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Abstract. In this paper we formulate and prove some operator inequalities of Griiss type on time scales.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was initiated by Hilger [15] in
his Ph.D. thesis in 1988 in order to contain both difference and differential calculus in a consistent way. Since
then, many authors have expounded on various aspects of the theory of dynamic equations on time scales.
For example, the monographes [4, 5, 12] and the references cited therein. The present paper is designed to
provide the reader with an exposition of some operator inequalities of Griiss type on time scales.

The analysis on time scales is a relatively new area of mathematics that unifies and generalizes discrete
and continuous theories. Moreover, it is a crucial tool in many computational and numerical applications.
The subject is being applied to many different fields in which dynamic processes can be described with
discrete or continuous models(see [1, 4, 8] and references therein). One of the important subjects being
developed within the theory of time scales is the study of some inequalities on time scales [2].

The Griiss inequality is of great interest in differential and difference equations, as well as many other
areas of mathematics [8, 9, 21, 22, 27]. The classical inequality was proved by G. Griiss in 1935 [13]. It states
that if f and g are two continuous functions on [4, b] satisfying ¢ < f(f) < P and y < g(t) <T forall t € [a,b],

then
b b b
b_ia f f(hg(t)dt - ﬁf f(bydt f g = }L(q) o)

In recent years, the investigations of Griiss type inequalities and Ostrowski-Griiss type inequalities on time
scales have been interesting topics in the literature and various their generalizations on time scales have
been established(see [6], [7], [17], [18], [19], [20], [24], [25] and [26] and references therein).

The main aim of this paper is to be deducted some operator inequalities of Griiss type on time scales
and some inequalities related to the forward jump operator. The paper is organized as follows. In Section 2
we recall some basic facts for bounded self-adjoint operators on Hilbert spaces. In Section 3 we formulate

and prove some Griiss type inequalities on time scales. In Section 4 we give some inequalities related to
the forward jump operator.
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2. Bounded self-adjoint operators

Let (H, (-, -)) be a Hilbert space over the field of the complex numbers C. A bounded linear operator A,
defined on H, is self-adjoint, i.e., A = A* if and only if (Ax,x) € R for all x € H and if A is self-adjoint, then

lAll = sup [(Ax, x)|.
Ili=1

With B(H) we will denote the Banach algebra of all bounded linear operators, defined on H.

Definition 2.1 ([14]). Let A and B be self-adjoint operators on H. Then A < B or equivalently B > A if
(Ax, x) < (Bx, x)

forall x € H. In particular, A is called positive if A > O.

Note that for any operators A € B(H) the opeartors AA* and A*A are positive and self-adjoint operators on
H.

Definition 2.2 ([14]). Let A € B(H). Then the set
Sp(A) ={A e C: A— Al is not invertible},
is called the spectrum of the operator A.

Theorem 2.3 ([14], Property (P)). Let A be a bounded self-adjoint operator on a Hilbert space H. The homeomor-
phism ¢ — ¢(A) of C(R) into B(H) is order preserving, meaning that if ¢, € C(R) are real-valued functions on
Sp(A) and p(A) = Y(A) for any A € Sp(A), then Pp(A) = P(A) in the operator order of B(H).

We conclude this section with the following Griiss type inequality, which we use in the next section.

Theorem 2.4 ([10]). Let A be a self-adjoint operator on a Hilbert space (H,:,-)) and assume that Sp(A) C [m, M]
for some scalars m and M. If h and g are continuous on [m, M] and

= min h(t), T = max h(t),
y te[m,M] ® te[m,M] ©

then
KAYg AN, ) ~ (AW ) - (gAY )
< 2= 7) (gl ~ (g v?)’
< T-pL-)

for each x € H with ||x|| = 1, where

I= min ¢g(t), L= max g(t).
te[m,M] g( ) te[m,M] g( )

3. Griiss type inequalities for operators

Suppose that T is a time scale with forward jump operator and delta differentiation operator ¢ and
A, respectively. We start with the following useful inequality. For its proof we refer the reader to the
monograph [3].
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Lemma 3.1. Let f : T — R be convex and A-differentiable on an interval I C T such that f* is increasing on I.
Then

f) = f@) 2 fA)(y - x)
forany x,y € L
By Lemma 3.1, we have the following result.

Corollary 3.2. Let f,g : T — R be convex and A-differentiable on an interval I C T such that f* and g* are
increasing on I. Then

FIW) - F@9) = (A 0)9) + f(o)g* () (v - x)
and
FIW) - F@9(x) = (A 0)9(0() + F)g* (1)) (v - x)
forany x,y € L
The following theorem is an analogue of the well-known inequality for convex functions (see [23]).

