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Abstract. In this article, we introduce the notion of two-sided quaternion wave-packet transform which
inherits the advantages of both the quaternion windowed Fourier and wavelet transforms with some addi-
tional promising features. The preliminary analysis encompasses the derivation of fundamental properties
including, orthogonality relation, energy preserving relation, inversion formula and the range theorem by
utilizing the machinery of two-sided quaternion Fourier transforms. Besides, we also derive the Heisen-

berg’s and logarithmic uncertainty principles for the proposed transform. We culminate our investigation
by presenting some illustrative examples.

1. Introduction

An utter representation of non-transient signals requires frequency analysis that is local in time, resulting
in the time-frequency analysis. The major development in the realm of time-frequency analysis came in the
form of short-time Fourier transform (STFT) or Gabor transform (see [12]), which is reliant upon analysing
functions determined by the fundamental operations of translation and modulation acting on a given
window function. Although the Gabor representations are quite handy, however, such representations
are not adequate for signals having high frequency components for shorter durations and low frequency
components for longer durations, leading to the birth of time-scale integral transform, often known as the
wavelet transform [11, 26, 33, 36]. As of now, several generalizations of the classical wavelet transform have
been reported in recent years including the fractional wavelet transform [32, 34, 35], linear canonical wavelet
transform [28, 29], quadratic-phase and special affine wavelet transform [30]. Owing to the lucid nature
and close resemblance with the conventional Fourier transform, the wavelet transforms have fascinated the

mathematical, physical, chemical, biological and engineering communities with their versatile applicability
[37, 38].

On the other hand, the quaternion algebra has attained respectable status in the realm of contemporary har-
monic analysis as it offers a lucid representation of multi-dimensional signals, wherein several components
are to be controlled simultaneously [18, 25]. Due to the non-commutativity of the elements in the field of
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quaternions, several integral transforms have been generalized in the quaternion settings [2, 16, 20, 24, 27].
As a consequence, these integral transforms have found numerous applications in diverse fields of sci-
ence and engineering, including three-dimensional computer graphics, colour image processing, speech
recognition, edge detection, data compression, texture classification, aerospace engineering and many more
[17, 31, 39, 40].

Undoubtedly, the quaternion Fourier transforms (QFT) plays a significant role in the representation
of quaternion-valued signals by transforming them into the quaternionic frequency domains, however, it
is inadequate to provide local features of non-transient signals due to its global kernel [11, 12, 21]. To
overcome this disadvantage, Bahri et al.[6] introduced the notion of quaternion windowed Fourier trans-
form (QWEFT) using the kernel of the right-sided QFT and have derived some Heisenberg-type uncertainty
principles for the novel transform. Later on, Fu et al.[15] studied the Balian-Low theorem for the two-sided
windowed quaternion Fourier transform, which asserts that the time-frequency concentration and non-
redundancy are incompatible properties for quaternionic Gabor systems. Subsequently, the quaternionic
Gabor frames were introduced and investigated in [8] by choosing some suitable versions of the translation
and modulation operators. Besides, they studied some structural properties for the quaternionic Gabor
frames including the Walnut-Janssen representation, Wexler-Rax biorthogonality and Ron-Shen duality
using the machinery of operator theory and two-sided quaternion Fourier transforms. Very recently, Li
and He [22] investigated some basic properties of the two-sided quaternion Gabor transforms, such as
Parseval’s formula, characterization of range and other boundedness results.

Although, the quaternion windowed Fourier transform has proved to be a valuable and powerful
time-frequency analyzing tool in optics and signal processing, the rigidity of the quaternion window is not
befitting for the non-transient signals. As such, many ramifications have been introduced to circumvent the
limitations of the QWFT from time to time. For instance, Bahri etal.[4, 5] proposed a novel wavelet transform
in the quaternion domain and derived the corresponding Heisenberg type uncertainty inequalities by means
of the quaternion Fourier transforms. On the flipside, Ali and Thirulogasanthar [1] studied the continuous
wavelet transforms for the quaternionic Hilbert spaces by invoking the unitary irreducible representations,
whereas Hemmat et al.[19] provided a novel discretization scheme for the quaternionic wavelet transform,
and derived a necessary and sufficient condition for the discrete quaternionic wavelet system to be a
frame for L*(R?, H). Recently, Fashandi [13] generalized the results of [1] by defining a new quaternionic
unitary representation from a LCAG to the unitary group of a quaternionic Hilbert space and establish the
corresponding continuous wavelet transform.

Despite of the fact that quaternion wavelet transforms have rectified the limitations of both the
quaternion Fourier and quaternion windowed Fourier transforms, however, they seem to be inadequate
for representing those signals whose energy is not well concentrated in the frequency domain. The purpose
of this paper is to address this issue by introducing a new time-frequency transform namely two-sided
quaternion wave-packet transform (QWPT) which employs the generalized modulations, translations and
localized quaternion window function for providing better time-frequency resolutions over high-frequency
regions and capturing the geometric features of multi-dimensional signals in general.

