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Algorithmic and Analytical Approach to the Proximal Split Feasibility
Problem and Fixed Point Problem
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Abstract. In this paper, we investigate the proximal split feasibility algorithm and fixed point problem
in Hilbert spaces. We propose an iterative algorithm for finding a common element of the solution of
the proximal split feasibility algorithm and fixed point of an L- Lipschitz pseudocontractive operator.
We demonstrate that the considered algorithm converges strongly to a common point of the investigated
problems under some mild conditions.

1. Introduction

It is well known that the split feasibility problem can be a model for numerous inverse problems where
constraints are imposed on the solutions in the domain of a bounded linear operator as well as in its range
([2, 23, 31, 32, 38]). The prototype of the split feasibility problem proposed by Censor and Elfving [5] came
out of phase retrieval problems and the intensity-modulated radiation therapy. Now, the split feasibility
problem has a large number of specific applications in real world such as medical care, image reconstruction
and signal processing, see [2, 6, 37, 39] for more details. Since then, the split problems have been studied
extensively by many authors, see, for instance, [8, 15, 20, 22, 28].

In this paper, we are interested in the following more general case of the proximal split feasibility
problem:

min{p(x) + ¥ (Ax")), 1)

xteH;
where H; and H; are two real Hilbert spaces, ¢ : Hi — RU{+o0} and ¢ : H, — RU{+00} are two proper and

lower semi-continuous convex functions, A : H; — H> is a bounded linear operator and ¢, is the Moreau
envelope of ¢ of index t(7 > 0), known as the Moreau[9]-Yosida[33] approximate defined as

Y«(x) = min {vw) + ;—Tllx —yIP},x € Hy. )

Use I to denote the solution set of (1).
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Special case: Setting ¢ = 6c and ¢ = ¢, the indicator functions of two nonempty closed convex sets
C c H; and Q € H,, respectively, the proximal split feasibility problem (1) can be transformed into

rpiﬁ{éc(f) + (50)-(Ax")},

which is equivalent to

min {1 - projo) A", ©

where projg : Hy — Q is the orthogonal projection.
It is obviously that solving (3) is exactly to solve the following split feasibility problem ([2, 7, 17]) of
finding x" such that

xt e C and Ax" € Q. (4)

Thus, the proximal split feasibility problem (1) includes the split feasibility problem (4) as a special case.
Let  : Ho — R U {+00} be a proper and lower semi-continuous convex function. Recall that the
subdifferential dy(x") of ¢ at x* is defined as follows

(x) = (x* € Hy : (') = v(x") + (", ut — &y, Vu' € Hy). (5)
The proximity operator prox.y ([1, 10, 12]) of ¢ is defined by

_ : 1 2
prox,y(x) = argrur;g;{lp(u) + 5ol =x l, x € Hy. (6)
Based on (5) and (6), we can deduce
0edP(x) =" = proxw(x‘L). (7)

By applying this equivalent relation (7), we can solve the proximal split feasibility problem (1) by using fixed
point techniques. In fact, since the Yosida-approximate ¢, (2) is differentiable ([13]), we get d(¢-(Ax")) =

A (L) AxT). So,

I = prox.y

AP + Po(Axh)) = dp(a) + AY( JAxh). ®)

T

T

Note that the optimality condition of (1) is 0 € dgp(x") + A*(M)(AH), ie.,

0 € utdp(x") + pA (I - proxw)(Ax*). 9)
From (7) and (9), we deduce
x" solves (1)& x* = proxycp(xt — pA*(I - prox.y)(Ax")). (10)

By applying fixed point techniques (7) and (10), several iterative algorithms for solving the proximal split
feasibility problem (1) have been proposed and the convergence analysis of the suggested algorithms were
demonstrated, see [11, 14].

At the same time, we also interested in iterative algorithms for solving fixed point problems. It is well
known that fixed point theory serves as an essential tool for various branches of mathematical analysis and
its applications ([24-27]. Especially, fixed point iterative algorithm comes to be useful in many mathematical
formulations and theorems ([3, 4, 18, 19, 29, 30]). Often, approximations and solutions to iterative guess
strategies utilized in dynamic engineering problems are sought using this method. Recently, fixed point
algorithms have attracted so much attention, see [34-36, 40].

