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Abstract. In this study, our target point is to focus on neutrosophic soft semi-regularization spaces
connected with neutrosophic soft topological spaces and examine their properties. First, we define the
neutrosophic soft sub-maximal space and present the evidences for the existence of a neutrosophic soft
sub-maximal space for every neutrosophic soft topological space. In this document, we focused on the
relationship of neutrosophic soft sub-maximal spaces and neutrosophic soft semi-regular spaces with these
spaces. Also, we find that this relationship is very close and it is minimal or maximal depending on some
definite properties which are called neutrosophic soft semi-regular properties. This led us to examine the
semi-regularity of different properties. After all, we introduced some types of functions in neutrosophic soft
topological spaces that correspond with some types of functions previously defined in many topological
spaces of different types and revealed the behaviours of these functions according to the cases where their
domain or codomain spaces are replaced by their semi-regularization spaces.

1. Introduction

The fact that a topological space had a distinctive semi-regular space that was coarser than itself attracted
the attention of many scientists and was the focus of their studies as in [14, 16, 22]. In [14], the concept
of sub-maximal space was presented to the world of mathematics for the first time as a new study topic
for scientists. In [16], focusing on this new concept, Cameron studied in detail on its properties. As
the needs of people in daily life changed and technology advanced, some studies on general topology
remained inadequate. For this reason, it has become inevitable for scientists to re-examine some of the
issues that are the cornerstones of General Mathematics, as in [15, 19], in accordance with the new theories
put forward. Again, new types of theory were needed to keep up with the technology that continued to
evolve. Thereupon, in 1999, Molodstov [21] presented the concept of soft set to the scientific world as
a new tool to overcome this problem. Immediately afterwards, in 2005, Smarandache [23] appeared in
the scientific world with the concept of neutrosophic set. Many scientists from around the world have
evaluated these new theories to create new fields of study and have used them extensively in their studies
as in [1, 5–7, 9, 13, 18, 24]. Maji [20], who was among the scientists who evaluated these new theories
well, came up with the concept of neutrosophic soft set. This new type of set inspired Bera to describe
the neutrosophic soft topological space in [12]. In [8], Aras, Ozturk and Bayramov reinterpreted this set
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concept in their own way and presented their own definition of neutrosophic soft topological space. This
new type of topological space has provided an opportunity for mathematicians to come up with new ideas.
In particular , Acikgoz and Esenbel made good use of this new opportunity in their studies as in [3, 4].
The main purpose of this study is to interpret these new ideas in neutrosophic soft topological spaces. In
Section 2, the concept of semi-regularization space, one of the cornerstones of our study, is introduced and its
characterizations are examined in detail. The concepts of neutrosophic soft ro-equivalent and neutrosophic
soft sub-maximal space, whose definitions are given in this section, are also among the cornerstones of our
study. Ultimately, the existence of a neutrosophic soft sub-maximal space as an expansion of any given
neutrosophic soft topological space is established. It is seen that some certain properties of a neutrosophic
soft topological space are also shared by its semi-regular space and vice-versa. In this paper, such a property
is called neutrosophic soft semi-regular property. Ultimately, it is concluded that every neutrosophic soft
maximal P (minimal P) topological space is neutrosophic soft sub-maximal (resp. semi-regular) if P has
a neutrosophic soft semi-regular property. This makes possible that certain neutrosophic soft topological
spaces are isolated and recognised to be neutrosophic soft semi-regular or sub-maximal. Inherently, the
above results require a wide research to determine which properties are neutrosophic soft semi-regular.
In Section 3, such a study is taken up and certain properties are examined to include them into the class
of neutrosophic soft semi-regular properties. Obviously, there exist many different properties which we
can test along this line. Eventually, in Section 4, we adapt some certain known mappings on neutrosophic
soft topological spaces and effort to figure out the behaviour of some types of mappings between two
neutrosophic soft topological spaces in cases that their domain and/or co-domain are replaced with their
neutrosophic soft semi-regularization spaces. Throughout the paper, without any explanation, we use the
symbols and definitions introduced in [8, 10, 12, 17, 20, 21, 23].

2. Preliminaries

In this section, we present the basic definitions and theorems related to neutrosophic soft set theory.

Definition 2.1. ([23]) A neutrosophic set A on the universe set X is defined as:

A = {〈x,TA (x) , IA (x) ,FA (x)〉 : x ∈ X} ,

where T, I, F : X→ ]−0, 1+[ and −0 ≤ TA (x) + IA (x) + FA (x) ≤ 3+.

Scientifically, membership functions, indeterminacy functions and non-membership functions of a neu-
trosophic set take value from real standart or nonstandart subsets of ]−0, 1+[. However, these subsets are
sometimes inconvenient to be used in real life applications such as economical and engineering problems.
On account of this fact, we consider the neutrosophic sets, whose membership function, indeterminacy
functions and non-membership functions take values from subsets of [0, 1].

Definition 2.2. ([21]) Let X be an initial universe, E be a set of all parameters and P (X) denote the power
set of X. A pair (F,E) is called a soft set over X, where F is a mapping given by F : E −→ P (X). In other
words, the soft set is a parameterized family of subsets of the set X. For e ∈ E, F (e) may be considered
as the set of e-elements of the soft set (F,E) or as the set of e-approximate elements of the soft set, i.e.
(F,E) = {(e,F (e)) : e ∈ E,F : E −→ P (X)}.

After the neutrosophic soft set was defined by Maji [20], this concept was modified by Deli and Broumi
[17] as given below:

Definition 2.3. ([17]) Let X be an initial universe set and E be a set of parameters. Let NS (X) denote the
set of all neutrosophic sets of X. Then, a neutrosophic soft set

(
F̃,E

)
over X is a set defined by a set valued

function F̃ representing a mapping F̃ : E → NS (X), where F̃ is called the approximate function of the
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neutrosophic soft set
(
F̃,E

)
. In other words, the neutrosophic soft set is a parametrized family of some

elements of the set NS (X) and therefore it can be written as a set of ordered pairs:(
F̃,E

)
=

{(
e,

〈
x,TF̃(e) (x) , IF̃(e) (x) ,FF̃(e) (x)

〉
: x ∈ X

)
: e ∈ E

}
where TF̃(e) (x) , IF̃(e) (x) ,FF̃(e) (x) ∈ [0, 1] are respectively called the truth-membership,

indeterminacy-membership and falsity-membership function of F̃(e). Since the supremum of each T, I, F is
1, the inequality 0 ≤ TF̃(e) (x) + IF̃(e) (x) + FF̃(e) (x) ≤ 3 is obvious.

Definition 2.4. ([12]) Let
(
F̃,E

)
be a neutrosophic soft set over the universe set X. The complement of

(
F̃,E

)
is denoted by

(
F̃,E

)c
and is defined by(

F̃,E
)c

=
{(

e,
〈
x, FF̃(e) (x) , 1 − IF̃(e) (x) , TF̃(e) (x)

〉
: x ∈ X

)
: e ∈ E

}
.

It is obvious that
[(

F̃,E
)c]c

=
(
F̃,E

)
.

Definition 2.5. ([20]) Let
(
F̃,E

)
and

(
G̃,E

)
be two neutrosophic soft sets over the universe set X.

(
F̃,E

)
is

said to be a neutrosophic soft subset of
(
G̃,E

)
if

TF̃(e) (x) ≤ TG̃(e) (x) , IF̃(e) (x) ≤ IG̃(e) (x) ,FF̃(e) (x) ≥ FG̃(e) (x) ,∀e ∈ E,∀x ∈ X.

It is denoted by
(
F̃,E

)
⊆

(
G̃,E

)
.

(
F̃,E

)
is said to be neutrosophic soft equal to

(
G̃,E

)
if

(
F̃,E

)
⊆

(
G̃,E

)
and(

G̃,E
)
⊆

(
F̃,E

)
. It is denoted by

(
F̃,E

)
=

(
G̃,E

)
.

Definition 2.6. ([8]) Let
(
F̃1,E

)
and

(
F̃2,E

)
be two neutrosophic soft sets over the universe set X. Then, their

union is denoted by
(
F̃1,E

)
∪

(
F̃2,E

)
=

(
F̃3,E

)
and is defined by(

F̃3,E
)

=
{(

e,
〈
x, TF̃3(e) (x) , IF̃3(e) (x) , FF̃3(e) (x)

〉
: x ∈ X

)
e ∈ E

}
, where

TF̃3(e) (x) = max
{
TF̃1(e) (x) ,TF̃2(e) (x)

}
,

IF̃3(e) (x) = max
{
IF̃1(e) (x) , IF̃2(e) (x)

}
,

FF̃3(e) (x) = min
{
FF̃1(e) (x) ,FF̃2(e) (x)

}
.

Definition 2.7. ([8]) Let
(
F̃1,E

)
and

(
F̃2,E

)
be two neutrosophic soft sets over the universe set X. Then, their

intersection is denoted by
(
F̃1,E

)
∩

(
F̃2,E

)
=

(
F̃4,E

)
and is defined by(

F̃4,E
)

=
{(

e,
〈
x, TF̃4(e) (x) , IF̃4(e) (x) , FF̃4(e) (x)

〉
: x ∈ X

)
e ∈ E

}
,

where

TF̃4(e) (x) = min
{
TF̃1(e) (x) ,TF̃2(e) (x)

}
,

IF̃4(e) (x) = min
{
IF̃1(e) (x) , IF̃2(e) (x)

}
,

FF̃4(e) (x) = max
{
FF̃1(e) (x) ,FF̃2(e) (x)

}
.