The core objectives of the article are given as follows:

e To introduce a novel two-sided quaternion wave-packet transform by rectifying the limitations of
quaternion windowed Fourier and wavelet transforms.

e To study the fundamental properties of two-sided quaternion wave-packet transform including the
inner product relation, energy preserving relation, reconstruction formula and range theorem.

o To extend the scope of the study, we formulate Heisenberg-type uncertainty inequalities for the novel
two-sided quaternion wave-packet transform.

e To demonstrate the validity of the proposed transform via illustrative examples.
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The rest of the article is structured as follows: Section 2 is entirely devoted for an overview of the prereg-
uisites including quaternion Fourier, quaternion windowed Fourier and quaternion wavelet transforms.
In Section 3, we present the novel two-sided quaternion wave-packet transform and investigate its basic
properties by virtue of two-sided quaternion Fourier transforms. In Section 4, we derive some Heisenberg’s
and logarithmic uncertainty principles for the proposed transform. Final Section is devoted to present some
illustrative examples to demonstrate our study.

2. Preliminaries

In this section, we recall some basic definitions including the two-sided quaternion Fourier transform,
quaternion windowed Fourier transform and the quaternion wavelet transform.

2.1. Basics of Quaternion Algebra

In 1843, W.R. Hamilton introduced the theory of quaternions while attempting to extend the complex
numbers to 3-dimension [18]. As a consequence, the quaternion algebra provides an extension of the
complex number system to an associative non-commutative four-dimensional algebra and is denoted by
H in his honour. The quaternion algebra IH over R is given by

I[—I:{f:a0+ia1 +j012+k613 : ﬂo,al,az,ﬂ?,E]R}, (21)
where i, j, k denote the three imaginary units, obeying the Hamilton’s multiplication rules:
ij=k=—ji, jk:i:—kj,ki:j:—ik,and iZ:]'Z:kZ:i]'k:_l‘ (2.2)

For quaternions fi = ag+ia;+ja+kazand f, = bo+ib; +j by + k b3, the addition is defined component-wise,
whereas the multiplication is defined by

fifo = (aobo — a1b1 — axby — asbsz) + i(a1by + apby + ab3 — azby)

+ j(aobz + ﬂzbo + ﬂ3b1 - a1b3) +k (llobg + El3b0 + ﬂlbz - ﬂ2b1). (23)

Moreover, the conjugate and norm of any quaternion f = ag+ia;+ja,+kas, are givenby f = ap—ia1—ja,—kaz
and ||fII}; = ap? + a1% + a, + a3%, respectively. We also note that an arbitrary quaternion-valued function f
can be represented as f = (ap+ia1) + j (a2 —iaz) = f1 +j fo, where fi, f> € C. Subsequently, the inner product
of two quaternion-valued functions f = f1 + jf,, and g = g1 + j g, in H can be defined as

(£, 9)y, = f7= (AT, + Fo2) + /(£7: = F192)- 2.4)

Denote L*(R?, H) as the space of all quaternion-valued functions f satisfying

1/2
”fHLZ(]RZ) = {\flI‘{Z <|f1(x)|2 + |f2(x)|2) dx} < 00, 2.5)

Consequently, the norm on L%(R?, H) is obtained via (2.4) as

<f’ g>L2(]R2,IH) - fmz <f’ g>]H dx

= f ((ﬁ(X) F100 + £ 2200) + () F1(0 = (%) gz(x)))dx- (2.6)

R2
Therefore, the quaternion version of Cauchy-Schwartz’s inequality becomes

\ fR f)g6dx

1/2

12
. < {jﬂ;z |f(X)|;I dx} {]11;2 |g(x)|;dx} Vg € LR, H). 27
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2.2. Time-Frequency Analysis in Quaternion Algebra

Due to the non-commutativity of the elements in the field of quaternions H, different types of quaternion
Fourier transforms have been introduced and investigated in recent years, including the right-sided, left-
sided and two-sided quaternion Fourier transform [20]. However, throughout this article, we shall be
focussed only on the two-sided quaternion Fourier transform.

Definition 2.1. For any quaternion-valued function f € L*(IR?>,H), the two-sided quaternion Fourier
transform (QFT) is denoted by .%, and is given by

T f0](w) = flw) = f 2N f(x) 22 gy, (2.8)

e
R2

where x = (x1,x2), W = (w1, w,) and e 2™ and e~2™2%2 are the quaternion Fourier kernels. The correspond-
ing inversion formula is given by

f(X) — f eZm’xlwlf(x) eanxzwz dW, (29)
R2
whereas the Parseval formula for the two-sided quaternionic Fourier transform read as

(ZL Za9), g = F Dz (2.10)

For f = g, relation (2.10) reduces to

[ ) %) e 1)

[2(R2,H) [2(R2,H) :
We now recall the two-sided quaternion windowed Fourier and wavelet transforms.

Definition 2.2 [6]. For any quaternion-valued function f € L?(IR?, H), the two-sided quaternion windowed
Fourier transform of f is denoted by %yg{ [f] and is given by

g f0|w, b) = fR 2 e 2N £5) (x — b) e 22 dy, (2.12)

where x = (x1,x2), w = (w1, wy), b € R?, and ¢ € L*(IR?, H) is the window function.

Definition 2.3 [5]. The continuous quaternion wavelet transform of any quaternion-valued function f €
12 (]Rz, IH) with respect to the analyzing function i € 12 (le, ]H), is defined by

R_p(x —
71 fa,b,6) = %fz f(x)lp(#)dx, a2 €R*,beR (2.13)
R
cos® sin0 . . . R
where Rg = snb cos@ | € 50(2), is the special orthogonal group of rotations in IR“.