In the present paper, our main purpose is to investigate the proximal split feasibility algorithm (1) and
fixed point problem. We propose an iterative algorithm for finding a common element of the solution of
the proximal split feasibility algorithm (1) and fixed point of an L- Lipschitz pseudocontractive operator.
We demonstrate that the considered algorithm converges strongly to a common point of the investigated
problems.
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2. Preliminaries

Let H; be a real Hilbert space with the inner product (-, -) and the norm ||-||, respectively. Let ¢ : H; — H;
be an operator. Denote the fixed point set of ¢ by Fix(¢). ¢ is said to be

(i) L-Lipschitz, if
llp(x) — ¢l < Lilx = yll, Vx, y € Hy,
where L > 0 is a constant.
If L =1, ¢ is called nonexpansive. If L < 1, ¢ is called L-contractive.
(i) firmly nonexpansive if
llp(x) = PP < (px) = b(y), x — y), ¥x, y € Hi.
(iii) pseudocontractive if
llp(x) = PP < llx = yIP + 1T = P)x = (L = P)yIP, ¥, y € Hy.
Remark 2.1. (i) The proximal operators prox,y and prox., are firmly nonexpansive; (ii) I — prox.y and I — prox,
are also firmly nonexpansive. So,
(T = proxee) (1) = (I = prox«p) ()| < (I = proxep)(u) = (I = prox.,)(v), u — v), Yu,v € Hi. (11)
and
I = proxzy)(x) = (I = proxey )Y < (U = proxey)(x) = (I = proxzy)(y), x = y),¥x, y € Ha. (12)
Let C be a nonempty closed convex subset of H;. For any x € Hj, there exists a unique nearest point projc(x)
in C satisfying
Il = proje()ll < llx = yll, Vy € C.
It is well known that projc is firmly nonexpansive and has the following characterization
(x = projc(x),y — projc(x)y <0 (13)

forallx € Hyand y € C.
In the sequel, we use the following symbols.

e — denotes the weak convergence.
e — denotes the strong convergence.

® w,(x,) denotes the set of all weak cluster points of the sequence {x,}, i.e., wy(x,) = (xf Alxy,} C
{x,} such that x,, — x" as i — oo}.

Lemma 2.2 ([21, 42]). Let H; be a real Hilbert space. Let ¢ : Hi — Hj be an L-Lipschitz pseudocontractive operator.

; 1
Let y be a constant in (0, N ). Then,

IGI(L = y)x + yp()] =PI < llx =PI + (1 = PP = y)x + yp(x)] = 21,
forall x € Cand p € Fix(¢).

Lemma 2.3 ([41]). Let Hy be a real Hilbert space. Let ¢ : Hi — Hj be a continuous pseudocontractive operator.
Then ¢ is demi-closed, namely,

{uﬂ}:lozo - Hl

u, = € Hy b = (it) = u'.

Ouy) — ut
Lemma 2.4 ([16]). Let {z,} C (0, ), {a,} € (0,1) and {s,} be three real number sequences. If z,41 < (1 — an)z, +
Sn, Y1 > 0 with Y07 oy = oo and limsup, _, s/, < 00r Y0201 syl < oo, then limy,_e0 2, = 0.
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3. Main results

Now, we are in a position to propose an iterative algorithm for solving the proximal split feasibility
algorithm (1) and fixed point problem of L-Lipschitz pseudocontractive operators.

Let Hy and H, be two real Hilbert spaces. Let ¢ : Hi — R U {+o0} and ¢ : H, — R U {+o0} be two
proper and lower semi-continuous convex functions. Let A : H; — H, be a bounded linear operator and
A" be the adjoint of A. Let f : Hi — H; be a A-contractive operator. Let ¢ : Hi — Hj be an L-Lipschitz
pseudocontractive operator with L > 1. Assume that I' N Fix(¢) # 0. Let {A,} C (0, +00), {c,} € (0,1),
{yn} € (0,1), {a} € (0,1) and {9,,} € (0, 1) be five real number sequences.

Now, we present our algorithm below.

