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Abstract. The Hermite-Hadamard inequality has been recognized as the most pivotal inequality which has
grabbed the attention of several mathematicians. In recent years, load of results have been established for
this inequality. The main theme of this article is to present generalized Hermite-Hadamard inequality via
the Jensen-Mercer inequality and majorization concept. We establish a Hermite-Hadamard inequality of the
Jensen-Mercer type for majorized tuples. With the aid of weighted generalized Mercer’s inequality, we also
prove a weighted generalized Hermite-Hadamard inequality for certain tuples. The idea of obtaining the
results of this paper, may explore a new way for derivation of several other results for Hermite-Hadamard
inequality.

1. Introduction

For the past few decades, the field of mathematical inequalities has been developed vigorously and has
a great impact in different branches of science like information theory [14], economics [26] and engineering
[10] etc. It must be noted that convexity is the key concept used in this field which gave rise to many new
ideas about research [5, 13, 33]. Furthermore, various classes of the convex functions were discovered and
related inequalities were deduced [8, 10, 18]. Convex functions also have a major role in majorization theory
and many results have been established in this direction. Over the past years, the theory of majorization
has been used as a powerful tool for research in the field of mathematics [39]. The definition of majorization
for two m−tuples is given below:

Definition 1.1 ([11, 39]). Let a = (a1, . . . , am) and b = (b1, . . . , bm) be two m − tuples of real numbers and a[1] ≥

a[2] ≥ · · · ≥ a[m], b[1] ≥ b[2] ≥ · · · ≥ b[m] be their ordered components then a is said to majorize b (or b is to be majorize
by a, symbolically b ≺ a), if

k∑
j=1

b[ j] ≤

k∑
j=1

a[ j] for k = 1, 2, . . . ,m − 1, (1)
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and

m∑
j=1

a j =

m∑
j=1

b j. (2)

Maojorization is a partial order relation of two m−tuples a = (a1, . . . , am) and b = (b1, . . . , bm) which explains
that the tuple a is “less spread out” or “more nearly equal” than the tuple b. The theory of majorization
helps us to convert complicated problems of optimization into simple problems which can be easily solved
[7, 21]. Some current applications of majorization theory in signal processing and communication can be
accessed in [23, 34].

A lot of work is devoted to the theory of majorization. Khan et al. [5] extended the majorization
inequality for the function defined on interval to the convex function defined on rectangle. In this extension,
the authors considered certain monotonic tuples. Wu et al. [38] gave some refinement of the majorization
inequalities with the help of Taylor’s theorem. They used a convex function whose double derivative exists
on interval and various types of monotonic tuples. Also, a new fractional inequality has been obtained as
an application of the main result. Khan et al. [4] used Green function and Taylor’s formula to generalize the
majorization theorem for n−convex functions. The authors also deduced bounds for some related identities.
In [24], the authors used generalized majorization inequalities to present generalized form of the Jensen
and the Jensen-Steffensen inequalitites. They also gave generalization of a variant of Jensen’s inequality.
Khan et al. [1] extended majorization inequality from strongly convex functions defined on interval to the
functions which are strongly convex defined on rectangle and also obtained its weighted version. Also, the
authors presented Favard’s type inequalities with the help of obtained results. Zaheer et al. [40] obtained
integral inequalities related to strongly convex functions using majoriaztion. For more recent results, we
refer the reader to [36, 37].

The following theorem is due to Hardy, Littlewood and Pólya [22], known as the majorization theorem.
The monograph of Marshall and Olkin [31] also provide the proof of this theorem.

Theorem 1.2. Let a = (a1, . . . , am) and b = (b1, . . . , bm) be two real m−tuples such that a j, b j ∈ I. Then

m∑
j=1

φ(b j) ≤
m∑

j=1

φ(a j) (3)

is valid for each continuous convex function φ : I→ R iff b ≺ a.

The above theorem in its weighted form is given below [27].

