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Abstract. In this paper we prove new Opial-type inequalities for arbitrary kernels using superquadratic
functions, also their extensions are obtained. Furthermore, we find their fractional versions by applying
different kinds of fractional integral and fractional derivative operators.

1. Introduction and preliminary results

In 1960 Opial established the following inequality:

Theorem 1.1. [8] Let ψ ∈ C1[0, c] be such that ψ(0) = 0 and ψ(t) > 0 for t ∈ (0, c). Then∫ c

0
|ψ(t)ψ′(t)|dt ≤

c
4

∫ c

0
(ψ′(t))2dt. (1)

Here c
4 is the best possible constant.

In literature the inequality (1) is well known as the Opial inequality, it has/had been studied extensively
since its appearance. For different variants; extensions and generalizations of this inequality we refer the
readers to [5, 7, 9, 10, 12–16, 20, 22, 25, 26]. Srivastava et al. in [20] studied the weighted versions of Opial
type inequalities on time scale, where they also provided counter examples to the inequalities given in [24]
and also suggested their corrections. In [11, p. 236-238], the Opial inequality is studied for convex functions
by defining a class of functions for a nonnegative kernel. Motivating by these Opial type inequalities our
aim in this paper is to give new versions of such inequalities for superquadratic functions. Also we will
provide some fractional integral/derivative operator inequalities by fixing special cases of general kernels.
For fractional integral inequalities we refer the readers to [2, 4, 5, 14, 21–23, 26].
The definition of superquadratic function is given as follows:

Definition 1.2. [1] A function ψ : [0,∞) → R is called superquadratic provided that for all x ≥ 0 there exists a
constant Cx ∈ R such that

ψ(y) ≥ ψ(x) + Cx(y − x) + ψ(|y − x|) (2)

for all y ≥ 0.
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Definition 1.3. A function ψ : [0,∞)→ R is called superaddative if for all x, y ≥ 0 we have

ψ(x + y) ≥ ψ(x) + ψ(y). (3)

In the next we give classes of functions needful to prove the results of this paper as follows: Let U1(u, k)
denotes the class of functions w : [a, b]→ R having representation

w(x) =

∫ x

a
k(x, t)u(t)dt

where u is a continuous function and k is an arbitrary non negative kernel such that k(x, t) = 0 for t > x and
u(x) > 0 implies w(x) > 0 for every x ∈ [a, b]. Let U2(u, k) denotes the class of functions w : [a, b]→ R having
representation

w(x) =

∫ b

x
k(x, t)u(t)dt

where u is a continuous function and k is an arbitrary non negative kernel such that k(x, t) = 0 for t < x
and u(x) > 0 implies w(x) > 0 for every x ∈ [a, b]. The Riemann-Liouville fractional integral and Riemann-
Liouville, Liouville-Caputo fractional derivatives are defined as follows (see [6]):

Definition 1.4. Let h ∈ L1[a, b]. Then the left-sided and right sided Riemann-Liouville fractional integrals of order
α > 0 are defined as follows:

Iαa+h(x) =
1

Γ(α)

∫ x

a
(x − t)α−1h(t)dt, x > a,

Iαb−h(x) =
1

Γ(α)

∫ b

x
(t − x)α−1h(t)dt, x < b,

where Γ(.) is the gamma function.

Definition 1.5. Let α > 0 and α < {1, 2, 3, ....,n}, n = [α] + 1, h ∈ ACm[a, b]. Then the left-sided and right-sided
Liouville-Caputo fractional derivatives of order α are defined as follows:

(LCDα
a+)h(x) =

1
Γ(n − α)

∫ x

a

h(n)(t)
(x − t)α−n+1 dt, x > a,

(LCDα
b−)h(x) =

(−1)n

Γ(n − α)

∫ b

x

h(n)(t)
(t − x)α−n+1 dt, x < b.

In [4] Andrić et al. presented the following two composition identities for Liouville-Caputo fractional
derivatives.

Lemma 1.6. Let β > α ≥ 0, m = [β] + 1 and n = [α] + 1 for α, β < N0. Let h ∈ ACm[a, b] be such that hi(a) = 0 for
i = n,n + 1, ...,m − 1. Let LCDβ

a+h,LC Dα
a+h ∈ L1[a, b]. Then

LCDα
a+h(x) =

1
Γ(β − α)

∫ x

a
(x − t)β−α−1LCDβ

a+h(t)dt, x ∈ [a, b].