Algorithm 3.1. Let xo € Hy be an initial value. Set n = 0.
Step 1. For known x,,, compute

wy = A'(I = prox,y)Ax, + (I = prox.y)x,. (14)
Ifw, = 0, then set z, = x,, and go to Step 2. Otherwise, compute
Aty + 0y)
=y, -y, 15
Zn = Xn [0l Wy (15)

where uy, = L|(I - prox.p)Ax,|? and v, = (I = proxey)xall*.
Step 2. Compute

Yn = (1 - Cn)zn + Cn¢[(1 - yn)zn + Vn(P(Zn)]- (16)
Step 3. Compute
Xup1 = (1= Sn)[anf(xn) + (1 - ap)x,] + Snln- (17)

Step 4. Set n := n + 1 and return to Step 1.
Proposition 3.2. If w, = 0, then x,, € Fix(prox.,) and Ax, € Fix(prox.y), i.e., x, € I.

Proof. Let ¥ € I. Then, we have ¥ = prox,,X and AX = prox,yA%. Since I — prox,y and I — prox, are
firmly-nonexpansive, applying (11) and (12), we have

(e Proxup)xnr xn — %) = - mew)xn (- Proxw)f, Xp — X)

> ||(I = prox.y)xl?, (19
and
(I = proxy)Axy, Axy, — A%) = (I — prox.y)Ax, — (I — prox.y)AX, Ax, — A%) (19)
> || - proxﬂ/,)Axnllz.
From (14), we have
(W, Xy = %) = (A (I = proxy)Axy + (I = prox)xn, X, — %)
= (A (I = proxy)Axy, Xy — ) + (I — proxy)xn, Xy — %) (20)
= (I = proxy)Axy, Axy — AX) + (I = prox.p)xu, X, — %).
This together with (18)-(20) implies that
(I = proxee)xall® + I1(I = proxey)Axyl* < (wy, x, — %). (1)

If w, =0, then (w,, x,, — X) = 0. It follows from (21) that
(I = prox.p)x, =0 and (I — prox,y)Ax, = 0.

Therefore, x,, € Fix(prox,) and Ax, € Fix(proxy),i.e., x, €. O
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Theorem 3.3. Suppose that the sequences {A,), {Cx), {yn), {an} and {3,) satisfy the following conditions:
(C1): liminf,,co Ay(4 — Ay) > 0;

(C2): 0<c<c<T<y,<y< \/ﬁﬂ(\!nZO),’

(C3): hmn—)oo a, =0 and 220:1 oy = +00;

(C4): 0 <liminf, . ¥, < limsup, , ¥, <1

Then sequence {x,} generated by Algorithm 3.1 strongly converges to the solution p* = projrarixe) (f(p"))-

Proof. Pick up any x* € I' N Fix(¢»). By (15), we have

Au(tty + 0y)
G R
[[eonll

Ay, + 0 A2(uy, + vy)?
”( n > n)<wn,xn_x>(—>+ Vl( n 271)
[zl [zl

%

2
Iz — x*I° = llxy — x

2
= |, — x¥° =2

According to (21), we have
2(uy + vy) < Wy, Xy — X°).
Combining (22) and (23) to get
A (n +0a)* | Aty +0p)?
llew |2 llew |12
(it + 04)?
llwn |2

llzn = *"IP < Il = x| —

= ||lx, — x*||2 — A4 - Ay)
<l — x|
For any u,v € H; and ¢ € R, we have
llgu + (1 = ¢)oll® = cllull® + (1 = llol* = (1 = )llu — vl
Using (16) and (25), we obtain
Iy = 17 = 11 = cn)(@n = X°) + cn( LA = yi)zn + Yup(zn)] — x°)IP
= (1= cllzn = X'IP + allpl(L = Y)zn + Yup(za)] = x|
—cn(1 - Cn)”qb[(l - yn)zn + Vn(;b(zn)] - Zn”Z-
Applying Lemma 2.2, we have
IPL(L = y)zn + Yu@ )] = X1 < (L= y)lIPl(L = yu)zn + Vud(zn)] — zal* + llzw — x|
It follows from (26), (27) and condition (C2) that
Iy = I < (1 = cllzn = X1 = 61 = c)llPLA = Yu)zu + Vup(za)] — zal?
+ cu(llzn — x*Hz + (1 - Vn)”fp[(l - Vn)zn + Vn¢(zn)] - Zn||2)
= ||z, - X*”z + CnlCn — yn)||¢[(1 - Yn)zn + )/MP(Z,,)] - ZnHZ
<z — X°II%.
Set g, = anf(x4) + (1 — ay)xy, for all n > 0. Then, we have
g, — x| = ”an(f(xn) = x) + (1 = a)(x, — x|

