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Abstract. In this article, we introduce the notion of two-sided quaternion wave-packet transform which
inherits the advantages of both the quaternion windowed Fourier and wavelet transforms with some addi-
tional promising features. The preliminary analysis encompasses the derivation of fundamental properties
including, orthogonality relation, energy preserving relation, inversion formula and the range theorem by
utilizing the machinery of two-sided quaternion Fourier transforms. Besides, we also derive the Heisen-
berg’s and logarithmic uncertainty principles for the proposed transform. We culminate our investigation
by presenting some illustrative examples.

1. Introduction

An utter representation of non-transient signals requires frequency analysis that is local in time, resulting
in the time-frequency analysis. The major development in the realm of time-frequency analysis came in the
form of short-time Fourier transform (STFT) or Gabor transform (see [12]), which is reliant upon analysing
functions determined by the fundamental operations of translation and modulation acting on a given
window function. Although the Gabor representations are quite handy, however, such representations
are not adequate for signals having high frequency components for shorter durations and low frequency
components for longer durations, leading to the birth of time-scale integral transform, often known as the
wavelet transform [11, 26, 33, 36]. As of now, several generalizations of the classical wavelet transform have
been reported in recent years including the fractional wavelet transform [32, 34, 35], linear canonical wavelet
transform [28, 29], quadratic-phase and special affine wavelet transform [30]. Owing to the lucid nature
and close resemblance with the conventional Fourier transform, the wavelet transforms have fascinated the
mathematical, physical, chemical, biological and engineering communities with their versatile applicability
[37, 38].

On the other hand, the quaternion algebra has attained respectable status in the realm of contemporary har-
monic analysis as it offers a lucid representation of multi-dimensional signals, wherein several components
are to be controlled simultaneously [18, 25]. Due to the non-commutativity of the elements in the field of
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quaternions, several integral transforms have been generalized in the quaternion settings [2, 16, 20, 24, 27].
As a consequence, these integral transforms have found numerous applications in diverse fields of sci-
ence and engineering, including three-dimensional computer graphics, colour image processing, speech
recognition, edge detection, data compression, texture classification, aerospace engineering and many more
[17, 31, 39, 40].

Undoubtedly, the quaternion Fourier transforms (QFT) plays a significant role in the representation
of quaternion-valued signals by transforming them into the quaternionic frequency domains, however, it
is inadequate to provide local features of non-transient signals due to its global kernel [11, 12, 21]. To
overcome this disadvantage, Bahri et al.[6] introduced the notion of quaternion windowed Fourier trans-
form (QWFT) using the kernel of the right-sided QFT and have derived some Heisenberg-type uncertainty
principles for the novel transform. Later on, Fu et al.[15] studied the Balian-Low theorem for the two-sided
windowed quaternion Fourier transform, which asserts that the time-frequency concentration and non-
redundancy are incompatible properties for quaternionic Gabor systems. Subsequently, the quaternionic
Gabor frames were introduced and investigated in [8] by choosing some suitable versions of the translation
and modulation operators. Besides, they studied some structural properties for the quaternionic Gabor
frames including the Walnut-Janssen representation, Wexler-Rax biorthogonality and Ron-Shen duality
using the machinery of operator theory and two-sided quaternion Fourier transforms. Very recently, Li
and He [22] investigated some basic properties of the two-sided quaternion Gabor transforms, such as
Parseval’s formula, characterization of range and other boundedness results.

Although, the quaternion windowed Fourier transform has proved to be a valuable and powerful
time-frequency analyzing tool in optics and signal processing, the rigidity of the quaternion window is not
befitting for the non-transient signals. As such, many ramifications have been introduced to circumvent the
limitations of the QWFT from time to time. For instance, Bahri et al.[4, 5] proposed a novel wavelet transform
in the quaternion domain and derived the corresponding Heisenberg type uncertainty inequalities by means
of the quaternion Fourier transforms. On the flipside, Ali and Thirulogasanthar [1] studied the continuous
wavelet transforms for the quaternionic Hilbert spaces by invoking the unitary irreducible representations,
whereas Hemmat et al.[19] provided a novel discretization scheme for the quaternionic wavelet transform,
and derived a necessary and sufficient condition for the discrete quaternionic wavelet system to be a
frame for L2(R2,H). Recently, Fashandi [13] generalized the results of [1] by defining a new quaternionic
unitary representation from a LCAG to the unitary group of a quaternionic Hilbert space and establish the
corresponding continuous wavelet transform.

Despite of the fact that quaternion wavelet transforms have rectified the limitations of both the
quaternion Fourier and quaternion windowed Fourier transforms, however, they seem to be inadequate
for representing those signals whose energy is not well concentrated in the frequency domain. The purpose
of this paper is to address this issue by introducing a new time-frequency transform namely two-sided
quaternion wave-packet transform (QWPT) which employs the generalized modulations, translations and
localized quaternion window function for providing better time-frequency resolutions over high-frequency
regions and capturing the geometric features of multi-dimensional signals in general.

The core objectives of the article are given as follows:

• To introduce a novel two-sided quaternion wave-packet transform by rectifying the limitations of
quaternion windowed Fourier and wavelet transforms.

• To study the fundamental properties of two-sided quaternion wave-packet transform including the
inner product relation, energy preserving relation, reconstruction formula and range theorem.

• To extend the scope of the study, we formulate Heisenberg-type uncertainty inequalities for the novel
two-sided quaternion wave-packet transform.

• To demonstrate the validity of the proposed transform via illustrative examples.
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The rest of the article is structured as follows: Section 2 is entirely devoted for an overview of the prereq-
uisites including quaternion Fourier, quaternion windowed Fourier and quaternion wavelet transforms.
In Section 3, we present the novel two-sided quaternion wave-packet transform and investigate its basic
properties by virtue of two-sided quaternion Fourier transforms. In Section 4, we derive some Heisenberg’s
and logarithmic uncertainty principles for the proposed transform. Final Section is devoted to present some
illustrative examples to demonstrate our study.

2. Preliminaries

In this section, we recall some basic definitions including the two-sided quaternion Fourier transform,
quaternion windowed Fourier transform and the quaternion wavelet transform.