Lemma 1.7. Let β > α ≥ 0, m = [β] + 1 and n = [α] + 1 for α, β < N0. Let f ∈ ACm[a, b] be such that hi(b) = 0 for
i = n,n + 1, ...,m − 1. Let LCDβ

b−h,LC Dα
b−h ∈ L1[a, b]. Then

LCDα
b−h(x) =

1
Γ(β − α)

∫ b

x
(t − x)β−α−1LCDβ

b−h(t)dt, x ∈ [a, b].
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The Riemann-Liouville fractional derivative is defined in the forthcoming definition.

Definition 1.8. For f : [a, b] → R, the left-sided Riemann-Liouville fractional derivative of order α is defined as
follows:

Dα
a+h(x) =

1
Γ(n − α)

dn

dxn

∫ x

a
(x − t)n−α−1h(t)dt =

dn

dxn In−α
a+ h(x).

In [3] Andrić et al. presented a composition identity for the left-sided Riemann-Liouville fractional deriva-
tive, which is stated in the following lemma:

Lemma 1.9. Let β > α ≥ 0, m = [β] + 1, n = [α] + 1. The composition identity

Dα
a+h(x) =

1
Γ(β − α)

∫ x

a
(x − t)β−α−1Dβ

a+h(t)dt, x ∈ [a, b]

is valid if one of the following conditions holds:
(i) h ∈ Iβ+a(L1[a, b]) = {h : h = Iβ+aψ,ψ ∈ L1[a, b]}.
(ii) Im−β

a+ h ∈ ACm[a, b] and Dβ−k
a+ h(a) = 0 for k = 1, ...,m.

(iii)Dβ−1
a+ h ∈ AC[a, b],Dβ−k

a+ h ∈ C[a, b] and Dβ−k
a+ h(a) = 0 for k = 1, ...,m.

(iv) h ∈ ACm[a, b], Dβ
a+h, Dα

a+h ∈ L1[a, b], β − α < N, Dβ−k
a+ h(a) = 0 for k = 1, ...,m and Dα−k

a+ h(a) = 0 k = 1, ...,n.
(v) h ∈ ACm[a, b], Dβ

a+h, Dα
a+h ∈ L1[a, b], β − α = l ∈ N, Dβ−k

a+ h(a) = 0 for k = 1, ..., l.
(vii) h ∈ ACm[a, b] , Dβ

a+h, Dα
a+h ∈ L1[a, b], β < N and Dβ−1

a+ h is bounded in a neighborhood of a.

For the detailed study of fractional integral operators we refer the readers to [6, 18, 19]. For a critical
discussion on recently studied fractional integrals and derivatives we refer the readers to [17]. The rest of
the paper is organized as follows: In Section 2, inequalities for superquadratic functions are established for
an arbitrary kernel. In Section 3, the extensions of these inequalities are obtained by applying the Jensen
inequality. In Section 4, results of Section 2 and Section 3 are applied for particular kernels and fractional
integral inequalities of Opial-type are produced by using definitions of Riemann-Liouville, Liouville-Caputo
fractional integral/derivative operators.

2. Opial-type inequalities for superquadratic function

In this section some new Opial-type inequalities for superquadratic functions are obtained.

Theorem 2.1. Let ψ : [0,∞) → R be a differentiable function such that ψ′(x)
x is increasing and ψ(0) = 0. Let

w ∈ U1(u, k), |k(x, t)| ≤ K and M <
∫ x

a |u(t)|dt. Then the following inequality holds for superquadratic functions:∫ b

a

ψ′(|w(x)|)|u(x)|
|w(x)|

dx ≤
1

K2M
ψ

(
K

∫ b

a
(|u(t)|dt)

)
. (4)

Proof. The function w ∈ U1(u, k) has the representation w(x) =
∫ x

a k(x, t)u(t)dt. By using |k(x, t)| ≤ K, we find

that |w(x)| ≤ K
∫ x

a |u(t)|dt. Let z(x) =
∫ x

a |u(t)|dt. Then z′(x) = |u(x)| and |w(x)| ≤ Kz(x). Since ψ is differentiable

function and ψ′(x)
x is increasing, we get ψ′(|w(x)|)

|w(x)| ≤
ψ′(Kz(x))

Kz(x) . From which one can get the following inequality:

ψ′(|w(x)|)|u(x)|
|w(x)|

≤
1

K2M
ψ′(Kz(x))(Kz′(x)).

