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Abstract. The objective of this manuscript is to enquire for the solvability of a specific type of non-linear
quadratic integral equations via the interesting notion of measure of non-compactness. Firstly, we inquire
into couple of exciting fixed point theorems involving a measure of non-compactness in the setting of a
Banach space. Subsequently, bringing into play a suitable measure of non-compactness and the acquired
results, we discuss the existence of solutions to the aforementioned kind of non-linear quadratic integral
equations.

1. Introduction

The study on integral equations has drawn a huge amount of attention from the enthusiasts as it plays
a decisive role in spelling out plenty of events and problems of real world. Utilizing several theories of
functional analysis, topology and fixed point theory as the tools, the subject is growing fast with applications
in applied mathematics, physics, engineering, economics, biological sciences and many other branches
of science [1, 10, 15, 18, 27, 30]. Another crucial aspect of the study is the investigation of solvability
conditions to integral equations as a whole, fixed point theory is one of the most vital and easiest of
them. Mathematicians have explored a number of fixed point theorems and common fixed point theorems
[3, 5, 19, 23, 28] to guarantee the existence of a solution or more to a certain type of integral equations. In the
existing literature, there are a number of articles which deal with such scenarios via some suitable results
from fixed point theory involving control functions while some others make use of findings in fixed point
theory via measure of non-compactness. However, it is exciting to note that both of these approaches firstly
enquire for existence of solutions and then look for solutions, and also are quite easy to handle.

In his research article, Kuratowski [22] put forward the concept of a measure of non-compactness (in
short, MNC) and this gave a new wing to the research in this direction. Afterwards, Darbo [16] employed
this concept and obtained the fixed points of α-set contractions defined on a closed, bounded and convex
subset of a Banach space. This result extends and generalizes the Schauder fixed point theorem remarkably,
and is often brought into play as an essential tool to inspect the existence of a solution to a number of classes
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Corresponding author: Ankush Chanda
Email addresses: surajit866@gmail.com (Surajit Karmakar), hiran.garai24@gmail.com (Hiranmoy Garai),

lakshmikdey@yahoo.co.in (Lakshmi Kanta Dey), ankushchanda8@gmail.com, ankush.chanda@vit.ac.in (Ankush Chanda)



S. Karmakar et al. / Filomat 36:1 (2022), 73–87 74

of non-linear equations. A few interesting works related to this notion can be revisited in [2, 3, 6, 12, 14, 26]
and the references therein.

On the other hand, the quadratic integral equations are frequently applied to the theory of radiative
transfer, kinetic theory of gases, theory of neutron transport, biology and queuing theory, vehicular traffic
theory and many more [7, 11, 13, 17, 21]. Besides, this kind of integral equations has been a topic of extensive
mathematical investigations by the researchers [1, 15, 28–30].

Meanwhile, there comes an obvious question on whether some fixed point results involving both the
control functions and measure of non-compactness can be employed to tackle such situations or not. To
meet this specific interest, in this article, we confirm a couple of fascinating fixed point results concerning
a continuous operator defined on a non-empty, bounded, closed and convex subset of a Banach space. To
add with, we come by some immediate corollaries from our conceived results. Alongside, we consider a
certain class of aforementioned equations, non-linear quadratic integral equations (QIE) of Volterra type,
as follows:

x(t) = 1(t, x(t)) + λ

∫ t

0
α1(t, s)ζ1(s, x(s))ds

∫ t

0
α2(t, s)ζ2(s, x(s))ds,

for t > 0, where h, µ1, µ2, ζ1, ζ2 are real-valued continuous functions defined on R+
× R and λ is a positive

constant. It may be noted that such kind of quadratic integral equations has a far-reaching applicability in
more diversified fields. Further, the study of the solvability of such equations of Volterra type, employing
the notion of measure of non-compactness is yet to appear in the literature. Therefore, we take up our
obtained results to discuss some sufficient conditions for the existence of solution to a certain class of
non-linear quadratic integral equations. Finally, our findings generalize, extend and compliment a number
of results existing in the literature.

2. Preliminaries

This section deals with some essential notions, fundamental results and terminologies which are playing
the lead roles in our findings. To begin with, we note down the definition of a measure of non-compactness.

Definition 2.1. [9] Let E be a Banach space,ME the collection of all non-empty bounded subsets of E and NE be its
subcollection which are relatively compact. A mapping σ : ME → R+ is said to be an MNC in E if the following are
satisfied:

(i) the class ker σ = {A ∈ME : σ(A) = 0} is non-empty and ker σ ⊆ NE;
(ii) A ⊆ B⇒ σ(A) ≤ σ(B);

(iii) σ(A) = σ(A);
(iv) σ(conv(A)) = σ(A);
(v) σ(νA + (1 − ν)B) ≤ νσ(A) + (1 − ν)σ(B) for ν ∈ [0, 1];

(vi) for a decreasing sequence (An) of closed sets fromME with lim
n→∞

σ(An) = 0, the set A∞ = ∩∞n=1An is non-empty.