Definition 2.8. ([8]) A neutrosophic soft set
(
F̃,E

)
over the universe set X is said to be a null neutrosophic

soft set if TF̃(e) (x) = 0, IF̃(e) (x) = 0, FF̃(e) (x) = 1;∀e ∈ E, ∀x ∈ X. It is denoted by 0(X,E).
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Definition 2.9. ([8]) A neutrosophic soft set
(
F̃,E

)
over the universe set X is said to be an absolute neu-

trosophic soft set if TF̃(e) (x) = 1, IF̃(e) (x) = 1, FF̃(e) (x) = 0;∀e ∈ E, ∀x ∈ X. It is denoted by 1(X,E). Clearly
0c

(X,E) = 1(X,E) and 1c
(X,E) = 0(X,E).

Definition 2.10. ([8]) Let NSS(X,E) be the family of all neutrosophic soft sets over the universe set X and τ
⊂ NSS(X,E). Then, τ is said to be a neutrosophic soft topology on X, if

1. 0(X,E) and 1(X,E) belong to τ,
2. the union of any number of neutrosophic soft sets in τ belongs to τ ,
3. the intersection of a finite number of neutrosophic soft sets in τ belongs to τ.
Then, (X, τ,E) is said to be a neutrosophic soft topological space over X. Each member of τ is said to be

a neutrosophic soft open set [3].

Definition 2.11. ([8]) Let (X, τ,E) be a neutrosophic soft topological space over X and
(
F̃,E

)
be a neutrosophic

soft set over X. Then
(
F̃,E

)
is said to be a neutrosophic soft closed set iff its complement is a neutrosophic

soft open set.

Definition 2.12. ([8]) Let NSS(X,E) be the family of all neutrosophic soft sets over the universe set X. Then,
neutrosophic soft set xe

(α,β,γ) is called a neutrosophic soft point for every x ∈ X, 0 < α, β, γ ≤ 1,e ∈ E and is

defined as

xe
(α,β,γ)(e′)

(
y
)

=


(
α, β, γ

)
, if e′ = e and y = x

(0, 0, 1) , if e′ , e or y , x

It is clear that every neutrosophic soft set is the union of its neutrosophic soft points.

Definition 2.13. ([8]) Let
(
F̃,E

)
be a neutrosophic soft set over the universe set X. We say that xe

(α,β,γ) ∈
(
F̃,E

)
is read as belonging to the neutrosophic soft set

(
F̃,E

)
, whenever

α ≤ TF̃(e) (x) , β ≤ IF̃(e) (x) and γ ≥ FF̃(e) (x) .

Definition 2.14. ([8]) Let xe
(α,β,γ) and ye′

(α′,β′,γ′) be two neutrosophic soft points. For the neutrosophic soft

points xe
(α,β,γ) and ye′

(α′,β′,γ′) over a common universe X, we say that the neutrosophic soft points are distinct

points if xe
(α,β,γ) ∩ ye′

(α′,β′,γ′) = 0(X,E). It is clear that xe
(α,β,γ) and ye′

(α′,β′,γ′) are distinct neutrosophic soft points if

and only if x , y or e , e′.

Definition 2.15. ([10]) Let
(
F̃,E1

)
,
(
G̃,E2

)
be two neutrosophic soft sets over the universal set X. Then,

their cartesian product is another neutrosophic soft set
(
K̃,E3

)
=

(
F̃,E1

)
×

(
G̃,E2

)
, where E3 = E1 × E2

and K̃ (e1, e2) = F̃ (e1) × G̃ (e2). The truth, indeterminacy and falsity membership of
(
K̃,E3

)
are given by

∀e1 ∈ E1,∀e2 ∈ E2,∀x ∈ X,

TK̃(e1,e2) (x) = min
{
TF̃(e1) (x) , TG̃(e2) (x)

}
,

IK̃(e1,e2) (x) = IF̃(e1) (x) . IG̃(e2) (x) ,

FK̃(e1,e2) (x) = max
{
FF̃(e1) (x) , FG̃(e2) (x)

}
This definition can be extended for more than two neutrosophic soft sets.

Definition 2.16. ([10]) A neutrosophic soft relation R̃ between two neutrosophic soft sets
(
F̃,E1

)
and

(
G̃,E2

)
over the common universe X is the neutrosophic soft subset of

(
F̃,E1

)
×

(
G̃,E2

)
. Clearly, it is another

neutrosophic soft set
(
R̃,E3

)
, where E3 ⊆ E1 × E2 and R̃ (e1, e2) = F̃ (e1) × G̃ (e2) for (e1, e2) ∈ E3.
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Definition 2.17. ([10]) Let
(
F̃,E1

)
,
(
G̃,E2

)
be two neutrosophic soft sets over the universal set X and f be

a neutrosophic soft relation defined on
(
F̃,E1

)
×

(
G̃,E2

)
. Then, f is called neutrosophic soft function, if

f associates each element of
(
F̃,E1

)
with the unique element of

(
G̃,E2

)
. We write f :

(
F̃,E1

)
→

(
G̃,E2

)
as a neutrosophic soft function or a mapping. For xe

(α,β,γ) ∈
(
F̃,E1

)
and ye′

(α′,β′,γ′) ∈
(
G̃,E2

)
, when xe

(α,β,γ)×

ye′

(α′,β′,γ′) ∈ f , we denote it by f
(
xe

(α,β,γ)

)
= ye′

(α′,β′,γ′). Here,
(
F̃,E1

)
and

(
G̃,E2

)
are called domain and codomain

respectively and ye′

(α′,β′,γ′) is the image of xe
(α,β,γ) under f .

Definition 2.18. ([10]) Let f : (F,A) → (G,B) be a neutrosophic soft function over the universal set U.
If there exists another neutrosophic soft function 1 : (G,B) → (F,A) with 1 ◦ f : (F,A) → (F,A) and
f ◦ 1 : (G,B)→ (G,B) such that 1 ◦ f = I(F,A) and f ◦ 1 = I(G,B) then 1 is called the inverse neutrosophic soft
function of f . It is denoted by f−1 and is defined as F(a) × G(b) ∈ f−1 if and only if G(b) × F(a) ∈ f .

3. Neutrosophic Soft Semi-regularization and Neutrosophic Soft Sub-maximal Spaces

Definition 3.1. A neutrosophic soft set
(
F̃,E

)
is said to be neutrosophic soft quasi-coincident (neutrosophic

soft q-coincident, for short) with
(
G̃,E

)
, denoted by

(
F̃,E

)
q
(
G̃,E

)
, if and only if

(
F̃,E

)
*

(
G̃,E

)c
. If

(
F̃,E

)
is

not neutrosophic soft quasi-coincident with
(
G̃,E

)
, we denote by

(
F̃,E

)
q
(
G̃,E

)
.

Definition 3.2. A neutrosophic soft set
(
F̃,E

)
in a neutrosophic soft topological space (X, τ,E) is said to

be a neutrosophic soft q-neighbourhood of a neutrosophic soft point xe
(α,β,γ) if and only if there exists a

neutrosophic soft open set
(
G̃,E

)
such that xe

(α,β,γ)q
(
G̃,E

)
⊂

(
F̃,E

)
.

Definition 3.3. A neutrosophic soft point xe
(α,β,γ) is said to be a neutrosophic soft cluster point of a neu-

trosophic soft set
(
F̃,E

)
if and only if every neutrosophic soft open q-neighbourhood

(
G̃,E

)
of xe

(α,β,γ) is

neutrosophic soft q-coincident with
(
F̃,E

)
. The collection of all neutrosophic soft cluster points of

(
F̃,E

)
is

called the neutrosophic soft closure of
(
F̃,E

)
and denoted by

(
F̃,E

)
.

Definition 3.4. A neutrosophic soft point xe
(α,β,γ) is said to be a neutrosophic soft interior point of a neu-

trosophic soft set
(
F̃,E

)
if and only if there exists a neutrosophic soft open q-neighborhood

(
G̃,E

)
of xe

(α,β,γ)
is such that

(
G̃,E

)
⊂

(
F̃,E

)
. The collection of all neutrosophic soft interior points of

(
F̃,E

)
is called the

neutrosophic soft interior of
(
F̃,E

)
and denoted by

(
F̃,E

)◦
.

For a neutrosophic soft set
(
Ã,E

)
in a neutrosophic soft topological space (X, τ,E), the notations τ −

NScl
(
Ã,E

)
and τ − NSint

(
Ã,E

)
will respectively stand for the neutrosophic soft closure and neutrosophic

soft interior of A.

Definition 3.5. A neutrosophic soft set
(
F̃,E

)
in a neutrosophic soft topological space (X, τ,E) is called a

neutrosophic soft regular open set if and only if
(
F̃,E

)
=

[(
F̃,E

)]◦
. The complement of a neutrosophic soft

regular open set is called a neutrosophic soft regular closed set.

Equivalently, a neutrosophic soft set
(
Ũ,E

)
in a neutrosophic soft topological space (X, τ,E) is called a

neutrosophic soft regular closed set if and only if
(
Ũ,E

)
=

[(
Ũ,E

)◦]
. The complement of a neutrosophic soft

regular closed set is called a neutrosophic soft regular open.
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Definition 3.6. Let (X, τ,E) be a neutrosophic soft topological space.A subfamily β of τ is a neutrosophic
soft base for τ if and only if every member of τ can be expressed as the union of some members of β.