By integrating over [a, b] we get∫ b

a

ψ′(|w(x)|)|u(x)|
|w(x)|

dx ≤
1

K2M

∫ b

a
ψ′(Kz(x))(Kz′(x))dx =

1
K2M

ψ(K(z(b)).

By using z(b) =
∫ b

a |u(t)|dt we get the inequality (4).
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Next, we give another Opial-type inequality for superquadratic functions by using the Hölder inequality.

Theorem 2.2. Let ψ : [0,∞) → R be a differentiable function such that ψ′(x)
x is increasing and ψ(0) = 0. Let

w ∈ U1(u, k),
(∫ x

a (k(x, t))p1 dt
) 1

p1 ≤ K, M <
(∫ x

a |u(t)|p2 dt
) 2

p2
−1
, p1 > 1 and 1

p1
+ 1

p2
= 1. Then the following inequality

holds for superquadratic functions:

∫ b

a

ψ′(|w(x)|)|u(x)|p2

|w(x)|
dx ≤

p2

K2M
ψ

K
(∫ b

a
|u(t)|p2 dt

) 1
p2

. (5)

Proof. The function w ∈ U1(u, k), therefore it has representation w(x) =
∫ x

a k(x, t)u(t)dt.
Using Holder’s inequality, we have

|w(x)| ≤
(∫ x

a
(k(x, t))p1 dt

) 1
p1

(∫ x

a
|u(t)|p2 dt

) 1
p2

(6)

≤ K
(∫ x

a
|u(t)|p2 dt

) 1
p2

.

Let z(x) =
∫ x

a |u(t)|p2 dt. Then z′(x) = |u(x)|p2 and |w(x)| ≤ K(z(x))
1

p2 . The function ψ is differentiable and ψ′(x)
x

is increasing, therefore we get ψ′(|w(x)|)
|w(x)| ≤

ψ′(K(z(x))
1

p2 )

K(z(x))
1

p2
. From which one can get the following inequality:

ψ′(|w(x)|)|u(x)|p2

|w(x)|
≤

p2

K2

ψ′
(
K (z(x))

1
p2

) (
K
p2

(z(x))
1

p2
−1

)
z′(x)(∫ x

a |u(t)|p2 dt
) 2

p2
−1

≤
p2

K2M
ψ′

(
K(z(x))

1
p2

) ( K
p2

(z(x))
1

p2
−1

)
z′(x).

By integrating over [a, b] we get∫ b

a

ψ′(|w(x)|)|u(x)|p2

|w(x)|
dx ≤

p2

K2M

∫ b

a
ψ′

(
K (z (x))

1
p2

) ( K
p2

(z(x))
1

p2
−1

)
z′(x)dx

=
p2

K2M
ψ

(
K (z(b))

1
p2

)
.

By using z(b) =
∫ b

a |u(t)|p2 dt we will get the inequality (5).

The inequalities (4) and (5) also hold for the class of functions U2(u, k). They are stated in the following
theorems.

Theorem 2.3. Let ψ : [0,∞) → R be a differentiable function such that ψ′(x)
x is increasing and ψ(0) = 0. Let

w ∈ U2(u, k), |k(x, t)| ≤ K′ and M′ <
∫ b

x |u(t)|dt. Then the following inequality holds for superquadratic functions:∫ b

a

ψ′(|w(x)|)|u(x)|
|w(x)|

dx ≤
1

K′2M′
ψ

(
K′

∫ b

a
(|u(t)|dt)

)
. (7)

Proof. The proof can be followed from the proof of Theorem 2.1.
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Theorem 2.4. Let ψ : [0,∞) → R be a differentiable function such that ψ′(x)
x is increasing and ψ(0) = 0. Let

w ∈ U2(u, k),
(∫ b

x (k(x, t))p1 dt
) 1

p1
≤ K′, M′ <

(∫ b

x |u(t)|p2 dt
) 2

p2
−1
, p1 > 1 and 1

p1
+ 1

p2
= 1. Then the following

inequality holds for superquadratic functions:∫ b

a

ψ′(|w(x)|)|u(x)|p2

|w(x)|
dx ≤

p2

K′2M′
ψ

K′
(∫ b

a
|u(t)|p2 dt

) 1
p2

. (8)

Proof. The proof can be followed from the proof of Theorem 2.2.

