure 3: Dynamical Plane of fλ(z), λ < 0 for (a) λ = −0.3 (b) λ = λ̂ = −0.437 (c) λ = −1
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2.2. The Julia set of fλ when λ < 0

Since the Julia set is the complement of the Fatou set, thus one can easily find out the Julia set of fλ when
λ < 0 by using Theorem 2.2. When λ̂ < λ < 0, then the Julia set of fλ will be the complement of invariant
attracting basin of the negative attracting real fixed point âλ. When λ = λ̂, then the Julia set of fλ will be
the complement of the parabolic basin corresponding to the rationally indifferent real fixed point x̂. When
λ < λ̂, then J( fλ) = Ĉ.

The Julia sets of fλ for different negative values of λ are generated in the rectangular domain R(z) = {z ∈
C : −3 ≤ <(z) ≤ 8,−5 ≤ =(z) ≤ 5}, where 500 iterations of the functions are considered. The red region and
blue region in the Figure 3 are approximations to the Fatou set and the Julia set. We use Matlab as a tool to
draw pictures here.
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Figure 4: Graphs of f 2
λ (x), for (a)λ = λ̂(= −0.4379) (b) λ(= −0.5) < λ̂ (c) λ(= −0.3) > λ̂
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2.3. Dynamics of the map fλn for n ≥ 2

We know that F ( fλ) = F ( fλn) and J( fλ) = J( fλn) for all n ≥ 2. Since the Julia and the Fatou set of fλ
is already known to us thus we can find out the Julia and the Fatou set of fλn for any n ≥ 2. Since 0 is a
finite singular value of fλ and fλ(0) = λ thus fλ have a single forward orbit and the orbit tends either to the
attracting fixed point âλ or to the parabolic fixed point r̂λ. No singular orbits accumulate the real periodic
points of period greater than or equal to two. When λ̂ < λ < 0, then fλn (n ≥ 2) has two real fixed points
namely âλ and r̂λ where âλ is attracting and r̂λ is repelling fixed point. Since fλ and hence fλn has only one
singular orbit, thus fλn (n ≥ 2) does not possess any other attracting periodic point. In this case, all the other
perodic points are repelling. When λ = λ̂, then fλn (n ≥ 2) has a real rationally indifferent fixed point x̂.
Here, fλn (n ≥ 2) does not possess any other rationally indifferent fixed point due to the existence of single
singular orbit. Here also other periodic points are repelling. When λ < λ̂, then for n ≥ 2, J( fλn) = Ĉ. For
n = 2, one can see the Figure 4.

Now we are giving Table 1 of comparison of dynamics between four classes of functions.

Comparison of dynamics
Dynamics of
λ ez

z+1 , λ < 0
Dynamics of
λ ez

z+1 , λ > 0
Dynamics of λez, λ > 0 Dynamics of

λ(ez + 1 + 1
ez+1 ), λ > 0

1. Meromorphic with
one pole at −1

1. Meromorphic with
one pole at −1

1. Entire 1. Meromorphic with
poles at zk = iπ(2k + 1),

k ∈ Z
2. Critical value is λ,
λ < 0

2. Critical value is λ,
λ > 0

2. No critical value 2. Critical value is −2λ

3. Not periodic 3. Not periodic 3. Periodic 3. Periodic
4. The asymptotic
values are 0 and∞

4. The asymptotic
values are 0 and∞

4. The asymptotic
values are 0 and∞

4. The asymptotic
values are 2λ and∞

5. The number of
singularities each over
0 and∞ is one and
those are logarithmic

5. The number of
singularities each over

0 and∞ is one and
those are logarithmic

5. The number of
singularities each over

0 and∞ is one and
those are logarithmic

5. At least one direct
singularity over∞ and

one logarithmic
singularity over 2λ

6. The Julia set is Ĉ for
λ < λ̂ ≈ −0.44

6. The Julia set is Ĉ for
λ > λ∗ ≈ 0.84

6. The Julia set is Ĉ for
λ > 1

e

6. The Julia set is Ĉ for
λ > λ∗ ≈ 0.26

7. The Fatou set is an
invariant attracting
basin when λ̂ < λ < 0

7. The Fatou set is an
invariant attracting

basin when 0 < λ < λ∗

7. The Fatou set is the
complement of

nowhere dense subset
of the right half plane

when 0 < λ < 1
e

7. The Fatou set is non
empty and the Julia set

is disconnected when
0 < λ < λ∗

8. The Fatou set is a
parabolic basin when
λ = λ̂

8. The Fatou set is a
parabolic basin when

λ = λ∗

8. The Fatou set is the
complement of

nowhere dense subset
of the right half plane

when 0 < λ < 1
e

8. The Fatou set is non
empty and the Julia set

is disconnected when
0 < λ < λ∗

9. Observed
saddle-node
bifurcation at λ = λ̂

9. Observed
saddle-node

bifurcation at λ = λ̂

9. Observed chaotic
burst at λ = 1

e

9. Observed chaotic
burst at λ∗ ≈ 0.26

Table 1: Comparison table of dynamics between λ ez

z+1 (λ < 0), λ ez

z+1 (λ > 0), λez(λ > 0) and λ(ez + 1 + 1
ez+1 )