Definition 3.7. Consider that (X, τ,E) is a neutrosophic soft topological space. The set of all neutrosophic
soft regular open sets in (X, τ,E) forms a base for some neutrosophic soft topology on X. This topology is
called the neutrosophic soft semi-regularization topology of τ, to be denoted by τs. The inclusion τS ⊆ τ
holds. (X, τS,E) is called the neutrosophic soft semi-regularization space or simply the neutrosophic soft
semi-regularization of (X, τ,E).

We can define a neutrosophic soft topology (X, τ,E) to be neutrosophic soft semi-regular if and only if
the neutrosophic soft regular open sets in (X, τ,E) form a base for the neutrosophic soft topology τ on X.
Thus, according to the above definition, (X, τ,E) is neutrosophic soft semi-regular if and only if τ = τS.

Example 3.8. Consider that X =
{
x, y

}
is a universe, E = {a, b} is a parametric set, the neutrosophic soft sets(

F̃,E
)

and
(
G̃,E

)
are defined as F̃ (a) =

{
〈x, 0.2, 0.2, 0.8〉 ,

〈
y, 0.2, 0.2, 0.8

〉}
, F̃ (b) =

{
〈x, 0.2, 0.2, 0.8〉 ,

〈
y, 0.2, 0.2, 0.8

〉}
,

G̃ (a) =
{
〈x, 0.7, 0.7, 0.3〉 ,

〈
y, 0.7, 0.7, 0.3

〉}
and G̃ (b) =

{
〈x, 0.7, 0.7, 0.3〉 ,

〈
y, 0.7, 0.7, 0.3

〉}
. The family

τ =
{
0(X,E), 1(X,E),

(
F̃,E

)
,
(
G̃,E

)}
is a neutrosophic soft topology over X. Then, (X, τ,E) is a neutrosophic soft semi-regular topological space.

The characterization of a neutrosophic soft semi-regular space is as follows.

Theorem 3.9. Consider that (X, τ,E) is a neutrosophic soft topological space. The following statements are equivalent:
(a) (X, τ,E) is neutrosophic soft semi-regular;
(b) for every neutrosophic soft open set

(
Ũ,E

)
and every neutrosophic soft point xe

(α,β,γ) with xe
(α,β,γ)q

(
Ũ,E

)
, there

exists a neutrosophic soft open set
(
Ṽ,E

)
such that

xe
(α,β,γ)q

(
Ṽ,E

)
⊆

[(
Ṽ,E

)]◦
⊆

(
Ũ,E

)
;

(c) for every neutrosophic soft closed set
(
Ã,E

)
and every neutrosophic soft point xe

(α,β,γ) <
(
Ã,E

)
, there exists a

neutrosophic soft regular closed set
(
B̃,E

)
such that

(
Ã,E

)
⊆

(
B̃,E

)
and xe

(α,β,γ) <
(
B̃,E

)
;

(d) for every neutrosophic soft set
(
Ã,E

)
in (X, τ,E) and every neutrosophic soft open set

(
B̃,E

)
with

(
Ã,E

)
q
(
B̃,E

)
,

there exists a neutrosophic soft regular open set
(
Ũ,E

)
such that

(
Ã,E

)
q
(
Ũ,E

)
⊆

(
B̃,E

)
.

Proof. (a)⇒ (b) Assume that (X, τ,E) is neutrosophic soft semi-regular. Consider a neutrosophic soft point
xe

(α,β,γ) and a neutrosophic soft open set
(
Ũ,E

)
such that xe

(α,β,γ)q
(
Ũ,E

)
. Since (X, τ,E) is neutrosophic soft

semi-regular,
(
Ũ,E

)
is the union of some neutrosophic soft regular open sets in (X, τ,E). Then, there exists a

neutrosophic soft regular open set
(
Ṽ,E

)
such that xe

(α,β,γ)q
(
Ṽ,E

)
⊂

(
Ũ,E

)
. Since

(
Ṽ,E

)
is neutrosophic soft

regular open, xe
(α,β,γ)q

(
Ṽ,E

)
⊆

[(
Ṽ,E

)]◦
⊆

(
Ũ,E

)
.

(b) ⇒ (c) Consider a neutrosophic soft point xe
(α,β,γ) and a neutrosophic soft closed set

(
Ã,E

)
such that

xe
(α,β,γ) <

(
Ã,E

)
. Then, xe

(α,β,γ)q
(
Ã,E

)c
and

(
Ã,E

)c
is neutrosophic soft open. From our assumption, there

exists a neutrosophic soft open set
(
Ṽ,E

)
such that xe

(α,β,γ)q
(
Ṽ,E

)
⊆

[(
Ṽ,E

)]◦
⊆

(
Ã,E

)c
. Obviously,

[(
Ṽ,E

)]◦
⊆[[(

Ṽ,E
)]◦]◦

. Since
(
Ṽ,E

)
is neutrosophic soft closed,

[(
Ṽ,E

)]◦
⊆

(
Ṽ,E

)
. So,

[[(
Ṽ,E

)]◦]◦
⊆

[(
Ṽ,E

)]◦
. This
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means that
[(

Ṽ,E
)]◦

=

[[(
Ṽ,E

)]◦]◦
. Then,

[(
Ṽ,E

)]◦
neutrosophic soft regular open. Say

(
B̃,E

)
=

[[(
Ṽ,E

)]◦]c

.

So,
(
Ã,E

)
⊆

(
B̃,E

)
and xe

(α,β,γ) <
(
B̃,E

)
, where

(
B̃,E

)
is neutrosophic soft regular closed.

(c) ⇒ (d) Consider a neutrosophic soft set
(
Ã,E

)
and a neutrosophic soft open set

(
B̃,E

)
such that(

Ã,E
)

q
(
B̃,E

)
. Then,

(
Ã,E

)
⊂

(
B̃,E

)c
and

(
B̃,E

)c
is neutrosophic soft closed . So, there exists a neutrosophic

soft point xe
(α,β,γ) ∈

(
Ã,E

)
such that xe

(α,β,γ) <
(
B̃,E

)c
. From our assumption, there exists a neutrosophic

soft regular closed set
(
Ṽ,E

)
such that

(
B̃,E

)c
⊂

(
Ṽ,E

)
and xe

(α,β,γ) <
(
Ṽ,E

)
. Say

(
Ũ,E

)
=

(
Ṽ,E

)c
. Then,(

Ã,E
)

q
(
Ũ,E

)
and

(
Ũ,E

)
⊂

(
B̃,E

)
, where

(
Ũ,E

)
is neutrosophic soft regular open.

(d) ⇒ (a) Consider that (X, τ,E) is a neutrosophic soft topological space and
(
Ã,E

)
is a neutrosophic

soft open set in (X, τ,E). For every neutrosophic point xe
(α,β,γ) ∈

(
Ã,E

)
, there exists a neutrosophic open

q-neighbourhood
(
B̃,E

)
of xe

(α,β,γ) such that
(
B̃,E

)
⊂

(
Ã,E

)
. Then, there exists a neutrosophic soft open set(

Ṽ,E
)

such that xe
(α,β,γ)q

(
Ṽ,E

)
⊂

(
B̃,E

)
. From our assumption, there exists a neutrosophic regular open set(

Ũ,E
)

such that xe
(α,β,γ)q

(
Ũ,E

)
⊂

(
Ṽ,E

)
. So, xe

(α,β,γ)q
(
Ũ,E

)
⊂

(
Ã,E

)
. This implies that every neutrosophic soft

open set in (X, τ,E) is the union of neutrosophic soft regular open sets. Therefore, (X, τ,E) is neutrosophic
soft semi-regular.

Theorem 3.10. Consider that (X, τs,E) denote the neutrosophic soft semi-regularization of a neutrosophic soft topo-
logical space (X, τ,E). Then, for every neutrosophic soft open set

(
Ũ,E

)
in (X, τ,E):

(a) τ −NScl
(
Ũ,E

)
= τS −NScl

(
Ũ,E

)
and

(b) τ −NSint
(
τ −NScl

(
Ũ,E

))
= τS −NSint

(
τS −NScl

(
Ũ,E

))
.

Proof. (a) Consider that
(
Ũ,E

)
is a neutrosophic soft open set in (X, τ,E). Clearly, τ−NSint

(
τ −NScl

(
Ũ,E

))
⊂

τ − NScl
(
Ũ,E

)
. It is easily seen that τ − NScl

(
τ −NSint

(
τ −NScl

(
Ũ,E

)))
⊂ τ − NScl

(
Ũ,E

)
. Since

(
Ũ,E

)
is neutrosophic soft open in (X, τ,E),

(
Ũ,E

)
⊂ τ − NSint

(
τ −NScl

(
Ũ,E

))
. Clearly τ − NScl

(
Ũ,E

)
⊂ τ −

NScl
(
τ −NSint

(
τ −NScl

(
Ũ,E

)))
. This means that τ − NScl

(
Ũ,E

)
= τ − NScl

(
τ −NSint

(
τ −NScl

(
Ũ,E

)))
.

So τ−NScl
(
Ũ,E

)
is neutrosophic soft regular closed and

[
τ −NScl

(
Ũ,E

)]c
is neutrosophic soft regular open

in (X, τ,E). This implies that τ−NScl
(
Ũ,E

)
is neutrosophic soft closed in (X, τS,E). Hence τS−NScl

(
Ũ,E

)
⊂

τ − NScl
(
Ũ,E

)
. Also, τ being finer than τS, τ − NScl

(
Ũ,E

)
⊂ τS − NScl

(
Ũ,E

)
. Thus τ − NScl

(
Ũ,E

)
=

τS −NScl
(
Ũ,E

)
, for all

(
Ũ,E

)
in τ.