2.1. Basics of Quaternion Algebra

In 1843, W.R. Hamilton introduced the theory of quaternions while attempting to extend the complex
numbers to 3-dimension [18]. As a consequence, the quaternion algebra provides an extension of the
complex number system to an associative non-commutative four-dimensional algebra and is denoted by
H in his honour. The quaternion algebraH over R is given by

H =
{

f = a0 + i a1 + j a2 + k a3 : a0, a1, a2, a3 ∈ R
}
, (2.1)

where i, j, k denote the three imaginary units, obeying the Hamilton’s multiplication rules:

i j = k = − ji, jk = i = −kj , ki = j = −ik , and i2 = j2 = k2 = i jk = −1. (2.2)

For quaternions f1 = a0 + i a1 + j a2 +k a3 and f2 = b0 + i b1 + j b2 +k b3, the addition is defined component-wise,
whereas the multiplication is defined by

f1 f2 = (a0b0 − a1b1 − a2b2 − a3b3) + i (a1b0 + a0b1 + a2b3 − a3b2)
+ j(a0b2 + a2b0 + a3b1 − a1b3) + k (a0b3 + a3b0 + a1b2 − a2b1). (2.3)

Moreover, the conjugate and norm of any quaternion f = a0+i a1+ j a2+k a3, are given by f = a0−i a1− j a2−k a3

and ‖ f ‖2H = a0
2 + a1

2 + a2
2 + a3

2, respectively. We also note that an arbitrary quaternion-valued function f
can be represented as f = (a0 + i a1) + j (a2 − i a3) = f1 + j f2, where f1, f2 ∈ C. Subsequently, the inner product
of two quaternion-valued functions f = f1 + j f2, and 1 = 11 + j 12 inH can be defined as〈

f , 1
〉
H

= f1 =
(

f111 + f 212

)
+ j

(
f211 − f 112

)
. (2.4)

Denote L2(R2,H) as the space of all quaternion-valued functions f satisfying

∥∥∥ f
∥∥∥

L2(R2)
=

{∫
R2

(
| f1(x)|2 + | f2(x)|2

)
dx

}1/2

< ∞. (2.5)

Consequently, the norm on L2(R2,H) is obtained via (2.4) as〈
f , 1

〉
L2(R2,H)

=

∫
R2

〈
f , 1

〉
H

dx

=

∫
R2

((
f1(x) 11(x) + f2(x) 12(x)

)
+ j

(
f2(x) 11(x) − f1(x) 12(x)

))
dx. (2.6)

Therefore, the quaternion version of Cauchy-Schwartz’s inequality becomes∣∣∣∣∣∫
R2

f (x)1(x)dx
∣∣∣∣∣
H

≤

{∫
R2

∣∣∣ f (x)
∣∣∣2
H

dx
}1/2 {∫

R2

∣∣∣1(x)
∣∣∣2
H

dx
}1/2

,∀ f , 1 ∈ L2(R2,H). (2.7)
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2.2. Time-Frequency Analysis in Quaternion Algebra

Due to the non-commutativity of the elements in the field of quaternionsH, different types of quaternion
Fourier transforms have been introduced and investigated in recent years, including the right-sided, left-
sided and two-sided quaternion Fourier transform [20]. However, throughout this article, we shall be
focussed only on the two-sided quaternion Fourier transform.

Definition 2.1. For any quaternion-valued function f ∈ L2(R2,H), the two-sided quaternion Fourier
transform (QFT) is denoted by Fq and is given by

Fq

[
f (x)

]
(w) = f̂ (w) =

∫
R2

e−2πix1w1 f (x) e−2π jx2w2 dx, (2.8)

where x = (x1, x2),w = (w1,w2) and e−2πx1w1 and e−2πx2w2 are the quaternion Fourier kernels. The correspond-
ing inversion formula is given by

f (x) =

∫
R2

e2πix1w1 f (x) e2π jx2w2 dw, (2.9)

whereas the Parseval formula for the two-sided quaternionic Fourier transform read as〈
Fq[ f ], Fq[1]

〉
L2(R2,H)

=
〈

f , 1
〉

L2(R2,H)
. (2.10)

For f = 1, relation (2.10) reduces to∥∥∥∥Fq

[
f (x)

]
(w)

∥∥∥∥
L2(R2,H)

=
∥∥∥∥ f

∥∥∥∥
L2(R2,H)

. (2.11)

We now recall the two-sided quaternion windowed Fourier and wavelet transforms.

Definition 2.2 [6]. For any quaternion-valued function f ∈ L2(R2,H), the two-sided quaternion windowed
Fourier transform of f is denoted by GHψ [ f ] and is given by

GHψ

[
f (x)

]
(w,b) =

∫
R2

e−2πix1w1 f (x)ψ(x − b) e−2π jx2w2 dx, (2.12)

where x = (x1, x2),w = (w1,w2),b ∈ R2, and ψ ∈ L2(R2,H) is the window function.

Definition 2.3 [5]. The continuous quaternion wavelet transform of any quaternion-valued function f ∈
L2

(
R2, H

)
with respect to the analyzing function ψ ∈ L2

(
R2, H

)
, is defined by

W H
ψ [ f ](a,b, θ) =

1
a

∫
R2

f (x)ψ
(

R−θ(x − b)
a

)
dx, a ∈ R+,b ∈ R2 (2.13)

where Rθ =

(
cosθ sinθ
− sinθ cosθ

)
∈ SO(2), is the special orthogonal group of rotations in R2.

3. Two-sided Quaternion Wave-packet Transform

In this section, we shall formally introduce a novel two-sided quaternion wave-packet transform which
combines advantages of the well-known quaternion windowed Fourier and wavelet transforms. Subse-
quently, we shall investigate the fundamental properties including orthogonality relation, inversion formula
and the range theorem.
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Definition 3.1. The two-sided quaternion wave-packet transform of a quaternion-valued function f ∈
L2

(
R2, H

)
is denoted by PH

ψ and is defined by

PH
ψ [ f ]

(
a,b, θ,w

)
=

1
a

∫
R2

e−2πix1w1 f (x)ψ
(

R−θ(x − b)
a

)
e−2π jx2w2 dx, (3.1)

where a ∈ R+,b ∈ R2,Rθ ∈ SO(2), x = (x1, x2),w = (w1,w2), and ψ ∈ L2(R2,H).

Definition 3.1 allows us to make the following comments:

• The exponential terms appearing in the integrand of (3.1) cannot be interchanged due to the non-
commutativity of quaternions.

• The left-sided and right-sided quaternion wave-packet transforms can similarly be formulated by
placing the product e−2πix1w1 e−2π jx2w2 either on left side or right side of f (x)ψ (R−θ(x − b)/a).

• For a = 1 and R−θ = I, Definition 3.1 boils down to the two-sided quaternion windowed Fourier
transform as defined in (2.12).

• For w = (w1,w2) = (0, 0), Definition 3.1 reduces to the ordinary quaternion wavelet transform given
by (2.13).

Next, we shall investigate the basic properties of the two-sided quaternion wave-packet transform (3.1) by
means of the two-sided quaternion Fourier transforms.

Property-1 (Linearity). Let PH
ψ [ f1]

(
a,b, θ,w

)
and PH

ψ [ f2]
(
a,b, θ,w

)
be the two-sided quaternion wave-packet

transforms of the quaternion-valued functions f1 and f2, respectively. Then, for α1, α2 ∈ R, we have

PH
ψ

[
α1 f1 + α2 f2

](
a,b, θ,w

)
= α1 PH

ψ

[
f1
](

a,b, θ,w
)

+ α2 PH
ψ

[
f2
](

a,b, θ,w
)
. (3.2)

Proof. For the sake of brevity, we omit the proof of Property 1.