Theorem 1.3. Suppose that φ is a real valued convex function on I and a = (a1, . . . , am), b = (b1, . . . , bm), p =
(p1, . . . , pm) are three m−tuples such that a j, b j ∈ I, p j ≥ 0 for all j ∈ {1, 2 . . . ,m}. If b is decreasing m−tuple and

k∑
j=1

p jb j ≤

k∑
j=1

p ja j, for k = 1, 2, . . . ,m − 1, (4)

m∑
j=1

p ja j =

m∑
j=1

p jb j, (5)

then
m∑

j=1

p jφ(b j) ≤
m∑

j=1

p jφ(a j). (6)

In [11] Dragomir proved weighted version of Theorem 1.2 without using condition (4).
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Theorem 1.4. Suppose that φ is a real valued convex function on I and a = (a1, . . . , am), b = (b1, . . . , bm), p =
(p1, . . . , pm) are three m−tuples such that a j, b j ∈ I, p j ≥ 0 with Pm =

∑m
j=1 p j > 0 for all j ∈ {1, 2, . . . ,m}. If a − b

and b are monotonic in the same sense and satisfying

m∑
j=1

p ja j =

m∑
j=1

p jb j

then
m∑

j=1

p jφ(b j) ≤
m∑

j=1

p jφ(a j). (7)

As our main results concern with the Mercer inequality. Therefore, in below theorem, we state the Mercer
inequality.

Theorem 1.5. ([28]) Suppose that φ is a real valued convex function on I such that [δ1, δ2] ⊂ I, x j ∈ [δ1, δ2], p j ≥ 0

for all j ∈ {1, 2, . . . ,m} with
m∑

j=1
p j = 1, then

φ
(
δ1 + δ2 −

m∑
j=1

p jx j

)
≤ φ(δ1) + φ(δ2) −

m∑
j=1

p jφ(x j). (8)

Niezgoda [32] used the concept of majorization and extended the Jensen-Mercer inequality given as under:

Theorem 1.6. Suppose that φ is a real valued convex function on I, (xi j) is a n ×m real matrix and e = (e1, . . . , em)

is m−tuple such that e j, xi j ∈ I for all i, j, wi ≥ 0 for i = 1, 2, . . . ,n with
n∑

i=1
wi = 1. If e majorizes every row of (xi j),

then we have

φ

 m∑
j=1

e j −

m−1∑
j=1

n∑
i=1

wixi j

 ≤ m∑
j=1

φ(e j) −
m−1∑
j=1

n∑
i=1

wiφ(xi j). (9)

Another significant inequality is the Hermite-Hadamard inequality defined for convex functions as [19]:
Suppose ϑ, θ ∈ I such that ϑ < θ and φ : I→ R is a convex function then

φ
(
ϑ + θ

2

)
≤

1
θ − ϑ

∫ θ

ϑ
φ(u)du ≤

φ(ϑ) + φ(θ)
2

(10)

holds. The inequality (10) was first proved by Hermite [20] in 1883 but his work was not commonly known in
the literature of mathematics. According to a famous historian, Beckenbach [6], Hadamard rediscoverd this
inequality ten years later. Afterwards Hermite’s note was found by Mitrinović [29] in Mathesis. Therefore,
the inequality given in (10), is widely known by the name Hermite-Hadamard inequality. It guaranties the
integrability of convex function and gives estimate of integral mean of convex function.
Dragomir and Agarwal [15] formulated an integral identity using right hand part of Hermite-Hadamard
inequality and presented some good results along with applications. Pearce and Pečarić [35] proved
some more results by using the same integral identity given in [15]. They also gave some applications to
trapezoidal and midpoint formulas. For further generalizations, extensions and refinements of Hermite-
Hadamard inequality one can see [2, 3, 9, 19].

2. Main Results

In the underlying theorems we give Hermite-Hadamard inequality of the Jensen-Mercer type by using
majorization concept.
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Theorem 2.1. Suppose that φ is a real valued convex function on I and e = (e1, . . . , em), x = (x1, . . . , xm), y =
(y1, . . . , ym) are three m-tuples such that e j, x j, y j ∈ I, x j , y j for all j ∈ {1, · · · ,m}. If x ≺ e and y ≺ e, then

φ

( m∑
j=1

e j −

m−1∑
j=1

(x j + y j

2

))
≤

m∑
j=1

φ(e j) −
m−1∑
j=1

1
y j − x j

∫ y j

x j

φ(u)du

≤

m∑
j=1

φ(e j) −
m−1∑
j=1

φ
(x j + y j

2

)
. (11)

Proof. Let t ∈ [0, 1], then we may write

φ

( m∑
j=1

e j −

m−1∑
j=1

(x j + y j

2

))

= φ

( m∑
j=1

e j −

m−1∑
j=1

( tx j + (1 − t)y j + ty j + (1 − t)x j

2

))
. (12)

In order to apply Theorem 1.6 in (12), first we show that e majorizes r and z, where r = (r1, · · · , rm),
z = (z1, · · · , zm), r j = tx j + (1 − t)y j and z j = ty j + (1 − t)x j for j = 1, 2, . . . ,m.