Here we note that the collection ker σ is called as the kernel of the measure of non-compactness σ and also
recollect an essential property that A∞ ∈ ker σ. Additionally, using the result σ(A∞) ≤ σ(An) for all n ∈ N,
we can conclude that σ(A∞) = 0. Now, we put down the much acclaimed Schauder fixed point theorem.

Theorem 2.2. [9] Suppose that A is a non-empty, bounded, closed and convex subset of any Banach space M. Then
each continuous, compact mapping τ : A→ A owns at least one fixed point in A.

Hereafter, we make a note of one of the most exciting and remarkable generalizations of the previous
theorem which is the Darbo fixed point theorem.

Theorem 2.3. [16] Let A be a non-empty, bounded, closed and convex subset of a Banach space M and suppose that
τ : A→ A is continuous. Further suppose that there exists a constant k ∈ [0, 1) such that

σ(τX) ≤ kσ(X)

for every non-empty subset X of A, where σ is an arbitrary MNC defined in M. Then τ owns a fixed point in A.
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The subsequent collection of functions was coined by Geraghty [20] and the notion of such functions is
pre-requisite for our conceived results.

Definition 2.4. [20] Let ∆ be the family of all functions α : R+
→ [0, 1) such that for any sequence (tn) whenever

α(tn)→ 1 that implies tn → 0 as n→∞.

Further, the concept of the following class of functions was presented by Altun and Turkoglu [4] and is
employed to establish many results in this direction.

Definition 2.5. [4] Let F([0,∞)) be the class of functions such that ξ : [0,∞) → [0,∞] and also let Θ be the class
of all operators

O(•; .) : F([0,∞)) → F([0,∞)),
ξ → O(ξ; .)

satisfying the following conditions:

(i) O(ξ; t) > 0 for all t > 0 and O(ξ; 0) = 0;
(ii) O(ξ; t) ≤ O(ξ; s) for t ≤ s;

(iii) lim
n→∞
O(ξ; tn) = O(ξ; lim

n→∞
tn);

(iv) O(ξ; max{t, s}) = max{O(ξ; t),O(ξ; s)} for some ξ ∈ F([0,∞)).

Example 2.6. [4] Let ξ : [0,∞) → [0,∞) be a non-decreasing continuous function with ξ(0) = 0 and ξ(t) > 0 for
t > 0. Then

O(ξ; t) =
ξ(t)

1 + ln(1 + ξ(t))

satisfies all the aforementioned conditions.

The succeeding family of control functions was initially formulated by Nashine and Arab [25] in their
research article.

Definition 2.7. [25] Let Ψ consists of all functions η : [0,∞)→ [0,∞) having the following properties:

(i) η is non-decreasing and continuous;
(ii) η−1({0}) = {0}.

The authors made use of the previously discussed functions and an arbitrary MNC to secure a couple of
impressive fixed point results in [25]. However, the ensuing class of functions is playing a vital cog in our
manuscript. Arab et al. [5] utilized this notion and enriched the literature with a few interesting fixed point
results.

Definition 2.8. [5] Let F consists of all functions F : [0,∞)2
→ [0,∞) having the following properties:

(i) max{u, v} ≤ F (u, v) for all u, v ≥ 0;
(ii) F is continuous.

Example 2.9. Here we put down some of the examples which satisfy the previous definition.

(i) F1(u, v) = max{u, v};
(ii) F2(u, v) = u + v.
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3. Main Results

This section deals with some novel and exciting fixed point results involving the previously discussed
notions. Here we present the very first one, which is as follows.

Theorem 3.1. Let A be a non-empty, bounded, closed and convex subset of a Banach space E and T : A → A be a
continuous operator satisfying

η(O(ξ;F (σ(TY), ϕ(σ(TY))))) ≤ α(O(ξ; η(σ(A))))β(O(ξ;F (σ(Y), ϕ(σ(Y))))) (3.1)

for all ∅ , Y ⊆ A, where α ∈ ∆, F ∈ F, η ∈ Ψ, β, ϕ : R+
→ R+ are continuous functions such that η(t) > β(t) for

all t > 0. Then T possesses at least one fixed point in A.

Proof. Let us consider the sequence (An) of subsets of A, where A0 = A and An+1 = conv(TAn) for n ≥ 0.
Then we have, TA0 = TA ⊆ A = A0, A1 = conv(TA0) ⊆ A = A0, A2 = conv(TA1) ⊆ A1 ⊆ A0. Thus continuing
in this way we get

An+1 ⊆ An ⊆ · · · ⊆ A0.