3. Extensions of Opial-type inequalities

In this section we present the extensions of of Theorems 2.1 and 2.2, by applying the well known Jensen
integral inequality for convex functions.

Theorem 3.1. Under the conditions of Theorem 2.1, in addition if ψ is nonnegative, then we have∫ b

a

ψ′(|w(x)|)|u(x)|
|w(x)|

dx ≤
1

K2M
ψ

(
K

∫ b

a
(|u(t)|dt)

)
(9)

≤
1

(b − a)MK2

∫ b

a
ψ (K(b − a)|u(t)|) dt.

Proof. Since ψ is nonnegative, by [1, Lemma 2.2] we have that ψ is convex. By Jensen inequality we have

ψ

(
1

(b − a)

∫ b

a
(b − a)K|u(t)|dt

)
≤

1
(b − a)

∫ b

a
ψ (K(b − a)|u(t)|) dt. (10)

Using inequality (10) in (4) one can get the required inequality (9).

Theorem 3.2. Under the conditions of Theorem 2.2 in addition if ψ is nonnegative, then we have∫ b

a

ψ′(|w(x)|)|u(x)|p2

|w(x)|
dx ≤

p2

K2M
ψ

K
(∫ b

a
|u(t)|p2 dt

) 1
p2

 (11)

≤
p2

K2M(b − a)

∫ b

a
ψ

(
(b − a)

1
p2 K|u(t|

)
dt.

Proof. Since ψ(x
1

p2 ) is convex, the following Jensen’s inequality holds:

ψ


(

1
(b − a)

∫ b

a
h(t)dt

) 1
p2

 ≤ 1
b − a

∫ b

a
ψ

(
h

1
p2 (t)

)
dt. (12)

Therefore inequality (11) can be obtained from the inequalities (12) and (5).

The inequalities (9) and (11) also hold for the class of functions U2(u, k). They are stated in the following
theorems.

Theorem 3.3. Under the conditions of Theorem 2.3, in addition if ψ is nonnegative, then the following inequalities
hold: ∫ b

a

ψ′(|w(x)|)|u(x)|
|w(x)|

dx ≤
1

K′2M′
ψ

(
K′

∫ b

a
(|u(t)|dt)

)
(13)

≤
1

(b − a)M′K′2

∫ b

a
ψ (K′(b − a)|u(t)|) dt.
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Proof. The proof can be followed from the proof of Theorem 3.1.

Theorem 3.4. Under the conditions of Theorem 2.4 in addition if ψ is nonnegative, then the following inequalities
hold: ∫ b

a

ψ′(|w(x)|)|u(x)|p2

|w(x)|
dx ≤

p2

K′2M′
ψ

K′
(∫ b

a
|u(t)|p2 dt

) 1
p2

 (14)

≤
p2

K′2M′(b − a)

∫ b

a
ψ

(
(b − a)

1
p2 K′|u(t|

)
dt.

Proof. The proof can be followed from the proof of Theorem 3.2.

4. Fractional Opial-type inequalities for superquadratic functions

In this section, we apply results of Sections 2 & 3 for special kernels to get fractional Opial-type
inequalities for Riemann-Liouville fractional integral, Liouville-Caputo fractional derivative. First we give
the following results for the left-sided Riemann-Liouville fractional integrals.

Theorem 4.1. Under the conditions of Theorem 3.1, for α ≥ 1 the following fractional inequalities hold:∫ b

a

ψ′(|Iα+au(x)|)|u(x)|
|Iα+au(x)|

dx ≤
Γ2(α)

(b − a)2(α−1)M
ψ

(
(b − a)α−1

Γ(α)

(∫ b

a
|u(t)|dt

))
(15)

≤
Γ2(α)

(b − a)2α−1M

∫ b

a
ψ

(
(b − a)α

Γ(α)
|u(t)|dt

)
.

Proof. Let us define the kernel k(x, t) as follows:

k(x, t) =

 (x−t)α−1

Γ(α) , t ∈ [a, x],
0 , t ∈ (x, b].