(b) For any
(
Ũ,E

)
∈ τ, using (a) we have τ −NSint

(
τ −NScl

(
Ũ,E

))
⊆ τS −NScl

(
Ũ,E

)
. Since

τ −NSint
(
τ −NScl

(
Ũ,E

))
∈ τS,

we have

τ −NSint
(
τ −NScl

(
Ũ,E

))
⊆ τS −NSint

(
τS −NScl

(
Ũ,E

))
.

Again, τ being finer than τS,

τS −NSint
(
τS −NScl

(
Ũ,E

))
⊆ τ −NSint

(
τ −NScl

(
Ũ,E

))
.

Thus, τ −NSint
(
τ −NScl

(
Ũ,E

))
= τS −NSint

(
τS −NScl

(
Ũ,E

))
.
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Corollary 3.11. The set of all neutrosophic soft regular open sets of (X, τ,E) is that of all neutrosophic soft regular
open sets in (X, τs,E). Thus neutrosophic soft semi-regularizations in (X, τ,E) and (X, τs,E) are the identical.

Corollary 3.12. For any neutrosophic soft topological space (X, τ,E), (X, τs,E) is neutrosophic soft semi-regular.

Theorem 3.13. Consider that (X, τ,E) is a neutrosophic soft topological space (X, τ,E) and (X, τ0,E) be any neutro-
sophic soft semi-regular space such that τs ⊂ τ0 ⊂ τ. Then τ0 = τs.

Proof. Consider that
(
Ũ,E

)
be any neutrosophic soft regular open set in (X, τ0,E). Since

τs ⊂ τ0 ⊂ τ and since τS −NScl
(
Ũ,E

)
= τS −NScl

(
Ũ,E

)
, we have

τS −NScl
(
Ũ,E

)
= τ0 −NScl

(
Ũ,E

)
. Again,

τS −NSint
(
τS −NScl

(
Ũ,E

))
= τ −NSint

(
τ −NScl

(
Ũ,E

))
. Then,

τ −NSint
(
τ −NScl

(
Ũ,E

))
= τ0 −NSint

(
τ0 −NScl

(
Ũ,E

))
=

(
Ũ,E

)
.

Hence
(
Ũ,E

)
∈ τS and consequently, τ0 = τS.

Corollary 3.14. For a neutrosophic soft topological space (X, τ,E), among all the neutrosophic soft semi-regular
spaces which are weaker than (X, τ,E), (X, τs,E) is the finest neutrosophic soft semi-regular space.

Definition 3.15. Two neutrosophic soft topological spaces (X, τ,E) and (X, ϑ,E) are said to be neutrosophic
soft ro-equivalent if τS = ϑS.

Definition 3.16. A neutrosophic soft topological space (X, τ,E) is said to be an expansion of a neutrosophic
soft topological space (X, τ,E) if ϑ is coarser than τ (i.e., ϑ ⊂ τ).

Definition 3.17. A property P of a neutrosophic soft topological space is called expansive iff whenever a
neutrosophic soft topological space (X, τ,E) has the property P, so does any expansion of the space.

Theorem 3.18. An expansion (X, ϑ,E) of a neutrosophic soft topological space (X, τ,E) is neutrosophic soft ro-
equivalent to (X, τ,E) if and only if τ −NScl

(
Ũ,E

)
= ϑ −NScl

(
Ũ,E

)
, for all

(
Ũ,E

)
∈ ϑ.

Proof. Consider that (X, τ,E) be neutrosophic soft ro-equivalent to (X, ϑ,E) so that τS = ϑS. Consider that(
Ũ,E

)
∈ ϑ. Then, ϑ − NScl

(
Ũ,E

)
⊆ τ − NScl

(
Ũ,E

)
. If

(
Ṽ,E

)
=

[
ϑ −NScl

(
Ũ,E

)]c
, then

(
Ṽ,E

)
= ϑ −

NSint
(
ϑ −NScl

(
Ṽ,E

))
and hence,

(
Ṽ,E

)
∈ ϑS = τS. Thus,

(
Ṽ,E

)
∈ τ so that ϑ −NScl

(
Ũ,E

)
is neutrosophic

soft closed in (X, τ,E). Consequently, τ − NScl
(
Ũ,E

)
⊆ ϑ − NScl

(
Ũ,E

)
. Thus, we have τ − NScl

(
Ũ,E

)
=

ϑ −NScl
(
Ũ,E

)
.

Conversely, let
(
Ũ,E

)
be neutrosophic soft regular open in (X, ϑ,E). Then,(
Ũ,E

)
= ϑ −NSint

(
ϑ −NScl

(
Ũ,E

))
=

[
ϑ −NScl

(
Ṽ,E

)]c
,

where
(
Ṽ,E

)
=

[
ϑ −NScl

(
Ũ,E

)]c
. Since

(
Ṽ,E

)
∈ ϑ, τ − NScl

(
Ṽ,E

)
= ϑ − NScl

(
Ṽ,E

)
and hence,

(
Ũ,E

)
=[

τ −NScl
(
Ṽ,E

)]c
∈ τ. Thus, ϑS ⊂ τ which in view of Corollary 3.14. yields ϑS ⊂ τS. Again, τ ⊂ ϑ. Then,

τS ⊂ ϑ. This implies that τS ⊂ ϑS (by Corollary 3.14.). Hence, τS = ϑS.

Definition 3.19. Consider that (X, τ,E) is a neutrosophic soft semi-regular space, ϕ is the set of all neutro-
sophic soft topologies τα’s on X such that (X, τα,E) is neutrosophic soft ro-equivalent to (X, τ,E). Then ϕ is
partially ordered by the set inclusion relation. Then (X, τ∗,E), where τ∗ is a maximal element of ϕ, which is
defined as a neutrosophic soft sub-maximal space.
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Lemma 3.20. Consider that
(
Ã,E

)
and

(
B̃,E

)
any two neutrosophic soft open sets in a neutrosophic soft topological

space (X, τ,E). If
(
Ã,E

)
q
(
B̃,E

)
then

(
Ã,E

)
q
(
B̃,E

)
and

(
Ã,E

)
q
(
B̃,E

)
.

Theorem 3.21. For every neutrosophic soft topological space, there exists a neutrosophic soft sub-maximal space
which is an expansion of the given neutrosophic soft topological space.

Proof. Consider that (X, τ,E) is a neutrosophic soft topological space. Letϕ denote the set of all neutrosophic
soft topologies τα’s on X such that (X, τα,E) is neutrosophic soft ro-equivalent to (X, τ,E). Then ϕ is a poset
under the set-inclusion relation. Consider that ϕ1 be the sub-collection of ϕ such that τα ∈ ϕ1 iff τ ⊂ τα.
Then ϕ1 is also a poset under the identical relation as in ϕ. Consider that ϕ0 is a chain in ϕ1 and let
ψ0 =

⋃{
τα : τα ∈ ψ0

}
. It is obvious that ψ0 is a base for some neutrosophic soft topology ϑ (say) on X such

that τ ⊂ ϑ. We claim that τS = ϑS. In fact, let
(
Ũ,E

)
∈ ϑ. In view of Theorem 3.18, it suffices to show that

τ −NScl
(
Ũ,E

)
= ϑ −NScl

(
Ũ,E

)
. Obviously,

ϑ − NScl
(
Ũ,E

)
⊆ τ − NScl

(
Ũ,E

)
. Next, suppose xe

(α,β,γ) is a neutrosophic soft point such that xe
(α,β,γ) ∈

τ − NScl
(
Ũ,E

)
, and let

(
W̃,E

)
be any neutrosophic soft open q-neighborhood of xe

(α,β,γ) in (X, ϑ,E). Then

there exists
(
B̃,E

)
∈ Ψ0 such that xe

(α,β,γ)q
(
B̃,E

)
⊆

(
W̃,E

)
. Now,

(
B̃,E

)
∈ τα, for some α for which τα ∈ ϕ0.

Consider that
(
W̃,E

)∗
= τα − NSint

(
τα −NScl

(
B̃,E

))
. Then,

(
W̃,E

)∗
∈ (τα)s = τS ⊂ τ, i.e.

(
W̃,E

)∗
∈ τ.

Thus,
(
W̃,E

)∗
is neutrosophic soft open q-neighborhood of xe

(α,β,γ) in (X, τ,E) and hence,
(
W̃,E

)∗
q
(
Ũ,E

)
.