Property 2 (Time-shift). Let ψ be a quaternion window function and f ∈ L2(R2,H). Then, we have

PH
ψ

[
f (x − k)

](
a,b, θ,w

)
= e−2πik1w1 PH

ψ

[
f (x)

](
a,b − k, θ,w

)
e−2π jk2w2 , (3.3)

where x = (x1, x2), b = (b1, b2), w = (w1,w2) and k = (k1, k2).

Proof. Using the Definition 3.1, we obtain

PH
ψ

[
f (x − k)

](
a,b, θ,w

)
=

1
a

∫
R2

e−2πix1w1 f (x − k)ψ
(

R−θ(x − b)
a

)
e−2π jx2w2 dx

=
1
a

∫
R2

e−2πi(z1+k1)w1 f (z)ψ
(

R−θ(z + k − b)
a

)
e−2π j(z2+k2)w2 dz

=
1
a

e−2πik1w1

∫
R2

e−2πiz1w1 f (z)ψ

R−θ
(
z − (b − k)

)
a

 e−2π jz2w2 dz e−2π jk2w2

= e−2πik1w1PH
ψ

[
f (x)

](
a,b − k, θ,w

)
e−2π jk2w2 .

Property 3 (Scaling). Let PH
ψ [ f ]

(
a,b, θ,w

)
be the two-sided quaternion wave-packet transforms of any quaternion-

valued function f . Then, for any λ ∈ R, we have

PH
ψ

[
f (λx)

](
a,b, θ,w

)
=

1
λ

PH
ψ

[
f (x)

] (
λa, λb, θ,

w
λ

)
. (3.4)
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Proof. Using (3.1), we have

PH
ψ

[
f (λx)

](
a,b, θ,w

)
=

1
a

∫
R2

e−2πix1w1 f (λx)ψ
(

R−θ(x − b)
a

)
e−2π jx2w2 dx

=
1

aλ2

∫
R2

e−2πiz1
w1
λ f (z)ψ

(
R−θ(z − λb)

aλ

)
e−2π jx2

w2
λ dz

=
1
λ

PH
ψ

[
f (x)

] (
λa, λb, θ,

w
λ

)
.

Property 4 (Parity). Let ψ ∈ L2(R2,H) be a quaternion analyzing function. Then, we have

PH
Pψ

[
P f (x)

](
a,b, θ,w

)
= PH

ψ

[
f (x)

](
a,−b, θ,−w

)
, where P f (x) = f (−x). (3.5)

Proof. A direct calculation gives for every f ∈ L2(R2,H)

PH
Pψ

[
P f (x)

](
a,b, θ,w

)
=

1
a

∫
R2

e−2πix1w1 P f (x) Pψ
(

R−θ(x − b)
a

)
e−2π jx2w2 dx

=
1
a

∫
R2

e−2πix1w1 f (−x)ψ
(
−R−θ(x − b)

a

)
e−2π jx2w2 dx

=
1
a

∫
R2

e2πiz1w1 f (z)ψ
(

R−θ(z + b)
a

)
e2π jz2w2 dz

=
1
a

∫
R2

e−2πiz1(−w1) f (z)ψ

R−θ
(
z − (−b)

)
a

 e−2π jz2(−w2) dz

= PH
ψ

[
f (x)

](
a,−b, θ,−w

)
.

Property 5 (Anti-linearity). For any quaternion-valued function f and ψ1, ψ2 ∈ L2(R2,H), we have

PH
β1ψ1+β2ψ2

[
f (x)

](
a,b, θ,w

)
= PH

ψ1

[
f (x)

](
a,b, θ,w

)
· β1 + PH

ψ2

[
f (x)

](
a,b, θ,w

)
· β2,

where βs = cs + jc′s, cs, c′s ∈ R, s = 1, 2.

Proof. This property follows in similar lines as that of Property 1.

Property 6 (Translation in ψ). For a quaternion-valued function f ∈ L2(R2,H), and analyzing function ψ ∈
L2(R2,H), we have

PH
Tkψ

[
f (x)

](
a,b, θ,w

)
= PH

ψ

[
f (x)

](
a,b + aRθk, θ,w

)
, where Tkψ(x) = ψ(x − k), k = (k1, k2). (3.6)

Proof. The property follows immediately from the Definition 3.1 as

PH
Tkψ

[
f (x)

](
a,b, θ,w

)
=

1
a

∫
R2

e−2πix1w1 f (x)ψ
(

R−θ(x − b)
a

− k
)

e−2π jx2w2 dx

=
1
a

∫
R2

e−2πix1w1 f (x)ψ

R−θ
(
z −

(
b + aRθk

))
a

 e−2π jx2w2 dx

= PH
ψ

[
f (x)

](
a,b + aRθk, θ,w

)
.
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Property 7 (Dilation in ψ). For f , ψ ∈ L2(R2,H), we have

PH
Dcψ

[
f (x)

](
a,b, θ,w

)
= PH

ψ

[
f (x)

](
ac,b, θ,w

)
, where Dcψ(x) =

1
c
ψ

(x
c

)
. (3.7)

Proof. We have

PH
Dcψ

[
f (x)

](
a,b, θ,w

)
=

1
a

∫
R2

e−2πix1w1 f (x)
1
c
ψ

(
R−θ(x − b)

ac

)
e−2π jx2w2 dx

=
1
ac

∫
R2

e−2πix1w1 f (x)ψ
(

R−θ(x − b)
ac

)
e−2π jx2w2 dx

= PH
ψ

[
f (x)

](
ac,b, θ,w

)
.

We now formulate the inner product relation for the two-sided quaternion wave-packet transform by
applying the cyclic multiplication symmetry, which resists the formula to scalar part only. As a consequence
of this formula, we can deduce the energy preserving relation for the proposed transform (3.1). To facilitate
the intent, we shall first define the admissibility condition of any quaternion-valued function.

Definition 3.2 (Admissibility). A quaternion-valued function ψ ∈ L2
(
R2,H

)
is said to be admissible if

Cψ =

∫
R+

∫
SO(2)

∫
R2

∣∣∣∣Fq

[
ψ
](

R−θaw
)∣∣∣∣2 dadθdw

a
< ∞, real-valued positive constant. (3.8)

Theorem 3.3 (Inner Product Relation). Let PH
ψ [ f ]

(
a,b, θ,w

)
and PH

ψ [1]
(
a,b, θ,w

)
be the two-sided quaternion

wave-packet transforms of f and 1, respectively. Then, we have〈
PH

ψ

[
f
]
, PH

ψ

[
1
]〉

L2(G ,H)
= Cψ

〈
f , 1

〉
L2(R2,H)

, (3.9)

where Cψ is given by (3.2) and G = R+
× R2

× SO(2) × R2 is the similitude group constituted by the dilation,
translation, rotation and modulation operators with left Haar measure dη = da dbdθ dw/a3.