(16)

Further, we take function w as follows:

w(x) := Iαa+u(x) =
1

Γ(α)

∫ x

a
(x − t)α−1u(t)dt. (17)

It is clear that for α ≥ 1, 0 ≤ k(x, t) ≤ (x−a)α−1

Γ(α) ≤
(b−a)α−1

Γ(α) , t ∈ [a, x], x ∈ [a, b].

Therefore by applying Theorem 3.1 for K =
(b−a)α−1

Γ(α) we get the fractional inequalities required in (15).

Theorem 4.2. Under the conditions of Theorem 3.2, in addition if α > 1
p2

, then the following inequalities hold:

∫ b

a

ψ′(|Iαa+u(x)|)|Iαa+u(x)|p2

|Iαa+u(x)|
dx ≤

p2

(
Γ(α)

(
p1(α − 1) + 1

) 1
p1

)2

(
(b − a)α−

1
p2

)2
M

(18)

× ψ

 (b − a)α−
1

p2

Γ(α)
(
p1(α − 1) + 1

) 1
p1

(∫ x

a
|u(t)|p2 dt

) 1
p2


≤

p2

(
Γ(α)

(
p1(α − 1) + 1

) 1
p1

)2

(b − a)
2
(
α− 1

p2

)
+1

M

∫ b

a
ψ

 (b − a)α|u(t)|

Γ(α)
(
p1(α − 1) + 1

) 1
p1

.
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Proof. Let us consider the kernel k(x, t) as follows:

k(x, t) =

 (x−t)α−1

Γ(α) , t ∈ [a, x],
0 , t ∈ (x, b].

Further, we take w same as defined in (17). Let Q(x) :=
(∫ x

a (k(x, t))p1 dt
) 1

p1 . Then it is easy to see that

Q(x) ≤ (b−a)α−
1

p2

Γ(α)(p1(α−1)+1)
1

p1
for α > 1

p2
. By setting K =

(b−a)α−
1

p2

Γ(α)(p1(α−1)+1)
1

p1
and applying Theorem 3.2, we get inequalities

required in (18).

The next results are obtained by using the right-sided Riemann-Liouville fractional integral which is stated
as follows:

Theorem 4.3. Under the conditions of Theorem 3.3, in addition if α ≥ 1, then the following fractional inequalities
hold: ∫ b

a

ψ′(|Iαb−u(x)|)|u(x)|

|Iαb−u(x)|
dx ≤

Γ2(α)
(b − a)2(α−1)M′

ψ

(
(b − a)α−1

Γ(α)

(∫ b

a
|u(t)|dt

))
(19)

≤
Γ2(α)

(b − a)2α−1M′

∫ b

a
ψ

(
(b − a)α

Γ(α)
|u(t)|dt

)
.

Proof. The proof is similar to the proof of Theorem 4.1.

Theorem 4.4. Under the conditions of Theorem 3.4 in addition if α > 1
p2

, then the following inequalities hold:

∫ b

a

ψ′(|Iαb−u(x)|)|Iαb−u(x)|p2

|Iαb−u(x)|
dx ≤

p2

(
Γ(α)(p1(α − 1) + 1)

1
p1

)2

((b − a)α−
1

p2 )2M′
(20)

× ψ

 (b − a)α−
1

p2

Γ(α)(p1(α − 1) + 1)
1

p1

(∫ x

a
|u(t)|p2 dt

) 1
p2


≤

p2

(
Γ(α)

(
p1(α − 1) + 1

) 1
p1

)2

(b − a)
2
(
α− 1

p2

)
+1

M′

∫ b

a
ψ

 (b − a)α|u(t)|

Γ(α)
(
p1(α − 1) + 1

) 1
p1

.
Proof. The proof is similar to the proof of Theorem 4.2.

By using the composition identity for the left-sided Liouville-Caputo fractional derivative given in Lemma
1.6, the following results are given.