So there exists a neutrosophic soft point ye′

(α′,β′,γ′) in (X, τ,E) such that ye′

(α′,β′,γ′)q
(
Ũ,E

)
and hence there

exists
(
ŨY,E

)
∈ ψ0 such that ye′

(α′,β′,γ′)q
(
ŨY,E

)
⊆

(
Ũ,E

)
. Now,

(
ŨY,E

)
∈ τβ, for some τβ ∈ ϕ0. If possible, let(

W̃,E
)

q
(
Ũ,E

)
. Then,

(
B̃,E

)
q
(
ŨY,E

)
. Since (X, τα,E) and

(
X, τβ,E

)
are comparable and every is neutrosophic

soft ro-equivalent to
(
X, τS ,E

)
, by Theorem 3.18., τα − NScl

(
B̃,E

)
= τβ − NScl

(
B̃,E

)
. Therefore by Lemma

3.20,
[
τα −NScl

(
B̃,E

)]
q
(
ŨY,E

)
. Since

(
W̃,E

)∗
⊆ τα−NScl

(
B̃,E

)
, we have

(
W̃,E

)∗
q
(
Ũ,E

)
and hence ye′

(α′,β′,γ′)q(
ŨY,E

)
which is a contradiction. Thus xe

(α,β,γ) ∈ ϑ−NScl
(
Ũ,E

)
and we finally conclude that τ−NScl

(
Ũ,E

)
=

ϑ − NScl
(
Ũ,E

)
. Hence τS = ϑS so that ϑ ∈ ψ0. Openly ϑ is an upper bound of ψ0. By Zorn’s lemma, ψ1

has a maximal element τ∗ (say). This maximal element is also a maximal element of ϕ. Hence (X, τ∗,E) is a
neutrosophic soft sub-maximal space which is an expansion of (X, τ,E).

Definition 3.22. A property P is said to is a neutrosophic soft semi-regular property provided that a neu-
trosophic soft topological space (X, τ,E) possesses the property P if its neutrosophic soft semi-regularization
space (X, τS,E) possesses the property.

Definition 3.23. A neutrosophic soft topological space (X, τ,E) is said to be maximal (minimal) with respect
to a property P if whenever a neutrosophic soft topological space (X, ϑ,E) has the property P, one possesses
ϑ ⊂ τ (resp. τ ⊂ ϑ). On the upshot, we shall say such a space maximal P (resp. minimal P).

Theorem 3.24. Consider that P is a neutrosophic soft semi-regular property. Then each maximal P (minimal P)
neutrosophic soft topological space is neutrosophic soft sub-maximal (resp. neutrosophic soft semi-regular).

Proof. Consider that (X, τ,E) has the maximal property P (minimal property P). If it is not neutrosophic soft
sub-maximal (semi-regular), there exists a neutrosophic soft sub-maximal space (X, τ∗,E) which is strictly
finer (resp. neutrosophic soft semi-regular space (X, τS,E) which is strictly weaker) than (X, τ,E) which has
the property P. This contradicts the maximality (resp. minimality) of the space (X, τ,E) with respect to the
property P.
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4. Neutrosophic Soft Semi-regular Properties

In the last section, it has just seen that sub-maximality and semi-regularity of neutrosophic soft topo-
logical spaces are respectively the necessary conditions for them to be maximal and minimal with respect
to neutrosophic soft semi-regular properties. This motivates us to investigate the different properties of
neutrosophic soft topological spaces in order to ascertain whether these are neutrosophic soft semi-regular
properties. We start with a new approach to the concept of neutrosophic soft separation axioms in the
following manner.

Definition 4.1. A neutrosophic soft topological space (X, τ,E) is said to be a neutrosophic soft T0-space if
for every pair of distinct neutrosophic soft points xe

(α,β,γ), ye′

(α′,β′,γ′) there exist neutrosophic open soft sets(
F̃,E

)
,
(
G̃,E

)
such that xe

(α,β,γ) ∈
(
F̃,E

)
, ye′

(α′,β′,γ′) ∈
(
F̃,E

)c
or xe

(α,β,γ) ∈
(
G̃,E

)c
, ye′

(α′,β′,γ′) ∈
(
G̃,E

)
.

Definition 4.2. A neutrosophic soft topological space (X, τ,E) is said to be a neutrosophic soft T1−space if
for every pair of distinct neutrosophic soft points xe

(α,β,γ), ye′

(α′,β′,γ′) there exists neutrosophic open soft sets(
F̃,E

)
and

(
G̃,E

)
such that xe

(α,β,γ) ∈
(
F̃,E

)
, ye′

(α′,β′,γ′) ∈
(
F̃,E

)c
and xe

(α,β,γ) ∈
(
G̃,E

)c
, ye′

(α′,β′,γ′) ∈
(
G̃,E

)
.

Definition 4.3. A neutrosophic soft topological space (X, τ,E) is said to be a neutrosophic soft T2−space if
for every pair of distinct neutrosophic soft points xe

(α,β,γ), ye′

(α′,β′,γ′) there exists neutrosophic open soft sets(
F̃,E

)
and

(
G̃,E

)
such that

xe
(α,β,γ) ∈

(
F̃,E

)
, ye′

(α′,β′,γ′) ∈
(
F̃,E

)c
, ye′

(α′,β′,γ′) ∈
(
G̃,E

)
, xe

(α,β,γ) ∈
(
G̃,E

)c
and

(
F̃,E

)
⊂

(
G̃,E

)c
.

It is obvious that the property of a space to be neutrosophic soft T0 or neutrosophic soft T1 is an expansive
property. Thus we have the following theorem:

Theorem 4.4. A neutrosophic soft topological space (X, τ,E) is neutrosophic soft T0 (neutrosophic soft T1) if (X, τ,E)
is neutrosophic soft T1 (resp. neutrosophic soft T2).

Proof. Straightforward.

Theorem 4.5. Neutrosophic soft T2− property is a neutrosophic soft semi-regular property.

Proof. Consider that (X, τ,E) is neutrosophic soft T2 and xe
(α,β,γ), ye′

(α′,β′,γ′) are two distinct neutrosophic soft

points in (X, τ,E). Then, xe
(α,β,γ) and ye′

(α′,β′,γ′) have neutrosophic soft open neighbourhoods
(
Ũ,E

)
and

(
Ṽ,E

)
respectively in (X, τ,E) such that

xe
(α,β,γ) ∈

(
Ũ,E

)
, ye′

(α′,β′,γ′) ∈
(
Ũ,E

)c
, ye′

(α′,β′,γ′) ∈
(
Ṽ,E

)
, xe

(α,β,γ) ∈
(
Ṽ,E

)c
and

(
Ũ,E

)
⊂

(
Ṽ,E

)c
.

This implies that
(
Ũ,E

)
q
(
Ṽ,E

)
. Then by Lemma 3.20 we have[

τ −NScl
(
Ũ,E

)]
q
(
Ṽ,E

)
and τ −NSint

(
τ −NScl

(
Ũ,E

))
q
(
Ṽ,E

)
.

Again by the same lemma we have τ −NSint
(
τ −NScl

(
Ũ,E

))
q
[
τ −NScl

(
Ṽ,E

)]
. Consider that us put

τ −NSint
(
τ −NScl

(
Ũ,E

))
=

(
ŨS,E

)
and τ −NSint

(
τ −NScl

(
Ṽ,E

))
=

(
ṼS,E

)
.

Then
(
ŨS,E

)
and

(
ṼS,E

)
are neutrosophic soft open neighbourhoods of xe

(α,β,γ) and ye′

(α′,β′,γ′) in (X, τS,E)

respectively such that
(
Ũ,E

)
q
(
Ṽ,E

)
.
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Definition 4.6. A neutrosophic soft topological space (X, τ,E) is said to be neutrosophic soft regular if every
neutrosophic soft open set

(
Ũ,E

)
in (X, τ,E) is a union of neutrosophic soft open sets

(
Ṽα,E

)
’s in (X, τ,E)

such that
(
Ṽα,E

)
⊆

(
Ũ,E

)
, for every α.

Theorem 4.7. A neutrosophic soft topological space (X, τ,E) is neutrosophic soft regular if for every neutrosophic
soft point xe

(α,β,γ) in (X, τ,E) and for every neutrosophic soft open q-neighbourhood
(
Ũ,E

)
of xe

(α,β,γ), there exists a

neutrosophic soft open set
(
Ṽ,E

)
such that xe

(α,β,γ)q
(
Ṽ,E

)
⊆

(
Ṽ,E

)
⊆

(
Ũ,E

)
.

Proof. It is omitted.

Definition 4.8. A neutrosophic soft topological space (X, τ,E) is said to be neutrosophic soft almost regular
if for every neutrosophic soft point xe

(α,β,γ) in (X, τ,E) and for every neutrosophic soft regular open q-

neighbourhood
(
Ũ,E

)
of xe

(α,β,γ), there exists a neutrosophic soft regular open q- neighbourhood
(
Ṽ,E

)
of

xe
(α,β,γ) such that

(
Ṽ,E

)
⊆

(
Ũ,E

)
.

By virtue of Theorem 3.9. and Theorem 4.7. it is obvious that a neutrosophic soft regular space is
neutrosophic soft almost regular as well as neutrosophic soft semi-regular.

Theorem 4.9. A neutrosophic soft topological space (X, τ,E) is neutrosophic soft almost regular if and only if (X, τS,E)
is neutrosophic soft regular.

Proof. Necessity: Consider that xe
(α,β,γ) is any neutrosophic soft point in (X, τ,E) and

(
Ũ,E

)
be any neutro-

sophic soft open q-neighbourhood of xe
(α,β,γ) in (X, τS,E). Then there exists a neutrosophic soft regular open

set
(
Ṽ,E

)
in (X, τ,E) such that xe

(α,β,γ)q
(
Ṽ,E

)
⊆

(
Ũ,E

)
. By neutrosophic soft almost regularity of (X, τ,E), there

exists a neutrosophic soft regular open q-neighbourhood
(
W̃,E

)
of xe

(α,β,γ) in (X, τ,E), i.e. a neutrosophic soft

open q-neighbourhood
(
W̃,E

)
of xe

(α,β,γ) in (X, τS,E) such that

τS −NScl
(
W̃,E

)
= τ −NScl

(
W̃,E

)
⊆

(
Ṽ,E

)
⊆

(
Ũ,E

)
.