3. Two-sided Quaternion Wave-packet Transform

In this section, we shall formally introduce a novel two-sided quaternion wave-packet transform which
combines advantages of the well-known quaternion windowed Fourier and wavelet transforms. Subse-
quently, we shall investigate the fundamental properties including orthogonality relation, inversion formula
and the range theorem.
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Definition 3.1. The two-sided quaternion wave-packet transform of a quaternion-valued function f €
L? (]Rz, II—I) is denoted by ! and is defined by

28 f1(a,b,0,w) = %f

R2

p2mixiwy feop (M) e~ 2R gy (3.1)

a
where a € R*,b € R?, Ry € SO(2),x = (x1,x2), W = (wy,w,), and ¢ € L*(IR?, H).
Definition 3.1 allows us to make the following comments:

e The exponential terms appearing in the integrand of (3.1) cannot be interchanged due to the non-
commutativity of quaternions.

e The left-sided and right-sided quaternion wave-packet transforms can similarly be formulated by
placing the product e~ 1%1¢=27/%:: either on left side or right side of f(x) 1 (R_o(x — b)/a).

e Fora = 1 and R_g¢ = I, Definition 3.1 boils down to the two-sided quaternion windowed Fourier
transform as defined in (2.12).

e For w = (w1, w;) = (0,0), Definition 3.1 reduces to the ordinary quaternion wavelet transform given
by (2.13).

Next, we shall investigate the basic properties of the two-sided quaternion wave-packet transform (3.1) by
means of the two-sided quaternion Fourier transforms.

Property-1 (Linearity). Let 333}{[ fl](a, b, 0, w) and @3,{[ fz](a, b, 0, w) be the two-sided quaternion wave-packet
transforms of the quaternion-valued functions f; and f,, respectively. Then, for a1, ap € R, we have

28 fi + o fo](a,b,0,w) = a1 Z}1[fi](a,b,0,w) + a2 Z}[ f](a,b, 0, w). (3.2)
Proof. For the sake of brevity, we omit the proof of Property 1.
Property 2 (Time-shift). Let i be a quaternion window function and f € L>(R?, H). Then, we have

28 fx=K)|(a,b,0,w) = e 2 ™ PH] f(x)](a,b - k, 0, w) e 2k, (3.3)
where x = (x1,x2), b = (b1, b2), W = (w1, w) and k = (ky, k).

Proof. Using the Definition 3.1, we obtain

@li,lj[f(x — k)](a, b, 0, w) 1 LZ e 2minwn fx—K)y (M) e 2Tixw2 gy

a
1 f g 2mCr £ (R_e(z +k-b) ) o 2mithes gy
a Jre a
1 e—Zﬂiklwl f e—2ﬂiz1w1 f(Z) I]lJ [R_g(z B (b B k))] e—anZzwz dz E—ankzwz
a R2 a

= g2k L@f [ f (x)](a, b-k,0, w) e 2k

Property 3 (Scaling). Let 3”3? [f] (a, b, 0, w) be the two-sided quaternion wave-packet transforms of any quaternion-
valued function f. Then, for any A € R, we have

ZH[f(10)](a,b,6,w) = % ZH (0] ()\a, Ab,6, %) (3.4)
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Proof. Using (3.1), we have

ZH[F(19](a,b,6,w) = % fR “2nixin f()1x W(;b)) e

B L)

aA?

I w
=7 [ 09 ()\a, Ab, 6, 7).
Property 4 (Parity). Let ¢ € L>(R?,H) be a quaternion analyzing function. Then, we have

25| Pf)](a,b, 0,w) = 251 f()](a,~b, 6, ~w), where Pf(x) = f(-x). (3.5)

Proof. A direct calculation gives for every f € L%(IR?, H)
1 o Rop(x—=b)\ .
H _ = 21tix1 W 21 jxpw:
gzplp[Pf(x)](a,b, 0,w) = - f}R g~2mix 1pf(x)p¢( ; )e nxawz

— 1[ —2nzx1101 f( x)w(ﬂ) —27Tjx2102 dx
R2

a

_ 1 271121 W Z + b) 271]'22102

= jﬂ; f(z) w _— dz

— 1 f e—2niz1(—w1) f(Z) 1/1 [R_9<Z - (_b)>]e—2njzz(—wz) dz
a ]RZ a

= 23 f0](a, b, 0, -w).
Property 5 (Anti-linearity). For any quaternion-valued function f and Y1, ¢, € L*(IR?, H), we have

Zilnspaal f00](0 0,0, w) = 7| f0](a b, 6, w) - By + 7| 0] b, 6, w) By

where Bs = ¢s + jci, cs,¢cb €R, s =1,2.
Proof. This property follows in similar lines as that of Property 1.