For this, let
k∑

j=1
x[ j] = β1k and

k∑
j=1

y[ j] = β2k, f or k = 1, · · · ,m − 1. Then

k∑
j=1

r[ j] = t
k∑

j=1

x[ j] + (1 − t)
k∑

j=1

y[ j] = tβ1k + (1 − t)β2k. (13)

Since x ≺ e and y ≺ e, therefore by definition of majorization, we have
k∑

j=1
x[ j] ≤

k∑
j=1

e[ j] and
k∑

j=1
y[ j] ≤

k∑
j=1

e[ j] i.e.

β1k ≤

k∑
j=1

e[ j] (14)

and

β2k ≤

k∑
j=1

e[ j]. (15)

Multiplying (14) by t and (15) by 1 − t and then adding the resulting inequalities, we get

tβ1k + (1 − t)β2k ≤

k∑
j=1

e[ j]. (16)

Now using (13) in (16), we have

k∑
j=1

r[ j] ≤

k∑
j=1

e[ j].

Also,
m∑

j=1

r j = t
m∑

j=1

x j + (1 − t)
m∑

j=1

y j. (17)
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But
m∑

j=1
e j =

m∑
j=1

x j and
m∑

j=1
e j =

m∑
j=1

y j, therefore from (17) we have

m∑
j=1

r j =

m∑
j=1

e j.

Hence, r ≺ e. Similarly we can show that z ≺ e. Therefore, using Theorem 1.6 in (12) for the case of n = 2
and w1 = w2 = 1

2 , we obtain

φ

( m∑
j=1

e j −

m−1∑
j=1

(x j + y j

2

))

≤

m∑
j=1

φ(e j) −

m−1∑
j=1

(
φ

(
(tx j + (1 − t)y j

)
+ φ(ty j + (1 − t)x j)

)
2

. (18)

Now, integration of (18) with respect to t, gives

φ

( m∑
j=1

e j −

m−1∑
j=1

(x j + y j

2

))

≤

m∑
j=1

φ(e j) −
1
2

m−1∑
j=1

∫ 1

0

(
φ

(
(tx j + (1 − t)y j

)
+ φ(ty j + (1 − t)x j)

)
dt. (19)

Since ∫ 1

0
φ

(
(tx j + (1 − t)y j

)
dt =

∫ 1

0
φ(ty j + (1 − t)x j)dt =

1
y j − x j

∫ y j

x j

φ(u)du. (20)

Therefore, using (20) in (19), we get the left inequality in (11).
To obtain the right inequality in (11), we know from Hermite-Hadamard inequality that

−1
θ − ϑ

∫ θ

ϑ
φ(u)du ≤ −φ

(
ϑ + θ

2

)
. (21)

Replacing ϑ, θ by x j, y j respectively and summing both sides over j = 1, · · · ,m − 1, we get

−

m−1∑
j=1

1
y j − x j

∫ y j

x j

φ(u)du ≤ −
m−1∑
j=1

φ
(x j + y j

2

)
. (22)

Adding
m∑

j=1
φ(e j) to both sides of (22), we deduce the right inequality in (11).

Remark 2.2. In the above theorem, if x j = y j for all j ∈ {1, 2, . . . ,m} then by following the proof of Theorem 2.1, we
obtain

φ

( m∑
j=1

e j −

m−1∑
j=1

x j

)
≤

m∑
j=1

φ(e j) −
m−1∑
j=1

φ(x j).