Proof. By virtue of Definition 3.1 and the Fubini’s theorem, we have〈
PH

ψ

[
f
]
, PH

ψ

[
1
]〉

L2(G ,H)

=

∫
G

PH
ψ

[
f
](

a,b, θ,w
)
PH

ψ

[
1
](

a,b, θ,w
)

dη

=

∫
G

∫
R2

e−2πix1w1 f (x)ψ
(

R−θ(x − b)
a

)
e−2π jx2w2 dx

∫
R2

e−2πiz1w1 1(z)ψ
(

R−θ(z − b)
a

)
e−2π jz2w2 dz

dη
a2

=

∫
G

∫
R2

∫
R2

e−2πix1w1 f (x)ψ
(

R−θ(x − b)
a

)
e−2π jx2w2 e2π jz2w2ψ

(
R−θ(z − b)

a

)
1(z) e−2πiz1w1 dx dz

dη
a2

=

∫
R+×SO(2)×R2×R2

∫
R2

∫
R2

f (x)ψ
(

R−θ(x − b)
a

)
e−2π jx2w2 e2π jz2w2 ψ

(
R−θ(z − b)

a

)
1(z)

× e2πiz1w1 e−2πix1w1 dx dz
da db dθ dw

a5

=

∫
R+×SO(2)×R2

∫
R2

∫
R2

f (x)ψ
(

R−θ(x − b)
a

) ∫
R

e2π j(z2−x2)w2 dw2 ψ

(
R−θ(z − b)

a

)
1(z)

×

∫
R

e2πi(z1−x1)w1 dw1 dx dz
da db dθ

a5
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=

∫
R+×SO(2)×R2

∫
R2

∫
R2

f (x)ψ
(

R−θ(x − b)
a

)
δ(z2 − x2)ψ

(
R−θ(z − b)

a

)
1(z) δ(z1 − x1) dx dz

da db dθ
a5

=

∫
R+×SO(2)×R2

∫
R2

f (x)ψ
(

R−θ(x − b)
a

)
ψ

(
R−θ(x − b)

a

)
1(x) dx

da db dθ
a5

=

∫
R2

f (x)
∫
R+×SO(2)×R2

ψ

(
R−θ(x − b)

a

)
ψ

(
R−θ(x − b)

a

)
da db dθ

a5 1(x) dx

=

∫
R2

f (x)
∫
R+×SO(2)

∫
R2
ψ

(
R−θ(x − b)

a

)
ψ

(
R−θ(x − b)

a

)
db

da dθ
a5 1(x) dx

=

∫
R2

f (x)
∫
R+×SO(2)

∫
R2
ψ

(R−θb′

a

)
ψ

(R−θb′

a

)
db′

da dθ
a5 1(x) dx

=

∫
R2

f (x)
∫
R+×SO(2)

〈
ψ

(R−θb′

a

)
, ψ

(R−θb′

a

) 〉
L2(R2,H)

da dθ
a5 1(x) dx

=

∫
R2

f (x)
∫
R+×SO(2)

〈
Fq

[
ψ

(R−θb′

a

) ]
, Fq

[
ψ

(R−θb′

a

) ] 〉
L2(R2,H)

da dθ
a5 1(x) dx

=

∫
R2

f (x)
∫
R+×SO(2)

∫
R2

Fq

[
ψ
] (R−θw

a

)
Fq

[
ψ
] (R−θw

a

)
dw

da dθ
a5 1(x) dx

=

∫
R2

f (x)
∫
R+×SO(2)

∫
R2

Fq

[
ψ
](

R−θaw′
)
Fq

[
ψ
](

R−θaw′
)

a4 dw′
da dθ

a5 1(x) dx

=

∫
R2

f (x)
[∫
R+×SO(2)

∫
R2

Fq

[
ψ
](

R−θaw′
)
Fq

[
ψ
](

R−θaw′
)

dw′
da dθ

a

]
1(x) dx

=

∫
R2

f (x)Cψ 1(x) dx

= Cψ
〈

f , 1
〉

L2(R2,H)
,

where Cψ is given in (3.8). This completes the proof of Theorem 3.3.

Remarks: (i). For f = 1, Theorem 3.3 yields the energy preserving relation

∫
R+×R2×SO(2)×R2

∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

da db dθdw
a3 = Cψ

∥∥∥∥ f
∥∥∥∥2

L2(R2,H)
. (3.10)

(ii). The operator PH
ψ is bounded and for Cψ = 1, it becomes an isometry from L2(R2,H) to the space of

transformations L2(R+
×R2

× SO(2) ×R2,H).

The next theorem guarantees the reconstruction of the input quaternion-valued signal f from the
corresponding two-sided quaternion wave-packet transform.

Theorem 3.4 (Reconstruction Formula). If ψ ∈ L2(R2,H) is admissible and PH
ψ [ f ]

(
a,b, θ,w

)
is the two-sided

quaternion wave-packet transform of an arbitrary function f ∈ L2(R2,H), then f can be reconstructed via

f (x) =
1
Cψ

∫
G

e2πix1w1PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2ψ

R−θ
(
x − b

)
a

 da db dθ dw
a4 , a.e. (3.11)
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Proof. According to Theorem 3.3, we can write

Cψ

〈
f , 1

〉
L2(R2,H)

=
〈
PH

ψ

[
f
]
, PH

ψ

[
1
]〉

L2(G ,H)

=

∫
G

PH
ψ

[
f
](

a,b, θ,w
)
PH

ψ

[
1
](

a,b, θ,w
)

dη

=

∫
G

PH
ψ

[
f
](

a,b, θ,w
) 1

a

∫
R2

e−2πiz1w1 1(z)ψ
(

R−θ(z − b)
a

)
e−2π jz2w2 dz dη

=

∫
R2

∫
G

PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
1(x) e2πix1w1

dη
a

dx

=

∫
R2

∫
G

e2πix1w1 PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
1(x)

dη
a

dx

=

∫
R2

∫
G

e2πix1w1 PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
dη
a
· 1(x) dx

=

〈∫
G

e2πix1w1 PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
dη
a
, 1

〉
L2(R2,H)

.

Since 1 is chosen arbitrarily from L2(R2,H), therefore, we obtain the desired result:

f (x) =
1
Cψ

∫
G

e2πix1w1PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2ψ

R−θ
(
x − b

)
a

 da db dθ dw
a4 , a.e.

This completes the proof of theorem.

Theorem 3.5 (Reproducing Kernel Hilbert Space). For a normalized admissible functionψ ∈ L2(R2,H), the range
of the two-sided quaternion wave-packet transform (3.1) is a reproducing kernel Hilbert space in L2

(
R+
×R2

× SO(2) ×R2,H
)

with kernel given by

Kψ
(
a,b, θ,w; a′,b′, θ′,w′

)
=

1
aa′Cψ

〈
e2π jx2w2ψ

(
R−θ(x − b)

a

)
, e−2πix1(w1−w′1)e2π jx2w′2ψ

R−θ′
(
x − b′

)
a′


〉

L2(R2,H)

.