Theorem 3.3. Let I C T be an interval and f : T — R be convex and A-differentiable on I whose derivative f* is

continuous and increasing on 1. If A is a self-adjoint operator on a Hilbert space H with (Ax,x) € T, x € H, and
Sp(A) € [m,M] C I, then

f(Ax,x)) < (f(A)x, x)
forany x € Hwith ||x|| = 1.
Proof. By Lemma 3.1, we have
fB) = f(s) = fAs)(E = 5)
forany t,s € I. Let
s = (Ax, x) € [m,M]
for any x € H with [|x|| = 1. Since Sp(A) C [m, M], we obtain
fB) = F(Ax,x)) 2 f2 (Ax, ) (E = (Ax, 1))

for any x € H with ||x|| = 1 and for any ¢ € I. If we fix x € H with [|x|| = 1 in the last inequality and we apply
the property (P), then we get

((f(A) - f ((Ax, %)) In) x, x)

> (" (A1) (A~ (Ax, )l) 3, x)

or
(fA)x, x) = (f (Ax, x)) Iyx,x) = <fA ((Ax, x)) Ax, x> - <fA ((Ax, x)) (Ax, x)x, x> ,
or
(f(A)x, x) — (f (Ax,x)) Iyx,x) > <fA ({Ax, x)) Ax, x> - <fA ({Ax, x)) Ax, x>
= 0.
It follows that

(f ((Ax, x)) Iyx, x) < (f(A)x, x)
for any x € H with [|x|| = 1. This completes the proof. [
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Corollary 3.4. Assume that f is as in Theorem 3.3. If A; are self-adjoint operators with (Ajx,x) € T, x € H, and
Sp(Aj) € [m,M] C I, p; > 0 with 27:1 pi=1,je(l,...,n}, then

f[Z piam | (Y pifapm )
= P

for any x € H with ||x|| = 1.

Proof. By Theorem 3.3, we get

FAx0) < (fApxx), jefl,...n),

whereupon

pjf((ij,x)) <pj <f(Aj)x,x>, jell, ... n},

and since f is convex, we have

< f [z piAX, x>] Inx, x>

IA

< pif ((A]-x, x)) IHx,x>

=1 j=1

IA
2

Zp] f(A))x, x
j=1

;

j=1

IA
EY

pif(Ajx, x>

for any x € H with [|x|| = 1. This completes the proof. [
We need the following theorem for presenting our main result in this section.

Theorem 3.5. Let [ C T and f,g : T — R be convex and A-differentiable on I whose derivatives f* and g* are
continuous and increasing on 1. If A is a self-adjoint operator on a Hilbert space H with (Ax,x) € T, x € H, and
Sp(A) € [m,M] C I, then

(F(A)gAx, x) = f(Ax, 2))g(Ax, x))
< ((f9) (AAx,x) = ((f9) (A)x, x) (Ax, x)

for any x € H with ||x|| = 1.

Proof. By Corollary 3.2, we have
FB30) = £5)96) = (£26)9(5) + F(0(5))g"(5)) (¢t )

forany t,s € I. Let t = (Ax, x) € [m, M] for any x € H with ||x|| = 1. Since Sp(A) € [m, M], we obtain
FUAR, 0)g((Ax, ) = £(5)9(6) = (F2()g(5) + F(0(5))g"(5)) ((Ax, x) —9)

for any s € I. If we fix x € H with [|x|| = 1 and we apply the property (P), by the last inequality, we get

(F(Ax, X)g(Ax, Nk = FA)g(A)) x, %)
> ((FAAgA) + Fe(A)g(A)) (Ax, )k = A, x)
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or
f({Ax, x))g((Ax, x)) — (f(A)g(A)x, x)
> ((fAA)9(A4) + Flo(A))g*(A)) x, x) (Ax, x)
= (DA + fo(A)g*(A)) Ax, x)
This completes the proof. [J
By Theorem 3.5, we give the following Griiss type inequalities for operators on time scales.

Theorem 3.6. Let [ ¢ Tand f,g : T — R be two convex functions, A-differentiable and increasing on I. If Ais a
self-adjoint operator on a Hilbert space H with (Ax,x) € T, x € H, and Sp(A) C [m, M] C I, then

[Kf(A)g(A)x, x) = (F(A)x, x)(g(A)x, x)|
< [fA)g(A)x, x) = F(Ax, x))g((Ax, )|
LM = m)(I(Fg) (A = ((f9) (A)x, x)?)?

IA

1((F9) @) = (f9>m)) (1AxIP - ¢Ax, %)’
T =) () M) = (F9)m),

where x € H and ||x|| = 1.