If x j = y j for some j, then (11) reduces to the form

φ

( m∑
j=1

e j −

m−1∑
j=1

(x j + y j

2

))
≤

m∑
j=1

φ(e j) −
∑
j∈I

φ(x j) −
∑
j∈Ic

1
y j − x j

∫ y j

x j

φ(u)du,

where I = { j ∈ {1, 2, . . . ,m} : x j = y j} and Ic = {1, 2, . . . ,m} \ I.
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Theorem 2.3. If all the hypotheses of Theorem 2.1 are valid and xm , ym, then

φ

( m∑
j=1

e j −

m−1∑
j=1

(x j + y j

2

))
≤

1
m−1∑
j=1

(y j − x j)

∫ m−1∑
j=1

y j

m−1∑
j=1

x j

φ
( m∑

j=1

e j − u
)
du

≤

m∑
j=1

φ(e j) −
1
2


m−1∑
j=1

φ(x j) +

m−1∑
j=1

φ(y j)

 . (23)

Proof. Clearly,

φ

( m∑
j=1

e j −

m−1∑
j=1

(x j + y j

2

))
= φ

(
1
2

( m∑
j=1

e j −

m−1∑
j=1

x j +

m∑
j=1

e j −

m−1∑
j=1

y j

))
(24)

By second condition of majorization, we have

m∑
j=1

e j −

m−1∑
j=1

x j = xm (25)

and

m∑
j=1

e j −

m−1∑
j=1

y j = ym. (26)

Therefore
m∑

j=1
e j −

m−1∑
j=1

x j,
m∑

j=1
e j −

m−1∑
j=1

y j ∈ I.

Also, as xm , ym so from (25) and (26), we get that
m−1∑
j=1

x j ,
m−1∑
j=1

y j. Now, using Hermite-Hadamard inequality

in (24), we obtain

φ

( m∑
j=1

e j −

m−1∑
j=1

(x j + y j

2

))
≤

∫ 1

0
φ

(
t
( m∑

j=1

e j −

m−1∑
j=1

x j

)
+ (1 − t)

×

( m∑
j=1

e j −

m−1∑
j=1

y j

))
dt

=

∫ 1

0
φ

( m∑
j=1

e j −

(
t

m−1∑
j=1

x j + (1 − t)
m−1∑
j=1

y j

))
dt

=
1

m−1∑
j=1

(y j − x j)

∫ m−1∑
j=1

y j

m−1∑
j=1

x j

φ
( m∑

j=1

e j − u
)
du. (27)

This completes the proof of the left inequality in (23).
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Now, we derive the right inequality in (23). Since x ≺ e and y ≺ e, that is all the hypotheses of Theorem
1.6 are satisfied for n = 2. Therefore using Theorem 1.6, for n = 2, w1 = t and w2 = 1 − t, we can write

φ

( m∑
j=1

e j −

m−1∑
j=1

(tx j + (1 − t)y j)
)

≤

m∑
j=1

φ(e j) −
m−1∑
j=1

(
tφ(x j) + (1 − t)φ(y j)

)

=

m∑
j=1

φ(e j) −
(
t

m−1∑
j=1

φ(x j) + (1 − t)
m−1∑
j=1

φ(y j)
)

(28)

Integration of (28) with respect to t, gives∫ 1

0
φ

 m∑
j=1

e j −

m−1∑
j=1

(tx j + (1 − t)y j)

 dt

≤

m∑
j=1

φ(e j) −
∫ 1

0

t
m−1∑
j=1

φ(x j) + (1 − t))
m−1∑
j=1

φ(y j)

 dt. (29)

Using integration and change of variable we get the right inequality in (23).

Remark 2.4. Following the suppositions of Theorem 2.1 and Theorem 2.3, if m = 2, then we get the following
inequalities which have been given in [25]:

φ
(
e1 + e2 −

x1 + y1

2

)
≤ φ(e1) + φ(e2) −

1
y1 − x1

∫ y1

x1

φ(u)du

≤ φ(e1) + φ(e2) − φ
(x1 + y1

2

)
and

φ
(
e1 + e2 −

x1 + y1

2

)
≤

1
y1 − x1

∫ y1

x1

φ (e1 + e2 − u) du

≤ φ(e1) + φ(e2) −
1
2

{
φ(x1) + φ(y1)

}
. (30)

We establish the following lemma which will help us to give our next generalized Hermite-Hadamard type
inequality.