(λ > 0)
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3. Dynamics of the map Fλ,a,m(z) = λ(z + a)mez where λ, a ∈ C and m ∈ N

The map Fλ,a,m(z) = λ(z + a)mez, where λ, a ∈ C and m ∈ N is an entire function with a zero of order m
at z = −a. The case when a = m = 0, the dynamics of the map is studied by Devaney and Durkin in [8].
The critical values of the map are {w : w = Fλ,a,m(z) such that F′λ,a,m(z) = 0}. The critical points of Fλ,a,m are
{z ∈ C : z = −a or z = −(a + m), m ≥ 1}. When a = 0, the function has a supper attracting fixed point at z = 0.
LetM = {Fλ,a,m(z) = λ(z + a)mez : λ, a ∈ C, m ∈N}.

Lemma 3.1. For each m ≥ 1, the order of the entire function Fλ,a,m(z) = λ(z + a)mez is one.

Proof. We know that the order µ = lim sup
x→∞

log log M(r)
log r , where M(r) = max

|z|=r
|Fλ,a,m(z)|. We can assume a = 0 and

λ = 1. So, M(r) = max
|z|=r
|zmez
|. That is, M(r) = max

θ
|rmeimθereiθ

| = max
θ
{rm
|ereiθ
|} = max

θ
{rmer cosθ

} = rmer. Now,

µ = lim sup
r→∞

log log{rmer
}

log r = lim sup
r→∞

log(m log r+r)
log r ≈ lim sup

r→∞

log(m log r)
log r . It follows that the order of Fλ,a,m is one.

Lemma 3.2. Each function in the classM has a finite number of asymptotic values. Thus functions inM can have
at most finitely many singular values.

Proof. Any function in the class has a finite number of critical values. By Denjoy-Carleman-Ahlfors Theorem
[5] the inverse function of a meromorphic function of finite order ρ can have at most 2ρ direct singularities.
Further, each direct singularity corresponds to an asymptotic value. From Lemma 3.1 and using a result of
Bergweiler & Eremenko [6] (See Corollary 3) the number of asymptotic values is at most 2. It follows that
the number of singular values of each function of the classM is finite.

Let S denote the set of singular values of f . The map f : C \ f−1(S)→ Ĉ \ S is an unbranched covering.
Let a ∈ R, then all the functions have a real zero of order m ≥ 1 at −a. If a is purely imaginary, then any
sufficiently small neighborhood U of 0, F−1

λ,a,m(U) has two components Hl and B. The component Hl contains
{z ∈ C : <z < −l for some real number l > 0} and B is a small enough neighborhood of −a. A point a ∈ C is
locally omitted by f if ∃ r > 0 and a component G of the set f−1(Br(a)) such that f (z) , a in G. It follows that
0 is a locally omitted value of the function for the component Hl.

The following result is proved in [5].

Proposition 3.1. Let f be an entire function of finite order, and let a ∈ C be either a critical value or a locally omitted
value. If D is a simply connected region that does not contain a, then f−1(D) is disconnected.

The following result immediately follows from the above proposition. Notice that the point 0 is a locally
omitted value as well as a critical value whenever m > 1.

Theorem 3.2. Let m > 1 and D ⊂ C be any simply connected region and D does not intersect any critical value of
Fλ,a,m. Then F−1

λ,a,m(D) is disconnected.

We get the following result from [5].

Theorem 3.3. Let f be an entire function of finite order, and a ∈ C be a locally omitted value. Then a is the projection
of a logarithmic singularity of f−1.

Since the map Fλ,a,m(z) = λ(z + a)mez, m ∈ N has a direct singularity over infinity, the escaping set
I(Fλ,a,m(z)) has an unbounded component by Remark 1.2. Moreover, I(Fλ,a,m(z)) ∩ J(Fλ,a,m(z)) contains a
continua. Since the functions have only finitely many singular values, there is no wandering domain.

4. Future prospects

In the line of the works as carried out in this paper, one may think to construct different classes of
families of functions and try to investigate their dynamics. This may be an active area of research to the
future workers of this branch.
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