(3.12)

Moreover, we have∣∣∣∣Kψ(a,b, θ,w; a′,b′, θ′,w′
)∣∣∣∣ ≤ C−1

ψ

∥∥∥ψ∥∥∥
L2(R2,H) , whenever Cψ > 0. (3.13)

Proof. By invoking Definition 3.1 and the reconstruction formula (3.11), we obtain

PH
ψ [ f ]

(
a′,b′, θ′,w′

)
=

1
a′

∫
R2

e−2πix1w′1 f (x)ψ

R−θ′
(
x − b′

)
a′

e−2π jx2w′2 dx

=
1
a′

∫
R2

e−2πix1w′1
1
Cψ

∫
G

e2πix1w1PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
dη
a
ψ

R−θ′
(
x − b′

)
a′

 e−2π jx2w′2 dx

=
1

a′Cψ

∫
G

∫
R2

e−2πix1w′1 e2πix1w1 PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
ψ

R−θ′
(
x − b′

)
a′

 e−2π jx2w′2
dx dη

a
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=
1

a′Cψ

∫
G

∫
R2

e2πix1(w1−w′1) PH
ψ

[
f
](

a,b, θ,w
)

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
ψ

R−θ′
(
x − b′

)
a′

 e−2π jx2w′2
dx dη

a

=
1

a′Cψ

∫
G

PH
ψ

[
f
](

a,b, θ,w
) ∫
R2

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
ψ

R−θ′
(
x − b′

)
a′

 e−2π jx2w′2 e2πix1(w1−w′1) dx dη
a

=
1

a′Cψ

∫
G

PH
ψ

[
f
](

a,b, θ,w
) 〈

e2π jx2w2 ψ

(
R−θ(x − b)

a

)
, e−2πix1(w1−w′1) e2π jx2w′2 ψ

R−θ′
(
x − b′

)
a′


〉

L2(R2,H)

dη
a

=

∫
G

PH
ψ

[
f
](

a,b, θ,w
) 1
aa′Cψ

〈
e2π jx2w2 ψ

(
R−θ(x − b)

a

)
, e−2πix1(w1−w′1) e2π jx2w′2 ψ

R−θ′
(
x − b′

)
a′


〉

L2(R2,H)

dη

=

∫
G

PH
ψ

[
f
](

a,b, θ,w
)
Kψ

(
a,b, θ,w; a′,b′, θ′,w′

)
dη.

Or equivalently,

Kψ
(
a,b, θ,w; a′,b′, θ′,w′

)
=

1
aa′Cψ

〈
e2π jx2w2ψ

(
R−θ(x − b)

a

)
, e−2πix1(w1−w′1)e2π jx2w′2ψ

R−θ′
(
x − b′

)
a′


〉

L2(R2,H)

.

This completes the proof of first assertion.

Furthermore, we have∣∣∣∣Kψ(a,b, θ,w; a′,b′, θ′,w′
)∣∣∣∣

=

∣∣∣∣∣∣∣∣ 1
aa′Cψ

〈
e jx2w2 ψ

(
R−θ(x − b)

a

)
, e−2πix1(w1−w′1) e2π jx2w′2 ψ

R−θ′
(
x − b′

)
a′


〉

L2(R2,H)

∣∣∣∣∣∣∣∣
≤

1∣∣∣aa′Cψ
∣∣∣
∫
R2

∣∣∣∣∣∣ψ
(

R−θ(x − b)
a

)∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ψ

R−θ′
(
x − b′

)
a′


∣∣∣∣∣∣∣∣∣ dx

≤
1∣∣∣aa′Cψ

∣∣∣
∥∥∥∥∥ψ (

R−θ
(x

a
−

b
a

))∥∥∥∥∥
L2(R2,H)

∥∥∥∥∥∥ψ (
R−θ′

( x
a′
−

b′

a′

))∥∥∥∥∥∥
L2(R2,H)

≤
1∣∣∣Cψ∣∣∣

∥∥∥∥∥ψ (
R−θ

(
z −

b
a

))∥∥∥∥∥
L2(R2,H)

∥∥∥∥∥ψ (
R−θ′

(
z′ −

b′

a′

))∥∥∥∥∥
L2(R2,H)

≤
1∣∣∣Cψ∣∣∣

∥∥∥ψ∥∥∥2

L2(R2,H)

= C−1
ψ

∥∥∥ψ∥∥∥2

L2(R2,H), provided Cψ > 0.

This completes the proof of Theorem 3.5.

4. Uncertainty Principles for the Quaternion wave-packet transform

The celebrated Heisenberg’s uncertainty principle in harmonic analysis states that “a function can not be
sharply localized in both the time and frequency domains”. This principle plays a significant role in the
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modern signal analysis as it provides a lower bound for the optimal resolution of a signal in both time and
frequency domains [14]. Since its inception, many ramifications of the uncertainty principle have appeared
in literature, which resulted in the expansion of uncertainty principle from the classical Fourier domain
to the fractional Fourier, linear canonical, special affine Fourier domains [3, 7, 9, 23, 41]. Motivated and
inspired by the contemporary developments in the theory of uncertainty principles, our aim is to establish
some new versions of the Heisenberg and the logarithmic-type uncertainty inequalities for the two-sided
quaternion wave-packet transform. The results are obtained by using the machinery of two-side quaternion
Fourier transforms and some fundamental inequalities of functional analysis. To facilitate the narrative, we
need the following lemma.

Lemma 4.1. Letψ ∈ L2(R2,H) be an admissible quaternion-valued function, then for every f ∈ L2(R2, H),we have∫
G

∣∣∣ξ∣∣∣2 ∣∣∣∣Fq

[
PH

ψ

[
f
]]

(ξ)
∣∣∣∣2
H

dη = Cψ
∣∣∣ξ∣∣∣2∥∥∥∥Fq[ f ](ξ)

∥∥∥∥2

L2(R2,H)
. (4.1)

Proof. Combining the inner product relations of two-sided quaternion Fourier (2.10) and wavelet-packet
transforms (3.9), we obtain

Cψ

〈
Fq[ f ], Fq[1]

〉
L2(R2,H)

=

∫
R+×R2×SO(2)×R2

PH
ψ

[
f
](

a,b, θ,w
)
PH

ψ [1]
(
a,b, θ,w

) da db dθ dw
a3 .

Identifying PH
ψ

[
f
](

a,b, θ,w
)

as a function of the translation parameter b and using (2.10), we have

Cψ

〈
Fq[ f ], Fq[1]

〉
L2(R2,H)

=

∫
R+×R2×SO(2)

∫
R2

Fq

[
PH

ψ

[
f
]]

(ξ) Fq

[
PH

ψ [1]
]

(ξ) dξ
da dθ dw

a3 .