Thus, (X, τS,E) is neutrosophic soft regular, by Theorem 4.7.
Sufficiency: Consider that xe

(α,β,γ) is any neutrosophic soft point in (X, τ,E) and
(
Ũ,E

)
be any neutro-

sophic soft regular open q- neighbourhood of xe
(α,β,γ) in (X, τ,E). Then

(
Ũ,E

)
is a neutrosophic soft open

q-neighbourhood of xe
(α,β,γ) in (X, τS,E). So by neutrosophic soft regularity of (X, τS,E) there exists a neutro-

sophic soft open q-neighbourhood
(
Ṽ,E

)
of xe

(α,β,γ) in (X, τS,E) such that τS − NScl
(
Ṽ,E

)
⊆

(
Ũ,E

)
. Again,

there exists a neutrosophic soft regular open q-neighbourhood
(
W̃,E

)
of xe

(α,β,γ) in (X, τ,E) such that
(
W̃,E

)
⊆(

Ṽ,E
)

and hence(
W̃,E

)
⊆ τS −NScl

(
W̃,E

)
⊆ τS −NScl

(
Ṽ,E

)
⊆

(
Ũ,E

)
. Hence (X, τ,E) is neutrosophic soft almost regular.

Corollary 4.10. A neutrosophic soft topological space is neutrosophic soft semi-regular and neutrosophic soft almost
regular iff it is neutrosophic soft regular.

Corollary 4.11. For any neutrosophic soft topological space (X, τ,E), its neutrosophic soft semi-regularization
(X, τS,E) is neutrosophic soft almost regular iff it is neutrosophic soft regular.
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Corollary 4.12. Neutrosophic soft almost regularity is a neutrosophic soft semi-regular property.

Definition 4.13. A neutrosophic soft topological space (X, τ,E) is said to be a neutrosophic soft Urysohn
space if for every pair of distinct neutrosophic soft points xe

(α,β,γ), ye′

(α′,β′,γ′) there exist neutrosophic open soft

sets
(
F̃,E

)
and

(
G̃,E

)
such that

xe
(α,β,γ) ∈

(
F̃,E

)
, ye′

(α′,β′,γ′) ∈
(
F̃,E

)c
, ye′

(α′,β′,γ′) ∈
(
G̃,E

)
, xe

(α,β,γ) ∈
(
G̃,E

)c
and

(
F̃,E

)
⊂

[(
G̃,E

)]c
.

Theorem 4.14. The neutrosophic soft Urysohn property is a neutrosophic soft semi-regular property.

Proof. Consider that (X, τ,E) is neutrosophic soft Urysohn and xe
(α,β,γ), ye′

(α′,β′,γ′) are two distinct neutrosophic

soft points in (X, τ,E). Then, xe
(α,β,γ) and ye′

(α′,β′,γ′) have neutrosophic soft open neighbourhoods
(
Ũ,E

)
and(

Ṽ,E
)

respectively in (X, τ,E) such that
[
τ −NScl

(
Ũ,E

)]
⊂

[
τ −NScl

(
Ṽ,E

)]c
. Put τ−NSint

(
τ −NScl

(
Ũ,E

))
=(

ŨS,E
)

and τ−NSint
(
τ −NScl

(
Ṽ,E

))
=

(
ṼS,E

)
. Then,

(
Ṽ,E

)
⊂

(
ṼS,E

)c
and consequently, τS−NScl

(
ŨS,E

)
=

τ−NScl
(
Ũ,E

)
, τS −NScl

(
ṼS,E

)
= τ−NScl

(
Ṽ,E

)
and

[
τ −NScl

(
ŨS,E

)]
⊂

[
τ −NScl

(
ṼS,E

)]c
, where

(
ŨS,E

)
and

(
ṼS,E

)
are neutrosophic soft open neighbourhoods of xe

(α,β,γ) and ye′

(α′,β′,γ′) respectively in (X, τS,E).

Hence (X, τS,E) is neutrosophic soft Urysohn.

It is obvious that the neutrosophic soft Urysohn property is an expansive property and thus the converse
part follows.

Definition 4.15. A neutrosophic soft topological space (X, τ,E) is said to be
(a) neutrosophic soft compact [11] if every neutrosophic soft open cover in (X, τ,E) has a finite subcover,
(b) neutrosophic soft nearly compact if every neutrosophic soft open cover in (X, τ,E) by neutrosophic soft

regular open sets has a finite sub-cover,
(c) neutrosophic soft almost compact if every neutrosophic soft cover in (X, τ,E) has a finite neutrosophic

soft proximate sub-cover (i.e., there exists a finite sub-collection Γ0 of the given neutrosophic soft cover Γ

(say) such that
{(

Ũ,E
)

:
(
Ũ,E

)
∈ Γ0

}
is a neutrosophic soft cover in (X, τ,E)).

Openly, we obtain the diagram below:

Neutrosophic soft compactness
↓

Neutrosophic soft near compactness
↓

Neutrosophic soft almost compactness

Theorem 4.16. If a neutrosophic soft topological space (X, τ,E) is neutrosophic soft nearly compact, then (X, τS,E)
is neutrosophic soft compact.

Proof. Straightforward.

Theorem 4.17. A neutrosophic soft topological space (X, τ,E) is neutrosophic soft nearly compact if (X, τS,E) is
neutrosophic soft nearly compact.

Proof. For a neutrosophic soft open cover

Γ =
{(

Ũα,E
)

: α ∈ I
}

in (X, τ,E),
{
τ −NSint

(
τ −NScl

(
Ũα,E

))
: α ∈ I

}
is a neutrosophic soft open cover in (X, τS,E). Since (X, τS,E) is neutrosophic soft nearly compact, there
exists a finite subfamily
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Γ1 =
{
τ −NSint

(
τ −NScl

(
Ũαi ,E

))
=

(
ŨS
αi
,E

)
: i = 1, 2, 3, ...,n

}
such that

1(X,E) =
n⋃

i=1

[
τS −NSint

(
τS −NScl

(
ŨS
αi
,E

))]
=

n⋃
i=1

[
τ −NSint

(
τ −NScl

(
Ũαi ,E

))]
Hence (X, τ,E) is neutrosophic soft nearly compact.

Corollary 4.18. (a) A neutrosophic soft topological space (X, τ,E) is neutrosophic soft nearly compact if and only if
(X, τS,E) is a neutrosophic soft compact.

(b) For a neutrosophic soft topological space (X, τ,E), (X, τS,E) is neutrosophic soft compact if and only if it is
neutrosophic soft nearly compact.

(c) A neutrosophic soft semi-regular space is neutrosophic soft compact if and only if it is neutrosophic soft nearly
compact.

Corollary 4.19. Neutrosophic soft near compactness is a neutrosophic soft semi-regular property.

Theorem 4.20. Neutrosophic soft almost compactness is a neutrosophic soft semi-regular property.

Proof. If (X, τ,E) is neutrosophic soft almost compact then clearly so is (X, τS,E), since τS ⊂ τ. Conversely,
suppose (X, τS,E) is neutrosophic soft almost compact and let

{(
G̃α,E

)
: α ∈ I

}
is a neutrosophic soft open

cover in (X, τ,E). Then
{
τ −NSint

(
τ −NScl

(
G̃α,E

))
: α ∈ I

}
is a neutrosophic soft open cover in (X, τS,E).

By neutrosophic soft almost compactness of (X, τS,E), there exists a finite subset I0 of I such that⋃{
τS −NScl

(
τ −NSint

(
τ −NScl

(
G̃α,E

)))
: α ∈ I0

}
= 1(X,E)

By Theorem 3.10, τS −NScl
(
τ −NSint

(
τ −NScl

(
G̃α,E

)))
= τ −NScl

(
τ −NSint

(
τ −NScl

(
G̃α,E

)))
= τ −NScl

(
G̃α,E

)
and hence

⋃{
τ −NScl

(
G̃α,E

)
: α ∈ I0

}
= 1(X,E).

Definition 4.21. A neutrosophic soft topological space (X, τ,E) is said to be neutrosophic soft S-closed iff
every neutrosophic soft cover in (X, τ,E). by neutrosophic soft semi-open sets has a finite neutrosophic soft
proximate sub-cover.

Theorem 4.22. A neutrosophic soft topological space (X, τ,E) is neutrosophic soft S-closed iff every neutrosophic soft
cover in (X, τ,E) by neutrosophic soft regular closed sets has a finite sub-cover.

Proof. It is omitted.

Theorem 4.23. Neutrosophic soft S-closedness is a neutrosophic soft semi-regular property.

Proof. Follows from Theorem 4.22 and the fact that (X, τ,E) and (X, τS,E) have the same set of neutrosophic
soft regular closed sets.

Definition 4.24. A neutrosophic soft topological space (X, τ,E) is said to be neutrosophic soft extremely

disconnected iff for every neutrosophic soft open set
(
Ṽ,E

)
in (X, τ,E),

(
Ṽ,E

)
is neutrosophic soft open.