Property 6 (Translation in ). For a quaternion-valued function f € L*(IR?,H), and analyzing function ¢ €
L?(R?, H), we have

28 [f00](a,,6,w) = 251 f()(a, b + aRok, 6, W), where Typ(x) = (x - k), k = (k1, k). (3.6)

Proof. The property follows immediately from the Definition 3.1 as

ﬁﬁﬂ/[f(x)](a,b,e,w):% fR ninan £ W(M k)e-mxzwz i

f —2mix Wy f(X) IP [R_Q(Z B (b + lZRek)) ] e—anxzu&dx

a

f[f(x)](a b +aRgk, 0, )



F. A. Shah, A. A. Teali / Filomat 36:2 (2022), 449-467 455

Property 7 (Dilation in ¢). For f,¢ € L*(R?, H), we have
P8 £00)(2,b,6,w) = 2 f(x)](ac, b, 6, ), where Deyp(x) = %lp(’—c‘) 3.7)

Proof. We have

P r00llab,0w) = 3 [ e i Ly (FoEB) s g

ac

_ 1 —27ixX1 W (X b) —271jXp W)
=) f()av(@—) I dx
= gfff[ f(x)](ac, b, 0,w).

We now formulate the inner product relation for the two-sided quaternion wave-packet transform by
applying the cyclic multiplication symmetry, which resists the formula to scalar part only. As a consequence
of this formula, we can deduce the energy preserving relation for the proposed transform (3.1). To facilitate
the intent, we shall first define the admissibility condition of any quaternion-valued function.

Definition 3.2 (Admissibility). A quaternion-valued function i € L2 (IRz, ]H) is said to be admissible if

2 dadOdw
Cy= p
+ Jsoe) JRr?

Theorem 3.3 (Inner Product Relation). Let f@gl [f ](a, b, 0, w) and le]f[g] (a, b, 6, w) be the two-sided quaternion
wave-packet transforms of f and g, respectively. Then, we have

<‘@9H;I[f]’ ‘@E[gDLZ(g,H) = Cl#(f/ 9>L2(R2,H)/ (3.9)

where Cy is given by (3.2) and 4 = R* x R? x SO(2) x R? is the similitude group constituted by the dilation,
translation, rotation and modulation operators with left Haar measure dn = da dbdO dw/a>.

< o0, real-valued positive constant. (3.8)

2 oaw)

Proof. By virtue of Definition 3.1 and the Fubini’s theorem, we have

(1) 281D s

= L ,@f[f](a,b, 9, w) Ql]ﬂg](a,b, 9, w) dn

— f f e—Znixlun f(x)lp (@) e—27‘[szwz dxf e—2miz1w, g(z)w (R_Q(Z - b))e—Zﬂszwz dz ‘jl_;]
f f f —2mix Wy f( )#} ( 9(X b)) —27jxp eZn]zzw2¢ ( —G(Z )) (z)mdx dz d_T]
R? JR? a2
= g(x b) —211] jrawa 27251 ( Q(Z ) )
j]I;*xSO(Z)x]RZx]RZf f f( )l;b( ) #) (Z)

% eZmzlwl e—melwl dX dz

B fIR+><SO(2)><1R2 fmz fn{z ﬂx)tp( s b)) fReM/(zz—xz)wz dw, ¢ R b)) ?

X j‘EZTU(zl—x])w1 dw dx dz. dadls)de
R a

dadbdOdw
&5
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fn;wsoa)fo f( )IJJ(R s )) )IJJ(M) 9(z) 5(z1 — x1) dx dz da ib ao
_ -0(x—=b)\ [R-g(x —b) dadb do
_f]I;XSO(Z)X]RZf ( )Qb( a )l’b( a ) ( )d

\f j‘ (R%t—buw(Rﬁi—qum?de()dx

R? R+xSO(2)XR2

R_g(x—b)) [R_g(x—b) dad6 —

fIR fIR SO(z)fR ( : )1{/( Ga )db s g(x) dx

f f R eb’ R_ gb’) b dad@ 0 dx

R? R*xSO(2) JR?

eb’ _ob’ dadd —
jll; fJR ><so<2 ) ( )>L2(]Rz B @ g0 dx
b’ da do
fIR fR so<2 0 ) ( ) >L2(R2 W @ g(x) dx
R GW R_gw dad

jl; fn; x50(2) ju; [ll}]( ) w (X) dx

[ [ ) o] o 44055

jﬂ; [f Rexs00) jﬂ; R gaw') yq[lp](R eaw)d , daade] 700 dx
= [ s, i@a

IRZ
=Cy(f, 9>L2(R2,H),

where Cy, is given in (3.8). This completes the proof of Theorem 3.3.

Remarks: (i). For f = g, Theorem 3.3 yields the energy preserving relation

.[l‘v XIRZxSO(2)xIR?

(ii). The operator 93}){ is bounded and for Cy, = 1, it becomes an isometry from L?(R?,H) to the space of
transformations L2(R* x R? x SO(2) x R?, H).

)|2 da db d@dw

281 f](ab,0,

Cy ||f (3.10)

[2(R2,H)

The next theorem guarantees the reconstruction of the input quaternion-valued signal f from the
corresponding two-sided quaternion wave-packet transform.