Multiplying the above expression on both sides by |ξ|2, we get

Cψ

〈
ξFq[ f ], ξFq[1]

〉
L2(R2,H)

=

∫
R+×R2×SO(2)

∫
R2
ξFq

[
PH

ψ

[
f
]]

(ξ) · ξFq

[
PH

ψ [1]
]

(ξ) dξ
da dθ dw

a3 .

Finally, for f = 1, we get the desired identity∫
G

∣∣∣ξ∣∣∣2 ∣∣∣∣Fq

[
PH

ψ

[
f
]]

(ξ)
∣∣∣∣2
H

dη = Cψ
∣∣∣ξ∣∣∣2∥∥∥∥Fq[ f ](ξ)

∥∥∥∥2

L2(R2,H)
.

This completes the proof of Lemma 4.1.

We are now ready to derive the Heisenberg-type inequalities for the proposed two-sided quaternion
wave-packet transform (3.1).

Theorem 4.2. Let PH
ψ [ f ]

(
a,b, θ,w

)
be the two-sided quaternion wave-packet transform of any quaternion-valued

function f ∈ L2(R2,H). Then, we have{∫
G

∣∣∣b∣∣∣2 ∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}1/2 {∫

R2

∣∣∣ξ∣∣∣2 ∣∣∣∣Fq

[
f
]
(ξ)

∣∣∣∣2
H

dξ
}1/2

≥

√
Cψ

2

∥∥∥ f
∥∥∥2

L2(R2,H)
. (4.2)

Proof. The Heisenberg’s inequality in the quaternion Fourier domain [3] is given by{∫
R2

∣∣∣b∣∣∣2∣∣∣ f (b)
∣∣∣2
H

db
}1/2 {∫

R2

∣∣∣ξ∣∣∣2∣∣∣∣Fq
[

f
]

(ξ)
∣∣∣∣2
H

dξ
}1/2

≥

{
1
2

∫
R2

∣∣∣ f (b)
∣∣∣2
H

db
}
. (4.3)
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Replacing the quaternion-valued function f in (4.4) with PH
ψ [ f ](·, b, ·, ·) yields

{∫
R2

∣∣∣b∣∣∣2∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣2
H

db
}1/2 {∫

R2

∣∣∣ξ∣∣∣2∣∣∣∣Fq

[
PH

ψ [ f ]
(
a,b, θ,w

)]
(ξ)

∣∣∣∣2
H

dξ
}1/2

≥

{
1
2

∫
R2

∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣2
H

db
}
. (4.4)

After integrating the inequality (4.3) with respect to measure da dθ dw/a3, we obtain

∫
R+×SO(2)×R2


{∫
R2

∣∣∣b∣∣∣2∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣2
H

db
}1/2 {∫

R2

∣∣∣ξ∣∣∣2∣∣∣∣Fq

[
PH

ψ [ f ]
(
a,b, θ,w

)]
(ξ)

∣∣∣∣2
H

dξ
}1/2

 da dθ dw
a3

≥

{
1
2

∫
R+×SO(2)×R2

∫
R2

∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣2
H

db
}

da dθ dw
a3 . (4.5)

Thus, as a consequence of the quaternion Cauchy-Schwartz inequality (2.7), we may write

{∫
R+×SO(2)×R2

∫
R2

∣∣∣b∣∣∣2 ∣∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣∣2
H

db
da dθ dw

a3

}1/2

×

{∫
R+×SO(2)×R2

∫
R2

∣∣∣ξ∣∣∣2∣∣∣∣Fq

[
PH

ψ [ f ]
]

(ξ)
∣∣∣∣2
H

dξ
da dθ dw

a3

}1/2

≥
1
2

∫
R+×SO(2)×R2

∫
R2

∣∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣∣2
H

db
da dθ dw

a3 .

Applying the Lemma 4.1, the above expression can be simplified as

{∫
R+×SO(2)×R2

∫
R2

∣∣∣b∣∣∣2 ∣∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣∣2
H

db
da dθ dw

a3

}1/2 {
Cψ

∫
R2

∣∣∣ξ∣∣∣2∣∣∣∣Fq[ f ](ξ)
∣∣∣∣2
H

dξ
}1/2

≥
1
2

∫
R+×SO(2)×R2

∫
R2

∣∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣∣2
H

db
da dθ dw

a3 . (4.6)

Finally, employing the energy persevering relation (3.10) in the R.H.S of (4.6), we obtain the desired result
as {∫

G

∣∣∣b∣∣∣2 ∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}1/2 {∫

R2

∣∣∣ξ∣∣∣2 ∣∣∣∣Fq

[
f
]
(ξ)

∣∣∣∣2
H

dξ
}1/2

≥

√
Cψ

2

∥∥∥ f
∥∥∥2

L2(R2,H)
.

Following the idea of Cowling and Price [10], we shall derive a generalized inequality of Theorem 4.2 for
Lp(R2,H), p ≥ 1 in the following theorem.

Theorem 4.3 (Generalised HUP). Let ψ ∈ L2(R2,H) be an admissible quaternion-valued function with Fq[ψ]
being real-valued. Then, for every f ∈ L2(R2,H), we have

{∫
G

|b|2p
∣∣∣∣PH

ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}1/p {∫

R2
|ξ|2p

∣∣∣∣Fq

[
f
]
(ξ)

∣∣∣∣2
H

dξ
}1/p

≥
(Cψ)1/p

4

∥∥∥∥ f
∥∥∥∥4/p

L2(R2,H)
, p ≥ 1. (4.7)
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Proof. By virtue of Hölder’s inequality, we can write∫
G

|b|2
∣∣∣∣PH

ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη

=

∫
G

{
|b|2

∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2/p
H

} {∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣(2− 2

p

)
H

}
dη

≤

{∫
G

(
|b|2

∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2/p
H

)p

dη
}1/p


∫

G

(∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣(2− 2

p

)
H

) p
p−1

dη


(
1− 1

p

)

=

{∫
G

|b|2p
∣∣∣∣PH

ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}1/p {∫

G

∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}(

1− 1
p

)
.