< aullf(xn) = FOO+ anll f(x7) = x| + (1 = an)llxn — X7l
<[1-1 = Maulllxn — XN + anll f(x) = x7[-

443

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)
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Thus, from (17), (24), (28) and (29), we obtain

X1 = XN = (I(1 = 90)(Gn — X7) + S(yn — X7l
< (]. - Sn)HI]n - x| + Sn”yn sl
< (1= SIFE) = 2N+ [1 = (1 = V(@ = 8,y - 2]
< max( LT e,

Hf(x vII

Then, ||x, — x*|| < max{ ,lIxo — x*|I} and {x,} is bounded. Subsequently, {f(x,)}, {Ax,}, {w,}, {y,} and

{z,,} are all bounded.
Observe that

10 = %71 = lan(FGen) = x) + (1 = @) (e = )P
= (1= a)llxn = X1 + 200 (1 = ) f(x0n) = F(X), 20 = X°) + || f () — X7
+ 20, (1 — ) f(X") = x", x — x7) (30)
< (1= a)llxn = X1 + 2 Allx = X1 + apllf () = X1 + 200 (1 = ) f(x7) = %7, 20, — )
= [1=2(1 = Daa]llxn = X1 + ez (lxn = X1 + 1| () = X1P) + 200(1 = @) f () = x°, %, — X°).
and
ns1 = X7 < (1= 9)llgn = I + Sullyn — 2117 (31)
On account of (24), (28), (30) and (31), we obtain

xe1 = xIP < (1= Sn){[l = 2(1 = Maylllxn = X1 + ag (Il = X1 + 11 f () = X°IP)

(un + Un)z

+ 20(”(1 — an)<f(x*) - x*,xn — x*>} + Sn{”xn - x*llz - /\n(4 - AH) “w ”2

+ ulen = YlSLL = Yz + u(z)] - znuz}

(32)
=[1-2(1 - )1 = d)anllly — x| +2(1 = A)(1 = 9,)an
o { g bt = T2 +15) =€ 1F) + T2 =5, = )
. Iphn(4 = Ap)  (un + Un)z + nCn(Cn Vn) ”(;b (1 Vn Zn +7/n¢(zn) _Zn||2}
2(1 =21 =9y agllwal? 21 =A)(1 - 3,) Ay
Set 6, = Ilxy — zII?, wn = 2(1 = A)(1 = 8,)a, and
An 2 2 . .
Oy = 20 - A)(Hxn—xll +||f(xn)—x||)+ (f(x) X', Xy —X°) .
_ Sn/\n(4 - An) (un + Un)z + nCn(Cn - Vn) ”¢[(1 - Vn)zn + 7n¢(zn)] - Zn”2 33)
21 =) =9y apllw,|> 21 -A)(1 - 3,) ay '
foralln > 1.
By virtue of (32) and (33), we obtain
On+1 < (1 = pn)on + tnoy,n > 1. (34)

Taking into account (33), we get

Op < 2(1 )(||xn—x||2+||f(xn)—x||2)+ (f(x) XX, — X

[
=20-1

_an

(hew = 1P + 11 f () = 2IP) + —=*

IIf(x ) = X" [lllx, = x7.
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Since {x,} and {f(x,)} are bounded, it follows that limsup,_, 0, < +co. Next we show limsup,,_, 0, > -1.
If not, we have limsup,_, , 0, < —1. Then, there exists positive integer Ny such that g, < -1 for all n > Np.
In the light of (34), we conclude

Ons1 < 0y — Un, Y1 = No.
It follows that
On+1 < 0N — Z Uk (35)
k=N(]
Note that Y2ty = Yoneg 2(1 = A)(1 = 9,)ar, = +00. In (35), taking limsup,,_, ., we have

n
lim sup 6,41 < On, — lim Z Ug = —0o,
n—oo

n—oo =Ny

which results in a contradiction. Thus,

-1 <limsupo, < +co.

n—oo

Hence, limsup, _, 0, exists. In the meantime, the sequence {x,} is bounded. We take a subsequence {n;} of
{n} such that x,, — zf(k - o0) and

limsup o, = lim oy,
k—o0

n—oo

: an * * 1_an’ * * *
= Jim [ 5, = 2P 1) = 2 + e () = 2, =)

2(1-A)
_ Snk/\nk(4 - Ank) (unk + Unk)z Snkgnk(gnk - Vnk) ”(P[(l - Vnk)znk + )/nk(P(an)] - an”Z]
21 =) = 9) apllw,l?  2(1-2A)(1 = 3y) QU (36)

S An @A) ( + o)
21 =M1 = dy) anllwn|I?