Theorem 3.4 (Reconstruction Formula). If ¢ € L*%(R?, H) is admissible and @f [ f](a, b,0, w) is the two-sided
quaternion wave-packet transform of an arbitrary function f € L*(R?,H), then f can be reconstructed via

a4

fG) = clw L o B £1(a, b, 0, w) 2y [R_G(); - b)] dadbdodw ., (3.11)
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Proof. According to Theorem 3.3, we can write
C‘P<f g)LZ R2,H) <‘@H[f] ‘@H[QDLZ(g H)
= [ 72 b.0.w) 2 oo b,0,w)an
= f @f[f](a,bl G’W)l‘/ﬂ; e—2miziwy g(z)ﬁb(w)e_zn]jzwz dzdn
sz @H[f] a,b,0, ) 2nijwzlP( (X b)) (X)EZHixlwl dgdx
TUiX W TLjXpWo ( b)
_ fRZLez 24 f(a,b, 6, w) > w(%) 7() ”dx
_ [RZ Leznmwl «@y[f](ﬂ,b, Q,W)ezmxzwzw( (Z b)) 90 dx
— 270iX1 Wy gZIH ,b, ; 270 jxp 102 (Rﬁ(x_b)) _T}, > )
([ oo omemy(FE=2) D)

Since g is chosen arbitrarily from L?(IR%,H), therefore, we obtain the desired result:

R_g(x - b)] dadb dO dw
a4 !

f(X) — C% L p2ix1w ‘@E[f](a’ b,0, W) eanxzwzl)b { -

This completes the proof of theorem.

Theorem 3.5 (Reproducing Kernel Hilbert Space). For a normalized admissible function i € L>(IR*, H), the range
of the two-sided quaternion wave-packet transform (3.1) is a reproducing kernel Hilbert spacein L2 (]RJr X R? X SO(2) x R?, ]H)
with kernel given by

o [Reo =B\ i coror o, | R0 (X = P)
A WALY, 1\ — 270X W 2mixy (w1 —w)) 27 jxow
Ky(a,b,0,w;a’, b, 0", W) e, <e l])(—a e Dty | —— = :
[2(R2,H)
(3.12)
Moreover, we have
[Ky(a,b, 0, w50, b, 6, w')| < €5 [¥l] sy, Whenever Cy > 0. (3.13)

Proof. By invoking Definition 3.1 and the reconstruction formula (3.11), we obtain

2 fla, 6,0, w)
— l, 2771x1w1f(x) l,D [R 0 (X b’ )]ezﬂszwédx
a R2

1 —2mix1w, 1 X W T tn R_( —b) d R—G'(X—b/) i
3 [y [l o o o) 8 | LB

_a'C¢LLze wy 2w @w[f](a,b,@,w)e fraw ) : " = o 2mRaw -

al
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= 7C, f Lz 2mixy (wy W)gle[f](a b, 0, W) 27‘!]3(2202¢( —o(x — b)) I,D[R_e/(:’_b,)]eanxzwé dxaﬂ

‘ b\ (Reo(x— b)) -
ﬁ L ng[f](ﬂ, b,0, W) j]l;z ezn]xsz lP(R_G(); b)) lP[ 0 (:’ )]E—an.zw e2mx1(w1_wl) dxadr]

_ Reg(x—-b’
aTlc f M f](a, b, 0, w) <e2”fx2wz¢(R_9(x b))’ g~ rinwru) g2y | 71 b )> da_n
Ve [2(R?, H)

a a’

1 . R_Q(X - b) - i o R_Qr (X - b’)
‘@]H[f](a b,0 W)— <e2n]x2wz 17[}(— e~ 2mix1 (w1 —wy) L2 jxywy W dn
Y Y Yy n p -
L e ’ ! L2(R2, H)

= L 21 f](a,b,0,w)Ky(a,b,0,w;a’,b’, 0", ') dn.

Or equivalently,

Ky(a,b,0,w;a', b, 0, W)

_ 1 <€2njx2w21’b (R_Q(X - b) ) , e_2m‘xl (wy —w'l)e2njx2w;ll} {R—e/ (X -b )]> .
[2(R2,H)

~an’Cy a a’
This completes the proof of first assertion.

Furthermore, we have

[Ky(a, b, 0,w;a', b7, 6", w)

_ < jX2102 IP( (X b)) e—2nix1(w1—wi) eZT!szzu; l]b R—e' (X -b ) >
|aa’C
Y L2(IR2,H)

al
1 Rox-b)||| (Rolc=b))
= laa’cy| fIRZ ll}( a )‘ l’b[ @ n

< ey (= (3-2)

[2(R?2, H) L2(R2,H)

a

|qﬂWRQZ‘E»WMHWNR9@‘%»

[2(R2, H)
2
< |C¢| HIPHLZ(IRZ,]H)

= Cljjl “1/1”;(]1{2/]1{), provided Cy, > 0.

This completes the proof of Theorem 3.5.

4. Uncertainty Principles for the Quaternion wave-packet transform

The celebrated Heisenberg’s uncertainty principle in harmonic analysis states that “a function can not be
sharply localized in both the time and frequency domains”. This principle plays a significant role in the
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modern signal analysis as it provides a lower bound for the optimal resolution of a signal in both time and
frequency domains [14]. Since its inception, many ramifications of the uncertainty principle have appeared
in literature, which resulted in the expansion of uncertainty principle from the classical Fourier domain
to the fractional Fourier, linear canonical, special affine Fourier domains [3, 7, 9, 23, 41]. Motivated and
inspired by the contemporary developments in the theory of uncertainty principles, our aim is to establish
some new versions of the Heisenberg and the logarithmic-type uncertainty inequalities for the two-sided
quaternion wave-packet transform. The results are obtained by using the machinery of two-side quaternion
Fourier transforms and some fundamental inequalities of functional analysis. To facilitate the narrative, we
need the following lemma.