Therefore, we have

{∫
G

|b|2p
∣∣∣∣PH

ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}1/p

≥

{∫
G

|b|2
∣∣∣∣PH

ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}

{∫
G

∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}(

1− 1
p

) . (4.8)

In analogy with above and by virtue of orthogonality relation (3.9), we have

{∫
R2
|ξ|2p

∣∣∣∣Fq[ f ](ξ)
∣∣∣∣2
H

dξ
}1/p

≥

{∫
R2
|ξ|2

∣∣∣Fq[ f ](ξ)
∣∣∣2
H

dξ
}

{∥∥∥∥ f
∥∥∥∥2

H

}(
1− 1

p

) . (4.9)

Multiplying the inequalities (4.8) and (4.9) and employing Theorem 4.2, we obtain{∫
G

|b|2p
∣∣∣∣PH

ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}1/p {∫

R2
|ξ|2p

∣∣∣∣Fq[ f ](ξ)
∣∣∣∣2
H

dξ
}1/p

≥

∫
G

|b|2
∣∣∣∣PH

ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
∫
R2
|ξ|2

∣∣∣Fq[ f ](ξ)
∣∣∣2
H

dξ{∫
G

∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}{

1− 1
p

} {∥∥∥∥ f
∥∥∥∥2

H

}(
1− 1

p

)

≥
1
4

Cψ

∥∥∥ f
∥∥∥4

L2(R2,H){∫
G

∣∣∣∣PH
ψ

[
f
](

a,b, θ,w
)∣∣∣∣2
H

dη
}{

1− 1
p

} {∥∥∥∥ f
∥∥∥∥2

H

}(
1− 1

p

)

≥
1
4

Cψ

∥∥∥ f
∥∥∥4

L2(R2,H){
Cψ

∥∥∥∥ f
∥∥∥∥2

H

}(
1− 1

p

){∥∥∥∥ f
∥∥∥∥2

H

}(
1− 1

p

)

≥
(Cψ)1/p

4

∥∥∥∥ f
∥∥∥∥4/p

L2(R2,H)
.

The proof of Theorem 4.3 is complete.

It is pertinent to that for p = 1, Theorem 4.3 boils down to the Theorem 4.2.
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The rest of the section is devoted to establish an analogue of the logarithmic inequality for the two-sided
quaternion wave-packet transform. To facilitate our intention, we start with the following definition.

Definition 4.4. For α = (α1, α2) ∈ R+
×R+, the Schwartz space in L2(R2,H) is defined by

S
(
R2,H

)
=

 f ∈ C∞(R2,H); sup
t∈R2

(
1 + |t|k

)∣∣∣∣∂α1+α2 [ f (t)]
∂α1

t1
∂α2

t2

∣∣∣∣ < ∞ , (4.10)

where C∞(R2,H), denote the space of all smooth functions from R2 toH.

We now establish the logarithmic uncertainty principle for the two-sided quaternion wave-packet
transform PH

ψ [ f ]
(
a,b, θ,w

)
as defined by (3.1).

Theorem 4.5. Let ψ ∈ S
(
R2,H

)
be an admissible quaternion and, suppose that PH

ψ [ f ] ∈ S
(
R2,H

)
, then

the two-sided quaternion wave-packet transform (3.1) satisfies the following logarithmic estimate of the uncertainty
inequality:∫

G

ln |b|
∣∣∣∣PH

ψ [ f ]
(
a,b, θ,w

)∣∣∣∣2
H

dη + Cψ

∫
R2

ln |ξ|
∣∣∣∣Fq

[
f
]
(ξ)

∣∣∣∣2
H

dξ ≥
[
Γ′(1/2)
Γ(1/2)

− lnπ
]
· Cψ

∥∥∥∥ f
∥∥∥∥2

L2(R2,H)
. (4.11)

Proof. For any quaternion f ∈ S (R2,H), we have the following inequality [9]∫
R2

ln |b|
∣∣∣∣ f (b)

∣∣∣∣2
H

db +

∫
R2

ln |ξ|
∣∣∣∣Fq

[
f
]
(ξ)

∣∣∣∣2
H

dξ ≥
[
Γ′(1/2)
Γ(1/2)

− lnπ
] ∫
R2

∣∣∣∣ f (b)
∣∣∣∣2
H

db.

By considering PH
ψ [ f ]

(
a,b, θ,w

)
as function of b and replacing f by PH

ψ [ f ] in the above inequality, we
obtain∫

R2
ln |b|

∣∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣∣2
H

db +

∫
R2

ln |ξ|
∣∣∣∣Fq

[
PH

ψ [ f ]
(
a,b, θ,w

)]
(ξ)

∣∣∣∣2
H

dξ

≥

[
Γ′(1/2)
Γ(1/2)

− lnπ
] ∫
R2

∣∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣∣2
H

db. (4.12)

Integrating (4.12) under da dθ dw/a3, and using the Fubini’s theorem, we get∫
R+×SO(2)×R2

∫
R2

ln |b|
∣∣∣∣PH

ψ [ f ]
(
a,b, θ,w

)∣∣∣∣2
H

db
da dθ dw

a3

+

∫
R+×SO(2)×R2

∫
R2

ln |ξ|
∣∣∣∣Fq

[
PH

ψ [ f ]
(
a,b, θ,w

)]
(ξ)

∣∣∣∣2
H

dξ
da dθ dw

a3

≥

[
Γ′(1/2)
Γ(1/2)

− lnπ
] ∫
R+×SO(2)×R2

∫
R2

∣∣∣∣PH
ψ [ f ]

(
a,b, θ,w

)∣∣∣∣2
H

db
da dθ dw

a3 .

As a consequence of Lemma 4.1, we obtain the desired inequality∫
G

ln |b|
∣∣∣∣PH

ψ [ f ]
(
a,b, θ,w

)∣∣∣∣2
H

dη + Cψ

∫
R2

ln |ξ|
∣∣∣∣Fq

[
f
]
(ξ)

∣∣∣∣2
H

dξ
[
Γ′(1/2)
Γ(1/2)

− lnπ
]
· Cψ

∥∥∥∥ f
∥∥∥∥2

L2(R2,H)
.

This completes the proof of Theorem 4.5.
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5. Examples

In this section, we shall present some illustrative examples for the demonstration of the proposed two-sided
quaternion wave-packet transform.

Example 5.1. Consider the two-dimensional function

ψ(x) = λ−2e
−|x|2

2λ2 − e
−|x|2

2 , 0 < λ < 1. (5.1)

Then, we shall compute the two-sided quaternion wave-packet transform of the quaternion-valued signal

f (x) = e−(ix1+ jx2), x1, x2 ∈ R, with respect to ψ for R−θ = I as

PH
ψ [ f ]

(
a,b, θ,w

)
=

1
a

∫
R2

e−2πix1w1 f (x)ψ
(

R−θ(x − b)
a

)
e−2π jx2w2 dx

=
1
a

∫
R2

e−2πix1w1 e−(ix1+ jx2)

λ−2 e
−

(
(x1−b1)2+(x2−b2)2

)
2a2λ2 − e

−

(
(x1−b1)2+(x2−b2)2

)
2a2

 e−2π jx2w2 dx

=
1

aλ2 e
−(b2

1+b2
2)

2a2λ2

∫
R

e
−x2

1−2x1(−b1+ia2λ2+2πiw1a2λ2)

2a2λ2 dx1

∫
R

e
−x2

2−2x2(−b2+ ja2λ2+2π jw2a2λ2)

2a2λ2 dx2

−
1
a

e
−(b2

1+b2
2)

2a2

∫
R

e
−x2

1−2x1(−b1+ia2+2πiw1a2)

2a2 dx1

∫
R

e
−x2

2−2x2(−b2+ ja2+2π jw2a2)

2a2 dx2

=
1

aλ2 e
−(b2

1+b2
2)