Lemma 2.5. Assume that φ : I→ R is a convex function and e = (e1, . . . , em), p = (p1, . . . , pm) are two m − tuples,
(xi j) is a n × m real matrix such that e j, xi j ∈ I, p j ≥ 0 with pm , 0 for all i, j and η = 1

pm
. Also, wi ≥ 0 for

i = 1, 2, . . . ,n with
n∑

i=1
wi = 1. If (xi1, . . . , xim) is a decreasing m-tuple for each i = 1, 2, . . . ,n, and satisfying

k∑
j=1

p jxi j ≤

k∑
j=1

p je j f or k = 1, 2, . . . ,m − 1,
m∑

j=1

p je j =

m∑
j=1

p jxi j,

then

φ

( m∑
j=1

ηp je j −

m−1∑
j=1

n∑
i=1

ηwip jxi j

)
≤

m∑
j=1

ηp jφ(e j) −
m−1∑
j=1

n∑
i=1

ηwip jφ(xi j). (31)
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Proof. It is evident that

φ

( m∑
j=1

ηp je j −

m−1∑
j=1

n∑
i=1

ηwip jxi j

)
= φ

( m∑
j=1

ηp je j

n∑
i=1

wi −

m−1∑
j=1

n∑
i=1

ηwip jxi j

)

≤

n∑
i=1

wiφ

(
η
( m∑

j=1

p je j −

m−1∑
j=1

p jxi j

))
. (32)

Since
m∑

j=1
p je j =

m∑
j=1

p jxi j for each i = 1, · · · ,n, then we have

xim = η
( m∑

j=1

p je j −

m−1∑
j=1

p jxi j

)
. (33)

Using Theorem 1.3, for e, p and (xi1, . . . , xim) for each i = 1, 2, . . . ,n, we write

m∑
j=1

p jφ(xi j) ≤
m∑

j=1

p jφ(e j)

⇒

m−1∑
j=1

p jφ(xi j) + pmφ(xim) ≤
m∑

j=1

p jφ(e j)

⇒ pmφ(xim) ≤
m∑

j=1

p jφ(e j) −
m−1∑
j=1

p jφ(xi j)

⇒ φ(xim) ≤
m∑

j=1

ηp jφ(e j) −
m−1∑
j=1

ηp jφ(xi j) (34)

Using (33) in (34), we obtain

φ

(
η
( m∑

j=1

p je j −

m−1∑
j=1

p jxi j

))
≤

m∑
j=1

ηp jφ(e j) −
m−1∑
j=1

ηp jφ(xi j) (35)

From (32) and (35), we get (31).

In the following theorems we prove Hermite-Hadamard inequalities of the Jensen-Mercer type for one
arbitrary and two monotonic tuples.

Theorem 2.6. Suppose that φ is a real valued convex function on I and e = (e1, . . . , em), x = (x1, . . . , xm), y =
(y1, . . . , ym), p = (p1, . . . , pm) are four m-tuples such that e j, x j, y j ∈ I, x j , y j, p j ≥ 0 with pm , 0 for all
j ∈ {1, . . . ,m} and η = 1

pm
. If x and y are decreasing m-tuples and

k∑
j=1

p jx j ≤

k∑
j=1

p je j,
k∑

j=1

p jy j ≤

k∑
j=1

p je j f or k = 1, . . . ,m − 1,

m∑
j=1

p je j =

m∑
j=1

p jx j,
m∑

j=1

p je j =

m∑
j=1

p jy j,
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then

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))
≤

m∑
j=1

ηp jφ(e j) − η
m−1∑
j=1

p j

y j − x j

∫ y j

x j

φ(u)du

≤

m∑
j=1

ηp jφ(e j) − η
m−1∑
j=1

p jφ
(x j + y j

2

)
. (36)

Proof. Let t ∈ [0, 1], we have

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))

= φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

p j

( tx j + (1 − t)y j + ty j + (1 − t)x j

2

))
. (37)

Let r = (r1, . . . , rm) and z = (z1, . . . , zm) where r j = tx j + (1 − t)y j and z j = ty j + (1 − t)x j for j = 1, 2, . . . ,m.

By similar idea as given in Theorem 2.1, we can show that r and z satisfy the conditions
k∑

j=1
p jr j ≤

k∑
j=1

p je j,

k∑
j=1

p jz j ≤
k∑

j=1
p je j for k = 1, 2, . . . ,m − 1 and

m∑
j=1

p jr j =
m∑

j=1
p je j,

m∑
j=1

p jz j =
m∑

j=1
p je j. Therefore, applying Lemma 2.5

in (37), we have

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))

≤

m∑
j=1

ηp jφ(e j) −
1
2
η

m−1∑
j=1

(
p jφ

(
tx j + (1 − t)y j

)
+ p jφ

(
ty j + (1 − t)x j

))
. (38)