Lemma 4.1. Let 1 € L*(IR?, H) be an admissible quaternion-valued function, then for every f € L*(IR?, H), we have

f|5|2'ﬁq[ €)| di = Cyle] ”fq 16 (4.1)
9

[2(R2,H)

Proof. Combining the inner product relations of two-sided quaternion Fourier (2.10) and wavelet-packet
transforms (3.9), we obtain

dadb dO dw

ColF AN F gy = . 75 f)(a b, 0,w) 221g1(a, b, 0,w) L4

+XIRZXSO(2)XR?
Identifying @f [ f ] (a, b,0, w) as a function of the translation parameter b and using (2.10), we have

CAZAlSL, Z91) ey = fR o f 28] @ 2, [ 2011 (€ de B dadO duw

Multiplying the above expression on both sides by [£[*, we get

Cy(EFIS1, & ‘%f[mu(mz,ﬁ) = fR oo Rzg 7 [2Mf©- 2| ng[g]] (©)de dadedw_

Finally, for f = g, we get the desired identity

[l pzlzs o] an = cilsfzunel;
9

[2(R2,H)

This completes the proof of Lemma 4.1.

We are now ready to derive the Heisenberg-type inequalities for the proposed two-sided quaternion
wave-packet transform (3.1).

Theorem 4.2. Let @3,{[ f ](a, b, 0, w) be the two-sided quaternion wave-packet transform of any quaternion-valued
function f € L*(IR?, H). Then, we have

5 1/2 2 1/2
R S T e S 7 42)

Proof. The Heisenberg’s inequality in the quaternion Fourier domain [3] is given by

{ f}R 2 Ib}2|f<b>|;db}1/2 { L el (5>|;d5}1/2 > {% f}R 2 )f(b)IfHdb}- (43)
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Replacing the quaternion-valued function f in (4.4) with @}E [f1(, b, -, -) yields

1/2

1/2
{fRz b |25 1f1(a,b, Q,W)E{db} {fw |5|2|7__q [ 281 f1(a,b,0,w)] (£)|;dé}
> {% f}R 2 |23 1f1(a, b, 9,w)|;db}. (4.4)

After integrating the inequality (4.3) with respect to measure da d6 dw/a>, we obtain

f f 1 7(e, b, 6, )b f €7 [ 25 111(a, b, 0,w)] @ de | dadodw
R+ XSO 2)><]R2 R2 f a R? q l1[1 f a/ 7 /W H a3
1 2 dad@dw
5 23 f1(a,b,0,w)| db : 45
= {2 ‘f]R+><SO(2)><]R2 fle ) v [f](a w))]H } a3 (4.5)
Thus, as a consequence of the quaternion Cauchy-Schwartz inequality (2.7), we may write
{f f |b|2|<@f[f](a,b,9, )| dbdud@dw}
R*xSO(2)XR? JR?

x{f f CiAEEIGIRE
R+xSOQ)xR? JIR2

dado dw}

1 f f H 2 dadOdw
== Z,)[fIla,b,0,w)| db .
2 Jr+xsoxr2 Jr2 v f( )LH a3
Applying the Lemma 4.1, the above expression can be simplified as
dad dw 2 2 O\
{ f f b [#2111(ab,0, w)[, 6™ } { v f HEANG] da}
R*XSO(2)xIR? a H
1 f f H dado dw
== 2, [flla,b,6,w])| db 4.6
2 Jrexsopxre Jr2 |V f( )| a3 (4.6)

Finally, employing the energy persevering relation (3.10) in the R.H.S of (4.6), we obtain the desired result
as

([ 0F [20em ol { [P0 = S0

Following the idea of Cowling and Price [10], we shall derive a generalized inequality of Theorem 4.2 for
LP(R?, H), p > 1 in the following theorem.

Theorem 4.3 (Generalised HUP). Let ¢ € L*(R? H) be an admissible quaternion-valued function with F,[y]
being real-valued. Then, for every f € L2(R?, H), we have

(o temasnfon | [1splmiofod " s

4/p
12(R2,H)

p>1. (47
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Proof. By virtue of Holder’s inequality, we can write
L Ib]? |yf[f](a,b,e,w)|;dq
2/ (2-2)
= fg {|b|2 |<@f[f](a,b, 0, W)LHP} {|<@3f[f](a,b, 0, w)LH ! }dr]

< {L (1oF |75 A](e. .0, w)\ﬁj”)p dn}l/ﬂ { L (‘ 25 f|(b.0, w)’i—;))p"l dn}(l—p)
([ pritesemtal " ([tensotf

Therefore, we have

([ 1 1o 0 )

{fg |3”ﬂf](a, b,0, w)|; dn}(l—;) :

In analogy with above and by virtue of orthogonality relation (3.9), we have

([ W o2 om0 )

2 2
A |5|2”'%[f](é)’;d5}1/p . e )'fﬂ[J(Z](lé)ﬂHdé}
kg

Multiplying the inequalities (4.8) and (4.9) and employing Theorem 4.2, we obtain

I O e A
. L 1P [ 22 1](a,b,0, )] n f £P [ 7110, e

(bt

Cllf”f“iz(]RZ,]H)

{L |78 b, 0, dn}{l—;} {

Collf e

1/p

=
}

=

=

20
)

1
> =
o (1-3) (1-1)
e
(oM AT
= 4 ”f LZ(]RZ,]H)'

The proof of Theorem 4.3 is complete.