2a2λ2
√

2πa2λ2e
(−b1+ia2λ2+2πiw1a2λ2)2

a4λ4 ×
a2λ2

2
√

2πa2λ2e
(−b2+ ja2λ2+2π jw2a2λ2)2

2a2λ2

−
1
a

e
−(b2

1+b2
2)

2a2
√

2πa2e
(−b1+ia2+2πiw1a2)2

2a2
√

2πa2e
(−b2+ ja2+2π jw2a2)2

2a2

= 2πa e
−(b2

1+b2
2)

2a2λ2 e
(−b1+ia2λ2+2πiw1a2λ2)2

2a2λ2 e
(−b2+ ja2λ2+2π jw2a2λ2)2

2a2λ2 − 2πa e
−(b2

1+b2
2)

2a2 e
(−b1+ia2+2πiw1a2)2

2a2 e
(−b2+ ja2+2π jw2a2)2

2a2

= 2πa e
−(b2

1+b2
2)+(ia2λ2+2πiw1a2λ2

−b1)2+( ja2λ2+2π jw2a2λ2
−b2)2

2a2λ2 − 2πa e
−(b2

1+b2
2)+(ia2+2πiw1a2

−b1)2+( ja2+2π jw2a2
−b2)2

2a2 . (5.2)

For computational convenience, we choose a = 1, b1 = b2 = 1, λ = 0.5, so that (5.2) yields

PH
ψ [ f ]

(
1, 1, 0,w

)
= 2π e

−2+(i(0.5)2+2πiw1(0.5)2−1)2+( j(0.5)2+2π jw2(0.5)2−1)2

2(0.5)2 − 2πe
−2+(i+2πiw1−1)2+( j+2π jw2−1)2

2

= 2π e(−2−4π2w2
1−4π2w2

2−4πw1−4πw2)/8
· e−i(1+2πw1)

· e− j(1+2πw2)

− 2π e(−2−4π2w2
1−4π2w2

2−4πw1−4πw2)/2
· e−i(1+2πw1)

· e− j(1+2πw2)

= 2π
[
e(−2−4π2w2

1−4π2w2
2−4πw1−4πw2)/8

− e(−2−4π2w2
1−4π2w2

2−4πw1−4πw2)/2
]

e−i(1+2πw1)
· e− j(1+2πw2)

= 2π
[
e(−1−2π2w2

1−2π2w2
2−2πw1−2πw2)/4

− e(−1−2π2w2
1−2π2w2

2−2πw1−2πw2)
]

×

(
cos(1 + 2πw1) cos(1 + 2πw2) − j cos(1 + 2πw1) sin(1 + 2πw2)

− i sin(1 + 2πw1) cos(1 + 2πw2) + i · j sin(1 + 2πw1) sin(1 + 2πw2)
)
. (5.3)

The graphical representation of the given quaternion-valued signal f (x) = e−(ix1+ jx2), x1, x2 ∈ R is presented
in Fig. 1, whereas its two-sided quaternion wave-packet transform is depicted in Fig.2, for a = 1, b1 = b2 =
1, andλ = 0.5.
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Figure 1: Real part (top left), ith-imaginary part (top right), jth-imaginary part(bottom left) and i jth-imaginary part (bottom right) of
the signal f (x).

Example 5.2. Consider the two-dimensional Haar wavelet

ψ(x) =


1, if 0 ≤ x1, x2 < 1/2
−1, if 1/2 ≤ x1, x2 < 1
0, otherwise .

(5.4)

Then, the two-sided quaternion wave-packet transform of the signal f (x) = e−(x2
1+x2

2), x1, x2 ∈ Rwith respect
to ψ for R−θ = I can be evaluated as

PH
ψ [ f ]

(
a,b, θ,w

)
=

1
a

∫
R2

e−2πix1w1 f (x)ψ
(

R−θ(x − b)
a

)
e−2π jx2w2 dx

=
1
a

∫ a
2 +b1

b1

∫ a
2 +b2

b2

e−2πix1w1 e−(x2
1+x2

2)e−2π jx2w2 dx1dx2

−
1
a

∫ a+b1

a
2 +b1

∫ a+b2

a
2 +b2

e−2πix1w1 e−(x2
1+x2

2)e−2π jx2w2 dx1dx2

=
1
a

∫ a
2 +b1

b1

e−(x2
1+2πix1w1)dx1

∫ a
2 +b2

b2

e−(x2
2+2π jx2w2)dx2

−
1
a

∫ a+b1

a
2 +b1

e−(x2
1+2πix1w1)dx1

∫ a+b2

a
2 +b2

e−(x2
2+2π jx2w2)dx2

=
1
a

e
π2(w2

1+w2
2)

4

∫ a
2 +b1

b1

e−(x1+πiw1)2
dx1 ·

∫ a
2 +b2

b2

e−(x2+π jw2)2

dx2
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−
1
a

e
π2(w2

1+w2
2)

4

∫ a+b1

a
2 +b1

e−(x1+πiw1)2
dx1 ·

∫ a+b2

a
2 +b2

e−(x2+π jw2)2

dx2. (5.5)

After substituting z1 = x1 + πiw1, z2 = x2 + π jw2, equation (5.5) becomes

PH
ψ [ f ]

(
a,b, θ,w

)
=

eπ
2(w2

1+w2
2)/4

a

{∫ a
2 +b1+πiw1

b1+πiw1

e−z2
1 dz1 ·

∫ a
2 +b2+π jw2

b2+π jw2

e−z2
2 dz2

−

∫ a+b1+πiw1

a
2 +b1+πiw1

e−z2
1 dz1 ·

∫ a+b2+π jw j

a
2 +b2+π jw2

e−z2
2 dz2


=

1
a

e
π2(w2

1+w2
2)

4

{[
−err f (b1 + πiw1) + err f

( a
2

+ b1 + πiw1

)]
×

[
err f

(
b2 + π jw2

)
+ err f

( a
2

+ b2 + π jw2

)]
−

[
err f

( a
2

+ b1 + πiw1

)
+ err f (a + b1 + πiw1)

]
×

[
err f

( a
2

+ b2 + π jw2

)
+ err f

(
a + b2 + π jw2

)]}
, (5.6)

where err f (z) =
∫ z

0 e−t2 dt.

Figure 2: Two-sided quaternion wave-packet transform of f (x), for a = 1, b1 = b2 = 1, andλ = 0.5.
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6. Conclusion

In this article, we introduced a novel integral transform coined quaternion wave-packet transform which
is capable of providing better time-frequency resolution over the high-frequency regions. Besides studying
all the fundamental properties, we also illustrate the fundamental results via some lucid examples. Finally,
we establish some analogues of the Heisenberg’s and logarithmic uncertainty principles for the proposed
two-sided quaternion wave-packet transform. It is hoped that quaternion wave-packet transform might
be useful in three-dimensional colour images and video processing, aerospace engineering, oil exploration,
crystallography and for the solution of other geometrical problems.
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