Integration of (38) with respect to t, delivers

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))

≤

m∑
j=1

ηp jφ(e j) −
1
2
η

m−1∑
j=1

p j

∫ 1

0

(
φ
(
tx j + (1 − t)y j

)
+ φ

(
ty j + (1 − t)x j

))
dt. (39)

Since ∫ 1

0
φ
(
(tx j + (1 − t)y j

)
dt =

∫ 1

0
φ
(
ty j + (1 − t)x j

)
dt =

1
y j − x j

∫ y j

x j

φ(u)du. (40)

Using (40) in (39), we get the left inequality in (36).
Next we prove the right inequality in (36). For this, replace ϑ, θ by x j, y j respectively in left inequality

of (10) and multiplying ηp j, we get

−ηp j

y j − x j

∫ y j

x j

φ(u)du ≤ −ηp jφ
(x j + y j

2

)
. (41)

Taking summation on both sides over j = 1, . . . ,m − 1 and then adding
m∑

j=1
ηp jφ(e j) to both sides, we obtain

the right inequality in (36).
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Remark 2.7. In the above theorem, if x j = y j for all j ∈ {1, 2, . . . ,m} then by following the proof of Theorem 2.6, we
obtain

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

p jx j

)
≤

m∑
j=1

ηp jφ(e j) − η
m−1∑
j=1

p jφ(x j).

If x j = y j for some j, then (36) reduces to the form

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))

≤

m∑
j=1

ηp jφ(e j) −
∑
j∈I

ηp jφ(x j) − η
∑
j∈Ic

p j
1

y j − x j

∫ y j

x j

φ(u)du,

where I = { j ∈ {1, 2, . . . ,m} : x j = y j} and Ic = {1, 2, . . . ,m} \ I.

Theorem 2.8. If all the hypotheses of Theorem 2.6 are valid and xm , ym, then

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))

≤
1

m−1∑
j=1

(ηp jy j − ηp jx j)

∫ m−1∑
j=1
ηp j y j

m−1∑
j=1
ηp jx j

φ
( m∑

j=1

ηp je j − u
)
du

≤

m∑
j=1

ηp jφ(e j) −
1
2


m−1∑
j=1

ηp jφ(x j) +

m−1∑
j=1

ηp jφ(y j)

 . (42)

Proof. It can be observed that

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))

= φ

(
1
2

( m∑
j=1

ηp je j −

m−1∑
j=1

ηp jx j +

m∑
j=1

ηp je j −

m−1∑
j=1

ηp jy j

))
.

(43)

As
m∑

j=1
p je j =

m∑
j=1

p jx j and
m∑

j=1
p je j =

m∑
j=1

p jy j, so we have

m∑
j=1

ηp je j −

m−1∑
j=1

ηp jx j = xm (44)

and

m∑
j=1

ηp je j −

m−1∑
j=1

ηp jy j = ym. (45)
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Hence
m∑

j=1
ηp je j −

m−1∑
j=1
ηp jx j,

m∑
j=1
ηp je j −

m−1∑
j=1
ηp jy j ∈ I.

Also, as xm , ym so from (44) and (45), we get that
m−1∑
j=1
ηp jx j ,

m−1∑
j=1
ηp jy j. Now using Hermite-Hadamard

inequality in right side of (43), we obtain

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))

≤

∫ 1

0
φ

(
t
( m∑

j=1

ηp je j −

m−1∑
j=1

ηp jx j

)
+ (1 − t)

×

( m∑
j=1

ηp je j −

m−1∑
j=1

ηp jy j

))
dt

=

∫ 1

0
φ

( m∑
j=1

ηp je j −

m−1∑
j=1

(
tηp jx j + (1 − t)ηp jy j

))
dt

=
1

m−1∑
j=1

(ηp jy j − ηp jx j)

∫ m−1∑
j=1
ηp j y j

m−1∑
j=1
ηp jx j

φ
( m∑

j=1

ηp je j − u
)
du. (46)

Thus the left inequality in (42) is proved.
Now, we prove the right inequality in (42). Using Lemma 2.5 for n = 2, w1 = t and w2 = 1− t, we deduce

φ

( m∑
j=1

ηp je j −

m−1∑
j=1

(
tηp jx j + (1 − t)ηp jy j

))