Example 4.25. Consider that X =
{
x, y

}
is a universe, E = {a, b} be a parametric set. Consider the neutro-

sophic soft sets
(
F̃,E

)
and

(
G̃,E

)
defined as

F̃ (a) =
{
〈x, 0.2, 0.2, 0.8〉 ,

〈
y, 0.2, 0.2, 0.8

〉}
, F̃ (b) =

{
〈x, 0.2, 0.2, 0.8〉 ,

〈
y, 0.2, 0.2, 0.8

〉}
,

G̃ (a) =
{
〈x, 0.8, 0.8, 0.2〉 ,

〈
y, 0.8, 0.8, 0.2

〉}
, G̃ (b) =

{
〈x, 0.8, 0.8, 0.2〉 ,

〈
y, 0.8, 0.8, 0.2

〉}
.

The family τ =
{
0(X,E), 1(X,E),

(
F̃,E

)
,
(
G̃,E

)}
is a neutrosophic soft topology over X. Then, (X, τ,E) is a

neutrosophic soft extremely disconnected topological space.
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Theorem 4.26. The property of a neutrosophic soft topological space being neutrosophic soft extremely disconnected
is a neutrosophic soft semi-regular property.

Proof. Consider that (X, τ,E) is neutrosophic soft extremely disconnected and let
(
Ũ,E

)
∈ τS. Then, τS −

NScl
(
Ũ,E

)
= τ − NScl

(
Ũ,E

)
=

(
Ṽ,E

)
(say). Since (X, τ,E) is neutrosophic soft extremely disconnected,(

Ṽ,E
)
∈ τ and consequently,

τS −NScl
(
Ũ,E

)
= τ −NSint

(
τ −NScl

(
Ũ,E

))
= τ −NSint

(
τ −NScl

(
Ṽ,E

))
∈ τS.

Hence (X, τS,E) is neutrosophic soft extremely disconnected.
Conversely, suppose (X, τS,E) is neutrosophic soft extremely disconnected. For any

(
Ũ,E

)
∈ τ, τS −

NScl
(
Ũ,E

)
= τ − NScl

(
Ũ,E

)
and τ − NSint

(
τ −NScl

(
Ũ,E

))
∈ τS. Put τ − NSint

(
τ −NScl

(
Ũ,E

))
=

(
Ṽ,E

)
.

Then

τ −NScl
(
Ũ,E

)
= τ −NScl

(
Ṽ,E

)
∈ τS ⊂ τ.

Hence (X, τ,E) is neutrosophic soft extremely disconnected.

5. Neutrosophic Soft Semi-regularization Spaces and Mappings

Definition 5.1. A function f : (X, τ1,E1) → (Y, τ2,E2) is called neutrosophic soft almost continuous (neu-
trosophic soft δ-continuous) if corresponding to any neutrosophic soft point xe

(α,β,γ) in (X, τ1,E1) and any

neutrosophic soft regular open q-neighbourhood
(
Ṽ,E2

)
of f

(
xe

(α,β,γ)

)
, there is a neutrosophic soft open

q-neighbourhood (resp. neutrosophic soft regular open q-neighbourhood)
(
Ũ,E1

)
of xe

(α,β,γ), such that

f
((

Ũ,E1

))
⊆

(
Ṽ,E2

)
.

Equivalently, f : (X, τ1,E1)→ (Y, τ2,E2) is neutrosophic soft almost continuous iff for every neutrosophic
soft regular open (neutrosophic soft regular closed) set

(
Ṽ,E2

)
in (Y, τ2,E2), f−1

((
Ṽ,E2

))
is neutrosophic

soft open (resp. neutrosophic soft closed) in (X, τ1,E1).

Definition 5.2. A function f : (X, τ1,E1) → (Y, τ2,E2) is said to be neutrosophic soft super continuous
(neutrosophic soft strongly θ-continuous) if for every neutrosophic soft point xe

(α,β,γ) in (X, τ1,E1) and for

any neutrosophic soft open q- neighbourhood
(
M̃,E2

)
of f

(
xe
(α,β,γ)

)
, there is a neutrosophic soft open

q-neighbourhood
(
Ñ,E1

)
of xe

(α,β,γ) such that f
([(

Ñ,E1

)]◦)
⊆

(
M̃,E2

)
(resp. f

((
Ñ,E1

))
⊆

(
M̃,E2

)
.

Then, we obtain the diagram below:

Neutrosophic soft strong θ−continuity
↓

Neutrosophic soft super continuity
↙ ↘

Neutrosophic soft continuity Neutrosophic soft δ−continuity
↘ ↙

Neutrosophic soft almost continuity

These implications cannot be reversed as seen in the following examples.
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Example 5.3. Consider that X =
{
x, y

}
is a universe, E = {a, b} be a parametric set. Consider the neutrosophic

soft sets
(
F̃,E

)
defined as F̃ (a) =

{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
, F̃ (b) =

{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
.

The family τ =
{
0(X,E), 1(X,E),

(
F̃,E

)}
is a neutrosophic soft topology over X. So, (X, τ,E) is a neutrosophic soft

topological space. Then, the identity map idX : (X, τ,E)→ (X, τ,E) is neutrosophic soft super continuous but
not neutrosophic soft strongly θ−continuous.

Example 5.4. Consider that X =
{
x, y

}
is a universe, E = {a, b} be a parametric set. Consider the neutrosophic

soft sets
(
F̃,E

)
and

(
G̃,E

)
defined as

F̃ (a) =
{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
, F̃ (b) =

{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
,

G̃ (a) =
{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
, G̃ (b) =

{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
.

The families τ1 =
{
0(X,E), 1(X,E),

(
G̃,E

)
,
(
F̃,E

)}
and τ2 =

{
0(X,E), 1(X,E),

(
F̃,E

)}
are neutrosophic soft topologies

over X. So, (X, τ1,E1) and (X, τ2,E2) are neutrosophic soft topological spaces. Then, the identity map idX :
(X, τ1,E1)→ (X, τ2,E2) is neutrosophic soft continuous but not neutrosophic soft super continuous.

Example 5.5. Consider that X =
{
x, y

}
is a universe, E = {a, b} be a parametric set. Consider the neutrosophic

soft sets
(
F̃,E

)
and

(
G̃,E

)
defined as

F̃ (a) =
{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
, F̃ (b) =

{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
,

G̃ (a) =
{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
, G̃ (b) =

{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
.

The family τ =
{
0(X,E), 1(X,E),

(
G̃,E

)
,
(
F̃,E

)}
is a neutrosophic soft topology over X. So, (X, τ,E) is a neu-

trosophic soft topological space. Then, the identity map idX : (X, τ1,E1) → (X, τ2,E2) is neutrosophic soft
δ−continuous but not neutrosophic soft super continuous.

Example 5.6. Consider that X =
{
x, y

}
is a universe, E = {a, b} is a parametric set. Consider the neutrosophic

soft sets
(
F̃,E

)
and

(
G̃,E

)
defined as

F̃ (a) =
{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
, F̃ (b) =

{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
,

G̃ (a) =
{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
, G̃ (b) =

{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
.

The families τ1 =
{
0(X,E), 1(X,E),

(
G̃,E

)}
and τ2 =

{
0(X,E), 1(X,E),

(
G̃,E

)
,
(
F̃,E

)}
are neutrosophic soft topologies

over X. So, (X, τ1,E1) and (X, τ2,E2) are neutrosophic soft topological spaces. Then, the identity map idX :
(X, τ1,E1)→ (X, τ2,E2) isneutrosophic soft almost continuous but not neutrosophic soft continuous.

Example 5.7. Consider that X =
{
x, y

}
is a universe, E = {a, b} is a parametric set. Consider the neutrosophic

soft sets
(
F̃,E

)
,
(
G̃,E

)
and

(
H̃,E

)
defined as

F̃ (a) =
{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
, F̃ (b) =

{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
,

G̃ (a) =
{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
, G̃ (b) =

{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
.

The families τ1 =
{
0(X,E), 1(X,E),

(
G̃,E

)
,
(
F̃,E

)}
and τ2 =

{
0(X,E), 1(X,E),

(
F̃,E

)}
are neutrosophic soft topologies

over X. So, (X, τ1,E1) and (X, τ2,E2) are neutrosophic soft topological spaces. Then, the identity map
idX : (X, τ1,E1)→ (X, τ2,E2) is neutrosophic soft almost continuous but not neutrosophic soft δ−continuous.

The identity map defined in Example 5.6. is neutrosophic soft δ−continuous but not neutrosophic
soft continuous and the identity map defined in Example 5.7. is neutrosophic soft continuous but not
neutrosophic soft δ−continuous. This implies that neutrosophic soft δ− continuity and neutrosophic soft
continuity are independent notions.

Theorem 5.8. Consider that f : (X, τ,E1)→ (Y, ϑ,E2) is a neutrosophic soft function. Then
(a) Neutrosophic soft almost continuity of the function f defined from (X, τ,E1) to (Y, ϑ,E2) implies neutrosophic

soft continuity of the function f defined from (X, τ,E1) to (Y, ϑS,E2),
(b) Neutrosophic soft almost continuity of the function f defined from (X, τ,E1) to (Y, ϑS,E2) implies neutrosophic

soft almost continuity of the function f defined from (X, τ,E1) to (Y, ϑ,E2),
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(c) Neutrosophic soft δ−continuity of the function f defined from (X, τ,E1) to (Y, ϑ,E2) implies neutrosophic soft
super continuity of the function f defined from (X, τS,E1) to (Y, ϑS,E2),

(d) Neutrosophic soft almost continuity of the function f defined from (X, τS,E1) to (Y, ϑS,E2) implies neutrosophic
soft δ−continuity of the function f defined from (X, τ,E1) to (Y, ϑ,E2) ,

(e) Neutrosophic soft super continuity of the function f defined from (X, τ,E1) to (Y, ϑ,E2) implies neutrosophic
soft super continuity of the function f defined from (X, τS,E1) to (Y, ϑ,E2),

(f) Neutrosophic soft continuity of the function f defined from (X, τS,E1) to (Y, ϑ,E2) implies neutrosophic soft
super continuity of the function f defined from (X, τ,E1) to (Y, ϑ,E2).