_ Snkan(Vnk - an) ||<]5[(1 - 7/nk)znk + Vnkqb(znk)] - an||2]
201 -A)(1 = 9y) Qp, !

_1: 1 * + 1 *

which implies that

S A (4= Ap) (U, + vnk)z

lim exists (37)
k—co 2(1 - /\)(l - Sﬂk) a}’lk”wnk“z
and
. Sn Cn (yn —Cn ) ”(P[(l —Vn )Zn + Vn (P(Zn )] — Zy ”2 .
1 k k k k k k k k k t . 38
ko 2(1 = A)(1 = 8y) tn, exIsts (8)

Oy A (42, . . Oy Sy (V=S . .
Since Hm infy e 73552 > 0, liminfi e 5247 > 0 and limy . a, = 0, it follows from (37) and (38)
that
2
Uy +0
oy + 0 ’;k) =0 (39)
koo |[wy ||
and

Tim (IGLCL =y )z, + VP @n)] = 2 = 0. (40)
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Since wy, is bounded, by (39), we obtain limy_,. (1, + v,,) = 0. Therefore,
LT e = 00, O = 0 @)

The weak lower semicontinuity of the norm gives

0<|I(I- proxw)erll < liin inf [|(I — prox.y)x,ll = 0,

and

0<|I(I- proxw)Aerll < likrn inf [|(I — prox.y)Ax,, || = 0.

Thus, we conclude that z" € Fix(prox;,) and Az" € Fix(prox.y), i.e., z" € T.
By the L-Lipschit continuity of ¢, we derive

||¢(xn,-) - xm” < ||¢(xn,-) - ¢[(1 - Vn,)xn[ + Vni¢(xni)]|| + ||¢[(1 - yn[)xni + Vn;ﬂb(xn,')] - xn;”
< L)/ni||¢(xni) - xn,-” + ”(P[(l - Vn,-)xni + Vn,-(P(xni)] - xni”r

which leads to

llp(xn,) = 2,1l <

1—Lyy, qu[(l - an)xni + yn,ci)(xni)] = X ]l-

Which together with (32) implies that
Bim [l () = )| = 0.

At the same time, noting that x,, — zf, by Lemma 2.3 and the last equality, we deduce that z' € Fix(¢).
Therefore, z' € T N Fix(¢). So, wy(x,) € T N Fix(¢).
With the help of (36), we have

limsup g, = lim 0,,, < ﬁ(f(p*) -phzt-phHy<o. (42)

From (32), we obtain

1-a,

t + +
1_/\<f(p)_}7 ,Xn—p > (43)

Finally, applying Lemma 2.4 to (43) to deduce that x,, — p'. This completes the proof. [

1 = pHIP < [1 =21 = A)(A = S)aulllx = p'IP +2(1 = A)(1 = 9,)a, X

Algorithm 3.4. Let xo € Hj be an initial value. Set n = 0.
Step 1. For known x,,, compute

wy = A'(I = prox,y)Ax, + (I = prox,p)x,.

Ifw, =0, then set z, = x,, and go to Step 2. Otherwise, compute

where u, = L|(I - prox.p)Ax,|? and v, = (I = proxzy)xall*.
Step 2. Compute

Xpe1 = (L= O)anf(xn) + (1 — ap)xn] + Suzy.
Step 3. Set n := n + 1 and return to Step 1.

Corollary 3.5. Suppose that I' # 0. Suppose that the sequences {A,}, {a,} and {9,} satisfy the conditions (C1), (C3)
and (C4). Then sequence {x,} generated by Algorithm 3.4 strongly converges to the solution q* = projr(f(q")).
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