≤

m∑
j=1

ηp jφ(e j) −
m−1∑
j=1

(
tηp jφ(x j) + (1 − t)ηp jφ(y j)

)
. (47)

Integration of (47) with respect to t, follows∫ 1

0
φ

( m∑
j=1

ηp je j −

m−1∑
j=1

(
tηp jx j + (1 − t)ηp jy j

))
dt

≤

m∑
j=1

ηp jφ(e j) −
m−1∑
j=1

∫ 1

0

(
tηp jφ(x j) + (1 − t)ηp jφ(y j)

)
dt. (48)

Using integration and change of variable, we deduce the right inequality in (42).
For more results of Hermite-Hadamard inequality of the Jensen-Mercer type, we propose another lemma

which is given as follows:

Lemma 2.9. Assume that φ : I → R is a convex function and e = (e1, . . . , em), p = (p1, . . . , pm) be two m-tuples,
(xi j) is a n ×m real matrix such that e j, xi j ∈ I, p j ≥ 0, pm , 0 for all i, j, η = 1

pm
and wi ≥ 0 for i = 1, 2, . . . ,n with

n∑
i=1

wi = 1. If (e j − xi j) and xi j are monotonic in the same sense for each i = 1, . . . ,n, and

m∑
j=1

p je j =

m∑
j=1

p jxi j,
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then

φ

( m∑
j=1

ηp je j −

m−1∑
j=1

n∑
i=1

ηwip jxi j

)
≤

m∑
j=1

ηp jφ(e j) −
m−1∑
j=1

n∑
i=1

ηwip jφ(xi j). (49)

Proof. Using Jensen’s inequality, we may write

φ

( m∑
j=1

ηp je j −

m−1∑
j=1

n∑
i=1

ηwip jxi j

)
= φ

( m∑
j=1

ηp je j

n∑
i=1

wi −

m−1∑
j=1

n∑
i=1

ηwip jxi j

)

≤

n∑
i=1

wiφ

(
η
( m∑

j=1

p je j −

m−1∑
j=1

p jxi j

))
. (50)

As
m∑

j=1
p je j =

m∑
j=1

p jxi j for each i = 1, . . . ,n, so we may write

xim = η
( m∑

j=1

p je j −

m−1∑
j=1

p jxi j

)
. (51)

Since φ is convex. Therefore ∀ a, b ∈ I, we have

φ(a) − φ(b) ≥ φ′+(b)(a − b).

For the selection a = e j and b = xi j, we can write

φ(e j) − φ(xi j) ≥ φ′+(xi j)(e j − xi j). (52)

Multiplying (52) by p j and summing over j from 1 to m, we have

m∑
j=1

p jφ(e j) −
m∑

j=1

p jφ(xi j) ≥
m∑

j=1

p j(e j − xi j)φ′+(xi j). (53)

Using Čebyšev’s inequality in right side of (53), we btain
m∑

j=1

p j(e j − xi j)φ′+(xi j) ≥
1

m∑
j=1

p j

m∑
j=1

p j(e j − xi j) ·
m∑

j=1

p jφ
′

+(xi j)

= 0. (54)

Using (54) in (53), we have
m∑

j=1

p jφ(e j) −
m∑

j=1

p jφ(xi j) ≥ 0

⇒

m∑
j=1

p jφ(e j) −
m−1∑
j=1

p jφ(xi j) − pmφ(xim) ≥ 0

⇒

m∑
j=1

p jφ(e j) −
m−1∑
j=1

p jφ(xi j) ≥ pmφ(xim)

⇒

m∑
j=1

ηp jφ(e j) −
m−1∑
j=1

ηp jφ(xi j) ≥ φ(xim). (55)
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Using (51) in (55), we obtain

m∑
j=1

ηp jφ(e j) −
m−1∑
j=1

ηp jφ(xi j) ≥ φ
(
η
( m∑

j=1

p je j −

m−1∑
j=1

p jxi j

))
. (56)

From (56) and (50), we deduce (49).

Remark 2.10. It is important to note that (49) has been proved for separable sequences in [32].

The following theorems give generalized Hermite-Hadamard type inequalities by imposing relax condition
on weights.