Proof. The proofs, being straightforward, are omitted.

It is clear that many more results of the type found in Theorem 5.8. can be achieved if the spaces X
and/or Y are themselves neutrosophic soft semi-regular or neutrosophic soft almost regular or neutrosophic
soft regular. We consider here one of these cases.

Lemma 5.9. Consider that f : (X, τ,E1)→ (Y, ϑ,E2) is a mapping. Then, f is a neutrosophic soft almost continuous

mapping if and only if f−1
((

F̃,E
))
⊆

[
f−1

([(
F̃,E

)]◦)]◦
for every neutrosophic soft open set

(
F̃,E

)
in (Y, ϑ,E2).

Proof. (⇒) Since
(
F̃,E

)
is a (Y, ϑ,E2),

(
F̃,E

)
⊆

[(
F̃,E

)]◦
. So, f−1

((
F̃,E

))
⊆ f−1

([(
F̃,E

)]◦)
. Since

[(
F̃,E

)]◦
is

neutrosophic soft regular open, f−1
([(

F̃,E
)]◦)

is neutrosophic soft open set in (X, τ,E1). Thus, f−1
((

F̃,E
))
⊆

f−1
([(

F̃,E
)]◦)

=
[

f−1
([(

F̃,E
)]◦)]◦

.

(⇐) Consider that
(
F̃,E

)
is a neutrosophic soft regular open set in (Y, ϑ,E2), then we have f−1

((
F̃,E

))
⊆[

f−1
([(

F̃,E
)]◦)]◦

=
[(

F̃,E
)]◦

. Thus f−1
((

F̃,E
))

=
[(

F̃,E
)]◦

. This shows that f−1
((

F̃,E
))

is neutrosophic soft

open set. So, f is a neutrosophic soft almost continuous.

Theorem 5.10. If f : (X, τ,E1)→ (Y, ϑ,E2) is neutrosophic soft almost continuous, where (Y, ϑ,E2) is neutrosophic
soft regular, then f : (X, τS,E1)→ (Y, ϑ,E2) is neutrosophic soft strongly θ−continuous.

Proof. Suppose that (Y, ϑ,E2) is neutrosophic soft semi-regular and f : (X, τ,E1)→ (Y, ϑ,E2) is neutrosophic
soft almost continuous. Consider that

(
F̃,E

)
be a neutrosophic soft open set in (Y, ϑ,E2). From the semi-

regularity of (Y, ϑ,E2),
(
F̃,E

)
=

⋃
i∈I

(
F̃i,E

)
where

(
F̃i,E

)
is a neutrosophic soft regular open set in (Y, ϑ,E2)

for every i ∈ I. From Lemma 5.9., we get

f−1
((

F̃,E
))

= f−1
(⋃

i∈I

(
F̃i,E

))
⊆

⋃
i∈I

[
f−1

([(
F̃i,E

)]◦)]◦
=

⋃
i∈I

[
f−1

((
F̃i,E

))]◦
⊆

[⋃
i∈I f−1

((
F̃i,E

))]◦
=

[
f−1

((
F̃i,E

))]◦
.

This implies that f is neutrosophic soft continuous. Consider that xe
(α,β,γ) be any neutrosophic soft point

in (X, τ,E1) and
(
Ũ,E2

)
any neutrosophic soft open q-neighbourhood of f

(
xe

(α,β,γ)

)
. By neutrosophic soft

regularity of (Y, ϑ,E2), there is a neutrosophic soft open q-neighbourhood
(
Ṽ,E2

)
of f

(
xe
(α,β,γ)

)
in (Y, ϑ,E2)

such that ϑ − NScl
(
Ṽ,E2

)
⊆

(
Ũ,E2

)
. By neutrosophic soft continuity of f , there exists a neutrosophic soft

open q- neighbourhood
(
W̃,E1

)
of xe

(α,β,γ) in (X, τ,E1) such that f
((

W̃,E1

))
⊆

(
Ṽ,E2

)
. Thus

f
(
τ −NScl

(
W̃,E1

))
⊆ θ −NScl f

((
W̃,E1

))
⊆ ϑ −NScl

(
Ṽ,E2

)
⊆

(
Ũ,E2

)
.

If we put
(
G̃,E1

)
= τ − NSint

(
τ −NScl

(
W̃,E1

))
, then

(
G̃,E1

)
is a neutrosophic soft open q-neighbourhood

of xe
(α,β,γ) in (X, τS,E1). Now,
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τS −NScl
(
G̃,E1

)
= τ −NScl

(
G̃,E1

)
= τ −NScl

(
W̃,E1

)
.

Hence f
(
τS −NScl

(
G̃,E1

))
⊆

(
Ũ,E2

)
and f : (X, τ,E1)→ (Y, ϑ,E2) is neutrosophic soft stronglyθ−continuous.

Definition 5.11. A function f : (X, τ,E1) → (Y, ϑ,E2) is called neutrosophic soft weakly continuous if for

each neutrosophic soft open set
(
B̃,E2

)
in (Y, ϑ,E2), f−1

((
B̃,E2

))
⊆

[
f−1

((
B̃,E2

))]◦
.

Equivalently, a function f : (X, τ,E1) → (Y, ϑ,E2) is neutrosophic soft weakly continuous if for any

neutrosophic soft point xe
(α,β,γ) in (X, τ,E1) and any neutrosophic soft open set

(
Ṽ,E2

)
containing f

(
xe

(α,β,γ)

)
,

there is a neutrosophic soft open set
(
Ũ,E1

)
, containing xe

(α,β,γ) such that f
((

Ũ,E1

))
⊆

(
Ṽ,E2

)
.

It is known that a neutrosophic soft almost continuous function is always neutrosophic soft weakly
continuous. But, the converse may not be true as seen in example below.

Example 5.12. Consider that X =
{
x, y

}
is a universe, E = {a, b} is a parametric set, the neutrosophic soft sets(

F̃,E
)

and
(
G̃,E

)
are defined as

F̃ (a) =
{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
, F̃ (b) =

{
〈x, 0.3, 0.3, 0.7〉 ,

〈
y, 0.3, 0.3, 0.7

〉}
,

G̃ (a) =
{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
, G̃ (b) =

{
〈x, 0.4, 0.4, 0.6〉 ,

〈
y, 0.4, 0.4, 0.6

〉}
.

The families τ1 =
{
0(X,E), 1(X,E),

(
G̃,E

)}
and τ2 =

{
0(X,E), 1(X,E),

(
F̃,E

)}
are neutrosophic soft topologies over X.

So, (X, τ1,E1) and (X, τ2,E2) are neutrosophic soft topological spaces.
Then, the identity map idX : (X, τ1,E1) → (X, τ2,E2) is neutrosophic soft weakly continuous but not

neutrosophic soft almost continuous.

6. Conclusion

We have introduced the concepts of neutrosophic soft semi-regularization topology, neutrosophic soft
semi-regularization space, neutrosophic soft semi-regular space and neutrosophic soft sub-maximal space.
The definitions of neutrosophic soft quasi-coincidence and neutrosophic soft q-neighbourhood have been
also given. Using these definitions, we have defined the concepts of neutrosophic soft almost regular space
and neutrosophic soft almost regular space, and their properties have been analysed. A new approach to
the concept of neutrosophic soft separation axioms has been made, and the characteristics of neutrosophic
soft semi-regularization spaces related to neutrosophic soft separation axioms have been examined. Ad-
ditionally, the notions of neutrosophic soft near compactness and neutrosophic soft almost compactness
have been introduced, and relationships of them have been shown with a diagram. Furthermore, some
certain types of continuous mappings defined in general and fuzzy topological spaces have been adapted
to neutrosophic soft topological spaces, and a diagram has been obtained which shows the relations of these
mappings. Some examples have been given to show that the converse implications are not true in general.
The properties of neutrosophic soft compactness, neutrosophic soft near compactness and neutrosophic
soft almost compactness have been analyzed under these mappings. Since several mathematicians focused
on topological structures of neutrosophic soft sets, some terms have been generalized to the neutrosophic
soft sets which may be beneficial in different fields. We hope that many researchers will benefit from the
findings in this document to further their studies on neutrosophic soft topology to carry out a general
framework for their applications in real life problems.
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[9] C.G. Aras, A. Sonmez, H. Çakallı, An approach to soft functions, J. Math. Anal. 8 (20217) 129–138.

[10] T. Bera, N.K. Mahapatra, On neutrosophic soft function, Ann. Fuzzy Math. Inform. 12 (2016) 101–119.
[11] T. Bera, N.K. Mahapatra, On neutrosophic soft topological space, Neutrosophic Sets Syst. 19 (2018) 3–15.
[12] T. Bera, N.K. Mahapatra, Introduction to neutrosophic soft topological space, Opsearch 54 (2017) 841–867.
[13] T. Bera, N.K. Mahapatra, An approach to solve the linear programming problem using single valued trapezoidal neutrosophic

numbers, Internat. J. Neutrosophic Sci. 3 (2020) 54–66.
[14] N. Bourbaki, General Topology (Part I), Addison-Wesley Reading, MA., 1966.
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