It is pertinent to that for p = 1, Theorem 4.3 boils down to the Theorem 4.2.

461

(4.8)

(4.9)
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The rest of the section is devoted to establish an analogue of the logarithmic inequality for the two-sided
quaternion wave-packet transform. To facilitate our intention, we start with the following definition.

Definition 4.4. For a = (a1, a2) € R* x R*, the Schwartz space in L*(IR?, H) is defined by

7 (R? H) = {f € C(R?, H); sup (1 + [¢) m| < oo}, (4.10)

X1 Y2
teR? atl atz

where C*(IR?, H), denote the space of all smooth functions from RR? to H.

We now establish the logarithmic uncertainty principle for the two-sided quaternion wave-packet
transform @f[ f](a, b, 0, w) as defined by (3.1).

Theorem 4.5. Let ¢ € .7 (]RZ,]I—I) be an admissible quaternion and, suppose that @g}{[ fle s (]Rz, ]H), then
the two-sided quaternion wave-packet transform (3.1) satisfies the following logarithmic estimate of the uncertainty

inequality:

r'a/2) 2

L1n|b||@}ﬁ[f](a,b,9,w)|;dq+C¢L21n|5||ﬁq[f](g)|;d5z[m/z) 1nn].c¢,||f

aery 41D

Proof. For any quaternion f € .#(R?,H), we have the following inequality [9]

fRZ In b| 'f(b)|;db+fw Iné] '%,[f](é)ﬁ{dé > [% —lnn] f}R

By considering ?F;[ f](a, b,0, w) as function of b and replacing f by L@Ef[ f1in the above inequality, we
obtain

2
f(b)LH db.

jl; In bl |#511£1(a, b, 6,w)';db + fR Injel |17, Z5171(a, b, 6,w)| (g)|;dg
'(1/2)
Z[F(1/2) —1n7'c]‘f]R2

Integrating (4.12) under dad6 dw/a?, and using the Fubini’s theorem, we get

ZE1f1(a,b,6, w)‘; db. 4.12)

2 dadOdw

In|b| |2} [f1(a,b,0,w)| db———
fuvxsoa)xmz f]RZ ‘ v [f]( )‘]H a3
dadOdw

2
+L+XSO(2)XR2 jﬂ;z In|¢] |<% [@f[f](a,b,e,w)] (5)|Hdga—3

S [F’(l/Z) _lm]f f da dO dw
1 T(/2) R*XSOQR)XR? JR? '

Pe)
As a consequence of Lemma 4.1, we obtain the desired inequality

ZY1f1(a,b,6, w)'; db

r'a/2) 2

Lln|b|‘Qf[f](a,b,e,w)‘;dn+c¢fﬂ{zlnla‘ﬂ’q[f](é)’;dé[r(l/z) 1nn].c¢Hf

[2(R?H)

This completes the proof of Theorem 4.5.
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5. Examples

In this section, we shall present some illustrative examples for the demonstration of the proposed two-sided
quaternion wave-packet transform.

Example 5.1. Consider the two-dimensional function

-2

P(x) = A2 — e, 0<A<l. G.1)

Then, we shall compute the two-sided quaternion wave-packet transform of the quaternion-valued signal

f(x) = e"™1*/%) x1 %, € R, with respect to ¢ for R_g = I as

1 _ o(x—b)\ , .
gzl]/I){[f](a’ b,0, W) — E 2mx1w1 f )¢ 277]x2wz dx
R2
1 ) o —((xl—h1)2+(x2—h2)2) —((xl—b1)2+(xz—b2)2) )
— _f e—2mx1w1 e—(1x1+]xz) A—2e pRyY) —e P e—Zn]xzwz dx
a Jr2

1 -(b2+b2> —x% ~2x1 (b +in2 A2 +2niw a®A2) 4% —2xy (<by +ja2 A2 +2mjwpa? A2)
= —¢ 2/12’\2 e 2272 dxq e 2272 dx,
R

aA?
1 -@3+d) —22—2x) (<by +ia? +2miwy %) 33 -2uy (- +ja? +2mjwpa®) b2+]a +21jwa?)
——e a2 e 22 dxq e 22 dn
a R R

) i 2 42miw)a2A2)2 212 a2 A2 42mjtya2 A2)2

103 (=by +id a (=bp+ja
=—e 222 \2ma2A2e A 27 A2ma2A2e 202

al

1 -3+ (cby i +2miwo) 22 by ja?+2mjuwpa)

1 2 A
——e 22 V2ma2e 22 V2maZe 22
a

—242) by i A2 42miog @022 (<by+ja? A2 42mjuwpa? A2)2 —O2+13)  (cbyric?42miwga2)?  (—by+je+2mjya?)?
2mtae 222 e 2272 e 2272 —2mae 22 e 242 e 22