Theorem 4.5. Let ψ : [0,∞) → R be a differentiable function such that ψ′(x)
x is increasing and ψ(0) = 0. Also

let m = [β] + 1 and n = [α] + 1 for α, β < N0, u ∈ ACm[a, b] such that hi(a) = 0 for i = n,n + 1, ...,m − 1. Let
LCDα

+au,LC Dβ
+au ∈ L1[a, b]. Then for α < β − 1, the following fractional inequalities hold:∫ b

a

ψ′(|LCDα
+au(x)|)|LCDβ

+au(x)|
|LCDα

+au(x)|
dx (21)

≤
(Γ(β − α))2

((b − a)β−α−1)2M
ψ

(
(b − a)β−α−1

Γ(β − α)

(∫ b

a
|
LCDβ

+au(t)|dt
))

≤
(Γ(β − α))2

(b − a)2β−2α−1M

∫ b

a
ψ

(
(b − a)β−α

Γ(β − α)
|
LCDβ

+au(t)|dt
)
.
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Proof. Let us consider the kernel k(x, t) as follows:

k(x, t) =

 (x−t)β−α−1

Γ(β−α) , t ∈ [a, x],

0 , t ∈ (x, b].
(22)

Further, we take w as follows:

w(x) :=LC Dα
+au(x) =

1
Γ(β − α)

∫ x

a
(x − t)β−α−1LCDβ

a+u(t)dt. (23)

It is clear that for α < β− 1, 0 ≤ k(x, t) ≤ (x−a)β−α−1

Γ(β−α) ≤
(b−a)β−α−1

Γ(β−α) , t ∈ [a, x], x ∈ [a, b]. We let K =
(b−a)β−α−1

Γ(β−α) and apply
Theorem 3.1 to get the fractional inequalities required in (21).

Theorem 4.6. Let ψ : [0,∞) → R be a differentiable function such that ψ′(x)
x is increasing and ψ(0) = 0. Also

let m = [β] + 1 and n = [α] + 1 for α, β < N0, u ∈ ACm[a, b] such that hi(a) = 0 for i = n,n + 1, ...,m − 1. Let
LCDβ

+au, LCDβ
+au ∈ L1[a, b]. Then for α < β − 1

p2
, the following fractional inequalities hold:

∫ b

a

ψ′(|LCDα
+aw(x)|)|LCDβ

+au(x)|p2

|LCDα
+au(x)|

dx ≤
p2(Γ(β − α)(p1(β − α − 1) + 1)

1
p1 )2

((b − a)β−α−
1

p2 )2M
(24)

ψ

 (b − a)β−α−
1

p2

Γ(β − α)(p1(β − α − 1) + 1)
1

p1

(∫ b

a
|
LCDβ

+au(t)|p2 dt
) 1

p2


≤

p2(Γ(β − α)(p1(β − α − 1) + 1)
1

p1 )2

(b − a)
2
(
β−α− 1

p2

)
+1

M

∫ b

a
ψ

 (b − a)β−α|LCDβ
+au(t)|

Γ(β − α)(p1(β − α − 1) + 1)
1

p1

.
Proof. Let us consider the kernel k(x, t) as follows:

k(x, t) =

 (x−t)β−α−1

Γ(β−α) , t ∈ [a, x],

0 , t ∈ (x, b].

Further, we take w same as defined in (23). Let P(x) :=
(∫ x

a (k(x, t))p1 dt
) 1

p1 . Then it is easy to see that

P(x) ≤ (b−a)β−α−
1

p2

Γ(β−α)(p1(α−1)+1)
1

p1
for α < β − 1

p2
. By setting K =

(b−a)β−α−
1

p2

Γ(β−α)(p1(α−1)+1)
1

p1
and applying Theorem 3.2, we get

inequalities required in (24).

The next results are obtained by using the composition identity for the right-sided Liouville-Caputo
fractional derivative given in Lemma 1.7.

Theorem 4.7. Let ψ : [0,∞)→ R be a differentiable such that ψ′(x)
x is increasing and ψ(0) = 0. Also let m = [β] + 1

and n = [α]+1 forα, β < N0; u ∈ ACm[a, b] such that hi(a) = 0 for i = n,n+1, ...,m−1. Let LCDβ
b−v,LC Dα

b−u ∈ L1[a, b].
Then for α < β − 1, the following fractional inequalities hold:∫ b

a

ψ′(|LCDα
b−u(x)|)|LCDβ

b−u(x)|

|LCDα
b−u(x)|

dx (25)

≤
(Γ(β − α))2

((b − a)β−α−1)2M
ψ

(
(b − a)β−α−1

Γ(β − α)

(∫ b

a
|
LCDβ

b−u(t)|dt
))

≤
(Γ(β − α))2

(b − a)2β−2α−1M

∫ b

a
ψ

(
(b − a)β−α

Γ(β − α)
|
LCDβ

b−u(t)|dt
)
.
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Proof. The proof is similar to the proof of Theorem 4.5.