IA

Proof. By the Griiss type inequality, we get
()" (A)Ax, x) = ((f9)(A)x, x) (Ax, x)

< 2= mi(f9) AP - (F) (A, )}

< = m) ((F 0D - (f) )
and
((f9) (A%, x) = () (A)x, x) (Ax, x)
< 2 (900 ~ (£ om) (1A ~ (A, )’
< =) ((F ) - () )
where x € H and ||x|| = 1. Hence, by Theorem 3.5, we obtain

(F(A)g(A)x, x) — f((Ax, x))g((Ax, x))
LM = m)(I(F ™ (AP = (f9) (A)x, X))

IA

L((F9 M) = (£ om) (HAIP — (Ax, x)?)’
< M= m) ((F 0 - (f) ),

where x € H and ||x]| = 1. Also, note that by Theorem 3.3 for the self-adjoint operator A and the convex
function f, we have

f({Ax, x)) < (f(A)x, x)
for every x € H such that ||x|| = 1. This completes the proof. [
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4. Some inequalities related to the forward jump operator

When we say that H is a Hilbert space on a time scale T, we have in mind a set of functions x : T — R
in which is defined an inner product ¢, -). x°" is an element of this set for any k € N, the inner product of
x* and y”‘k, x,y € H,p,k € N, is well defined, and this set is a vector space and it is complete with respect
to the norm || - || = V(). If A is an operator on H, then we define

(0(A)Yx:=Ax", peN, xeH.

Theorem 4.1. Let I C T, A and B be self-adjoint operators on a Hilbert space H with (Alx,x) € T, (Blx,x) € T,
x € H, and Sp(Al), Sp(Bl) CmM]clle(l,...,p) If(A%x,x) = (Bx, x) for x € H, then

p-1
((Ax, x) — (Bx, x)) + <Z (0(A) = (Bx, x)I) (A — (Bx, x)Ip)' " Ax, x>
j=0

p-1
> ((A—(Bx,x)Iy) x,x) + <Z (0(A) — (Bx, x)Ip) (A — (Bx, ))" 7~ (Ax, x)x, x>
=0

forany x e Hwith ||x|| =1, p € N such thatp > 2,and l € {1, ..., p}.

Proof. Note that the function f(x) = (x—a)’, x € H,x > aand p > 2, is a convex and increasing function, and

p-1

A = Z(a(x) —a)l(x —ay I .

j=0

Then, by Lemma 3.1, we get

p—1
(y—ay = (t—a) = Y (o) )it —ay T (y— 1) (1)
j=0

forany y,t,acl,y>a,t>a. Let
y=(Ax,x), a=(Bx,x), x€H, |x||=1
Since Sp(A’), Sp(Bl) CmM] xeH,|x||=1foranyl€(l,...,p}, we get

((Ax, x) = (Bx,x))’ = (t = (Bx, x))’
p-1
> ) (@h) = (Bx,x)) (= (Bx,0))' 7 ((Ax,x) D).
j=0
If we fix x € H with ||x|| = 1 in the last inequality and applying the property (P), we have
<(<Ax/ x> - <B.X', x>)P IH - (A - (Bx/ x>IH)p X, x>

p-1
> <Z (0(A) = (Bx, )Im) (A — (Bx, 0)Ir)' ™ ((Ax, 00l — A)x, x>
j=0

or

(<Axr x> - <er x))l’ - <(A - <Bx/ x>IH)p X, x>

p-1
> <Z (0(A) = (Bx, )Ir) (A = (Bx, 1))~ (Ax, )x, x>
=0

p-1
- < (0(A) = (Bx, x)Iy) (A — (Bx, x)Iy)P ! Ax, x> .
=0
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Equivalently,

p-1
((Ax, x) — (Bx, x))’ + <Z (0(A) — (Bx, x)I;) (A — (Bx, x)Ip)P ! Ax, x>
=0

—_

=

> ((A—(Bx,x)Iy) x,x) + < (6(A) — (Bx, x)Ip) (A — (Bx, ¥))" 7~ (Ax, x)x, x>.

]

Il
o

This completes the proof. [J
When B = O in Theorem 4.1, we get the following corollary.

Corollary 4.2. Let I C T and A be a self-adjoint operator on a Hilbert space H with (Alx,x) € T, x € H, and
SpAYCmMIcLle{l,...,pL Iff() =t >0,te[mM]1€(l,...,p}, then

P

(Ax, xY + Z ((o(a)y AP ix, x)

j=0

P
> (APx,x) + Z <(0(A))jA7’_j_1<Ax, X)X, x>
=0

forany x €e Hwith ||x|| =1, p € Nsuchthatp >2,and 1 € {1,...,p}.