— (b2 +b2)+(ia® A2 +2mtiwy a2 A2 =by )2 +(ja? A2 427 juwna® A2 by )2 — (02 +b2)+(ia® +2miwy a% —by )2 +(ja® +27 jwya® —by)?
1+b5 1 1)+ jwp 2 105 147 b))+ Jjwpa®=by
=2mae 227 —2mae 27 . (5.2

For computational convenience, we choosea = 1,b; = b, =1, A1 = 0.5, so that (5.2) yields

~24(i(0.5)2 +2mitwy (0.5)2 ~1)2 +(j(0.5) +2mjw5 (0.5)2 1) 24+ 2miwy 12 +(j+ 2 juwy ~1)2
2

PM 1,1,0,w) =2me 20572 —27e
¥
_ 24w —4rPw? —4nw, —4nw,) /8 —i(14+2mw; — (1427w,
=2mne 1 2 e Lol
- e(—2—4n2wf—4n2w§—4nzul—4nw2)/2 . pi(42mwy) | = j(1+2mwn)
=27 [e(—2—4n2w%—4712w§—4ﬂw1—47'(102)/8 _ e(—2—4n2w%_4n2w§—4nw1—471102)/2] e~ i42mwy) | 5= j(1+2707)

= [e(—l—anw 2wl —-2mw —2mw,) /4 _ e(—1—2n2wf—2n2w§—2nw1 —anz)]
X (Cos(l + 2ntwy) cos(1 + 2mws) — j cos(1 + 2mw;) sin(1 + 2mwy)
—isin(1 + 2nw;) cos(l + 2mwy) + i - j sin(1 + 2mwy) sin(1 + 27zwz)). (5.3)
The graphical representation of the given quaternion-valued signal f(x) = e"™1#/%2), x;,x, € R is presented

in Fig. 1, whereas its two-sided quaternion wave-packet transform is depicted in Fig.2, fora =1, by = b, =
1, and A = 0.5.
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Real part of f{x)
8
ith-part of f(x)

jth-part of f(x)

(i.j)th-part of f(x)

il
rlli‘!l‘ i d
b 04

Figure 1: Real part (top left), i?-imaginary part (top right), j*-imaginary part(bottom left) and ij-imaginary part (bottom right) of
the signal f(x).

Example 5.2. Consider the two-dimensional Haar wavelet

1, if Ole,x2<1/2
wx)=¢ -1, if 1/2<x,x <1 (5.4)
0, otherwise .

Then, the two-sided quaternion wave-packet transform of the signal f(x) = e‘(x%”%), x1, %2 € R with respect
to i for R_p = I can be evaluated as

1 o R—Q(x_b) 271,
PEab6,w)= o | e foy T e dx
a Jre a
ayp 2+b
1 Pyl 27 (2422 —27i
_1 e anxlwle (x1+x2)e 2”1x2wde1dx2
a Jy b
1 2
1 +h1 +b2 . 2,2 :
1 fa f e_2mxlw1e_(x1+x2)e—2n/xzwzdxldx2
aJayp 2+b,
2L VT
1 (it A
_1 e—(x1+2”'x1w])dxl e—(xz+27't]xzwz)dx2
a Jp, by
1 +bq > +b2 2
o [ ety [ i) gy,
ﬂ+h1 £+b2
g 2
4L 2+b
_1, 1 e (o1 +mtitwy ) dX1 . e (xz+n]w2) dx2
a

bl b2



F A. Shah, A. A. Teali/ Filomat 36:2 (2022), 449-467 465

b +b
1 n%w%-ﬁ-w%) +01 B Y 2 B N2
——e 4 e~ TR o e~ (rarmjea)” gy, (5.5)
a a a
2 2

+by +by

After substituting z1 = x1 + miw;, 2, = xp + mjw,, equation (5.5) becomes

. enZ (w% +w3)/4 5 +by+miw; 5 5+ba+mjwy R
28 f1(ab,0,w) = ———— f e dzy - f e dz,
b b

a 1+ 7T, 2+7TjZUZ
+b1+niw1 ) +b2+71jw]' )
- f e dzy - f e *2dzy
%+b1 +7tiw %+bz+ﬂjﬂ)z
1 nz(w%-%-w%)

=- e ¢4 {[—errf (b1 + miwnq) + errf(g +b; + niwl)]
X [errf (by + mjwy) + errf(g + by + an2)]
- [errf(g +b + niwl) +errf(a+b + niwl)]

X [errf(g +by + njw2) +errf(a+by + njwz)]}, (5.6)

where errf(z) = foz e dt.

Real-part of QWPT of f(x)
ith-part of QWPT of f(x)

jth-part of QWPT of f(x)
ijth-part of QWPT of f{x)

Figure 2: Two-sided quaternion wave-packet transform of f(x), fora =1, by =b, =1, and A = 0.5.
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6. Conclusion

In this article, we introduced a novel integral transform coined quaternion wave-packet transform which
is capable of providing better time-frequency resolution over the high-frequency regions. Besides studying
all the fundamental properties, we also illustrate the fundamental results via some lucid examples. Finally,
we establish some analogues of the Heisenberg’s and logarithmic uncertainty principles for the proposed
two-sided quaternion wave-packet transform. It is hoped that quaternion wave-packet transform might
be useful in three-dimensional colour images and video processing, aerospace engineering, oil exploration,
crystallography and for the solution of other geometrical problems.
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