Theorem 4.8. Let ψ : [0,∞) → R be a differentiable function such that ψ′(x)
x is increasing and ψ(0) = 0. Also

let m = [β] + 1 and n = [α] + 1 for α, β < N0, u ∈ ACm[a, b] such that hi(a) = 0 for i = n,n + 1, ...m − 1. Let
LCDβ

b−u,LC Dα
b−u ∈ L1[a, b]. Then for α < β − 1

p2
, the following fractional inequalities hold:∫ b

a

ψ′(|LCDα
b−w(x)|)|LCDβ

b−u(x)|p2

|LCDα
b−u(x)|

dx ≤
p2(Γ(β − α)(p1(β − α − 1) + 1)

1
p1 )2

((b − a)β−α−
1

p2 )2M
(26)

ψ

 (b − a)β−α−
1

p2

Γ(β − α)(p1(β − α − 1) + 1)
1

p1

(∫ b

a
|
LCDβ

b−u(t)|p2 dt
) 1

p2


≤

p2(Γ(β − α)(p1(β − α − 1) + 1)
1

p1 )2

(b − a)
2
(
β−α− 1

p2

)
+1

M

∫ b

a
ψ

 (b − a)β−α|LCDβ
b−u(t)|

Γ(β − α)(p1(β − α − 1) + 1)
1

p1

.
Proof. The proof is similar to the proof of Theorem 4.6.

For the composition identity of Riemann-Liouville fractional derivative given in Lemma 1.9, the following
results hold:

Theorem 4.9. letψ : [0,∞)→ R be a differential function such that ψ
′(x)
x is increasing andψ(0) = 0. Also let α ≥ 0,

m = [β] + 1 and n = [α] + 1. Suppose that one of the following conditions (i)-(vii) in Lemma 1.9 holds for {β, α,u}
and let Dβ

a+u ∈ Lq[a, b]. Then, for α < β − 1, the following fractional inequalities holds:∫ b

a

ψ′(|Dα
+au(x)|)|Dβ

+au(x)|
|Dα

+au(x)|
dx (27)

≤
(Γ(β − α))2

((b − a)β−α−1)2M
ψ

(
(b − a)β−α−1

(Γ(β − α)

(∫ b

a
|Dβ

a+u(t)|dt
))

≤
(Γ(β − α))2

(b − a)2β−2α−1M

∫ b

a
ψ

(
(b − a)β−α

Γ(β − α)
|Dβ

+au(t)|dt
)
.

Proof. The proof is similar to the proof of Theorem 4.5.

Theorem 4.10. let ψ : [0,∞) → R be a differential function such that ψ′(x)
x is increasing and ψ(0) = 0. Also let

α ≥ 0, m = [β] + 1 and n = [α] + 1. Suppose that one of the following conditions (i)-(vii) in Lemma 1.9 holds for
{β, α,u} and let Dβ

a+u ∈ Lq[a, b]. Then, for α < β − 1
p2

, the following fractional inequalities holds:∫ b

a

ψ′(|Dα
+aw(x)|)|Dβ

+au(x)|p2

|Dα
+au(x)|

dx ≤
p2(Γ(β − α)(p1(β − α − 1) + 1)

1
p1 )2

((b − a)β−α−
1

p2 ))2M
(28)

ψ

 (b − a)β−α−
1

p2

Γ(β − α)(p1(β − α − 1) + 1)
1

p1

(∫ b

a
|Dβ

+au(t)|p2 dt
) 1

p2


≤

p2(Γ(β − α)(p1(β − α − 1) + 1)
1

p1 )2

(b − a)
2
(
β−α− 1

p2

)
+1

M

∫ b

a
ψ

 (b − a)β−α|Dβ
+au(t)|

Γ(β − α)(p1(β − α − 1) + 1)
1

p1

.
5. Concluding remarks

New inequalities of Opial-type for superquadratic functions are established in this research article.
Their extensions are established for convex functions. These inequalities are further discussed for fractional
calculus operators named Riemann-Liouville and Liouville-Caputo. The results of this paper can be further
estimated by mean value theorems, which are under considerations.
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