Theorem 2.11. Suppose that φ is a real valued convex function on I and e = (e1, . . . , em), x = (x1, . . . , xm),
y = (y1, . . . , ym), p = (p1, . . . , pm) are four m − tuples such that e j, x j, y j ∈ I, x j , y j, p j ≥ 0 with pm , 0 for all
j ∈ {1, . . . ,m} and η = 1

pm
. If e − x, x, e − y and y are monotonic in the same sense and

m∑
j=1

p je j =

m∑
j=1

p jx j,
m∑

j=1

p je j =

m∑
j=1

p jy j,

then

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))
≤

m∑
j=1

ηp jφ(e j) − η
m−1∑
j=1

p j

y j − x j

∫ y j

x j

φ(u)du

≤

m∑
j=1

ηp jφ(e j) − η
m−1∑
j=1

p jφ
(x j + y j

2

)
. (57)

Proof. Since we know that the tuples r = (r1, . . . , rm), z = (z1, . . . , zm) where r j = tx j+(1−t)y j, z j = ty j+(1−t)x j,
e − r and e − z are monotonic in the same sense for∀ t ∈ [0, 1]. Therefore, using Lemma 2.9 and then adopting
the same procedure as given in the proof of Theorem 2.6, we obtain (57).

Theorem 2.12. If all the hypotheses of Theorem 2.11 are valid and xm , ym, then

φ

( m∑
j=1

ηp je j − η
m−1∑
j=1

(p jx j + p jy j

2

))

≤
1

m−1∑
j=1

(ηp jy j − ηp jx j)

∫ m−1∑
j=1
ηp j y j

m−1∑
j=1
ηp jx j

φ
( m∑

j=1

ηp je j − u
)
du

≤

m∑
j=1

ηp jφ(e j) −
1
2


m−1∑
j=1

ηp jφ(x j) +

m−1∑
j=1

ηp jφ(y j)

 . (58)

Proof. Using Lemma 2.9 and adopting the same procedure as given in the proof of Theorem 2.8, we obtain
(58).

Remark 2.13. It may be noted that Theorem 2.1 and Theorem 2.3 have been proved for three m−tuples without
monotonicity conditions while Theorem 2.6 and Theorem 2.8 have been proved by considering a decreasing m−tuple
with non-negative weights. Moreover, Theorem 2.11 and Theorem 2.12 have been proved for monotonic m−tuples
with strict conditions of monotonicity and relax conditions on weights.

Now we present an illustrative example for our first main result.
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Example 2.14. Let a, b, c ∈ R such that a ≥ b ≥ c. Suppose that e = (2a, 2b, 2c), x = (a + b, c + a, b + c) and
y = (a + b

2 + c
2 , b + a

2 + c
2 ,

a
2 + b

2 + c) are three tuples. First, we show that x ≺ e.
Clearly, a + b ≥ c + a ≥ b + c.
As a ≥ b and b ≥ c therefore, we have

a + b ≤ a + a⇒ a + b ≤ 2a, and a + b + c + a = 2a + b + c ≤ 2a + 2b.

Also, a + b + c + a + b + c = 2a + 2b + 2c.

Hence, x ≺ e. Similarly, we can show that y ≺ e.
Now, applying Theorem 2.1, for these tuples, we obtain

φ
(a + 3b + 4c

4

)
≤ φ(2a) + φ(2b) + φ(2c) −

2
c − b

∫ a+b/2+c/2

a+b
φ(u)du

−
2

2b − a − c

∫ b+a/2+c/2

c+a
φ(u)du

≤ φ(2a) + φ(2b) + φ(2c) − φ
(4a + 3b + c

4

)
− φ

(3c + 3a + 2b
4

)
.

3. Conclusion

The Hermite-Hadamard inequality has been studied in several directions. It has been established for
different generalized convex functions such as η−convex [16], s−convex [17], coordinate convex [12] and
strongly convex function [30] etc. Several integral identities have been proved related to Hermite-Hadamard
inequality which provide several bounds for the difference of Hermite-Hadamard inequality. Also, many
applications have been presented for this inequality. In this article, we have initiated to link the results for
majorization and the Jensen-Mercer inequality with the Hermite-Hadamard inequality. We have obtained
generalized Hermite-Hadamard inequality using majorization without monotonicity conditions on the
tuples. By utilizing generalized results of the Jensen-Mercer type for certain monotonic tuples, we obtained
weighted generalized Hermite-Hadamard inequality. As particular cases we have deduced inequalities
obtained earlier. The idea adopted in this article may explore further research for Hermite-Hadamard
inequality.
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