Theorem 4.3. Let I C T, A and B be self-adjoint operators on a Hilbert space H with (Alx,x) € T, (B'x,x) € T,
x € H, and Sp(Al), Sp(Bl) CmM]cllefl,...,p). Letalso, {A°x,x) > (Bx,x), x € H. Then

p-1
(A = (Bx, I x, ) + <Z (0(A) = (Bx, )Ir) ((Ax, x) = (Bx, x))' 7 (Ax, x)x, x>
=0

p-1
> ((Ax,x) — (Bx, X))’ + <Z (0(A) = (Bx, 0)Iy)! ((Ax, x) — (Bx, )y /™" Ax, x>
=0
foranyx e Hwith||x|| =1,peN,p>2,andl € (1,...,p}.
Proof. We take
t=(Ax,x), a=(Bx,x), x€H, |[}x|l=1,
in the inequality (1). Then we obtain

(y — (Bx, x)) — ((Ax, x) — (Bx, x))}
p-1
> Y (@A) - (Bx, 1) ((Ax, %) = (Bx, ) (y - (Ax, ).
j=0

We fix x € H, ||x|| = 1, in the last inequality and applying the property (P), we get
(A= (Bx, 0)In)’ = (Ax, x) = (Bx, X)) Iny) x, x)

p-1
> <Z (0(A) = (Bx, 2)I1r) ((Ax, x) = (Bx, x)) ™ (A~ (Ax, )In)) x, x>

=0
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or
((A = (Bx, X)) x, x) — ((Ax, x) — (Bx, X))/
> <pi (0(A) = (Bx, x)Iry)’ ((Ax, x) — (Bx, x))/ /" Ax, x>
1:2_1
- <Z (0(A) = (Bx, x)Iy)’ ((Ax, x) — (Bx, x))’ /™ (Ax, x)x, x>,
=
or

p-1
(A = (Bx, X)In) x,x) + <Z (0(A) = (Bx, x)I)! ((Ax, x) = (Bx, x))’ /™ (Ax, x)x, x>
j=0

p-1
> ((Ax,x) = (Bx, ) + <Z (0(A) = (Bx, )I) ((Ax,x) = (Bx, )y /™" Ax, x> :
j=0

This completes the proof. [J

If B = O in Theorem 4.3, we get the following corollary.

Corollary 4.4. Let I C T and A be a self-adjoint operator on a Hilbert space H with (Alx,x) € T, x € H, and
Sp(Ah c[m,M] cl,1€{1,...,p}. Then

p-1
(APx, x) + <Z(0(A))f (Ax, xVPx, x>

=0

p-1

> ((Ax,x)) + <2(0(A))f (Ax, x)P 17 Ax, X>
=0

forany x e Hwith ||x|| =1, p € N such thatp > 2, and l € {1, ..., p}.

Theorem 4.5. Let [ C T and A be a self-adjoint operator on a Hilbert space H with (A'x,x) € T, x € H, and
Sp( Ay CmMlcLlell,...,pl. Iff(t) =t >0,te[mM]1e{l,...,p}, then

(APx, x) — ((Ax, x))¥

(M = m) 123 [tani a1

< ) (T e@ayay )
5 (o) — mP) (IlAXI? — (Ax, x)?)’
< Ea-m) @@y - n)

4

forany x € Hwith ||x|| =1, p € N such that p > 2, and l € {1, ..., p}.
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Proof. By the Griiss type inequality, we get

p-1 p-1
<Z(U(A))jA”jx, x> - <Z(G(A))jA”j1x, x> - (Ax, x)
=0 j=0

p-1 2 p-1 2 1
< %(M—m)( Y (o(AyArix —<2(0(A))1AP-1-1x,x>)
j=0 j=0
1 p-1 p-1
< M =m)| Y @MYMPT =} (a(m)m T
=0 =0
< Eot—m) @@y - m)
and similarly,
p—1 p-1
<Z(0(A))jA”_jx, x> - <Z(0(A))fA7"f‘1x, x> - (Ax, x)
j=0 j=0
1 p-1 p-1 )
< 3| Y@M =N (am)m T | (AXIP - (Ax,x)?)*
j=0 j=0
< Loy - m) (14x? - (ax, v?)’
< E—myoany —m).

4
Hence, by Corollary 4.2, it follows that

(APx, x) — ((Ax, x))

p-1 p-1
<Z(0(A))jA”_jx, x> - <Z (0(A)) APy, x> (Ax, x)

<
=0 =0
b 53 oy el
S ) (T )yAr i x) );
2 (o) = m) (AR = (Ax, 02)°
< Ei-m) (aay -m).

4
This completes the proof. [J
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