If σ(An0 ) = 0 for some n0 ∈ N, then An0 ∈ NA. Hence An0 is a relatively compact subset of A. Since
T(An0 ) ⊆ conv(TAn0 ) ⊆ An0 , then by Schauder fixed point theorem T has a fixed point. Therefore we can
consider σ(An) > 0 for n ≥ 0.

Now from (3.1), we have,

η(O(ξ;F (σ(An+1), ϕ(σ(An+1))))) =η(O(ξ;F (σ(conv(TAn)), ϕ(σ(conv(TAn))))))
=η(O(ξ;F (σ(TAn), ϕ(σ(TAn)))))
≤α(O(ξ; η(σ(An))))β(O(ξ;F (σ(An), ϕ(σ(An)))))
<β(O(ξ;F (σ(An), ϕ(σ(An)))))
<η(O(ξ;F (σ(An), ϕ(σ(An))))).

As σ(An) > 0 and η(t) > β(t) when t > 0 and also by the properties of η and O(•; .), it follows that the
sequence (F (σ(An), ϕ(σ(An)))) is a non-increasing sequence of positive real numbers. Hence there exists a
real number δ > 0 such that

lim
n→∞
F (σ(An+1), ϕ(σ(An+1))) = lim

n→∞
F (σ(An), ϕ(σ(An))) = δ. (3.2)

Case-I: Suppose δ = 0. Then,
lim
n→∞
F (σ(An), ϕ(σ(An))) = 0.

Since, F is continuous and F ∈ F, we have

lim
n→∞

σ(An) + lim
n→∞

ϕ(σ(An)) ≤ lim
n→∞
F (σ(An), ϕ(σ(An))) =0,

=⇒ lim
n→∞

σ(An) =0.

Case-II: Suppose δ > 0. Then we have,

η(O(ξ;F (σ(An+1), ϕ(σ(An+1))))) ≤ α(O(ξ; η(σ(An))))β(O(ξ;F (σ(An), ϕ(σ(An))))). (3.3)

Letting n→∞ in (3.3) and using (3.2) we get,

η(O(ξ; δ)) ≤ lim
n→∞

α(O(ξ; η(σ(An))))β(O(ξ; δ)).

Since for all t > 0, we have α < 1 and η(t) > β(t), therefore,

η(δ) ≤η(δ) lim
n→∞

α(O(ξ; η(σ(An))))

⇒ 0 ≤η(δ)
{

lim
n→∞

α(O(ξ; η(σ(An)))) − 1
}
.
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Therefore,
lim
n→∞

α(O(ξ; η(σ(An)))) = 1.

This implies that,

lim
n→∞
O(ξ; η(σ(An))) =0

⇒ O(ξ; η( lim
n→∞

σ(An))) =0

⇒ η( lim
n→∞

σ(An)) =0

⇒ lim
n→∞

σ(An) =0.

Thus in both the cases we have,

lim
n→∞

σ(An) = 0.

Since (An) is a decreasing sequence of subsets, i.e., An+1 ⊆ An for all n ∈ N, we can claim that A∞ = ∩∞n=1An
is a non-empty, closed and convex subset of A. Also we have A∞ is an element of ker σ. Therefore A∞ is
compact and invariant under the mapping T. It follows from the Schauder fixed point theorem that T has
a fixed point in A.

The subsequent corollary can be readily acquired from the above theorem.

Corollary 3.2. Let A be a non-empty, bounded, closed and convex subset of a Banach space E and T : A → A be a
continuous operator satisfying

η(O(ξ; σ(TX) + ϕ(σ(TX)))) ≤ α(O(ξ; η(σ(X))))β(O(ξ; σ(X) + ϕ(σ(X))))

for all Y ⊆ A, where α ∈ ∆, η ∈ Ψ, β, ϕ : R+
→ R+ are continuous functions with η(t) > β(t) for all t > 0. Then T

has at least one fixed point in A.

Proof. Let us consider the map F ∈ F defined by F (x, y) = x + y for all x, y ∈ [0,∞). The proof of this
corollary follows from Theorem 3.1.

If we take ϕ ≡ 0 in Corollary 3.2, then we have the following corollary.

Corollary 3.3. Let A be a non-empty, bounded, closed and convex subset of a Banach space E and T : A → A be a
continuous operator satisfying

η(O(ξ; σ(TY))) ≤ α(O(ξ; η(σ(Y))))β(O(ξ; σ(Y)))

for all Y ⊆ A, where α ∈ ∆, F ∈ F, η ∈ Ψ, β : R+
→ R+ is a continuous function with η(t) > β(t) for all t > 0. Then

T has at least one fixed point in A.

The subsequent result is related with Mizoguchi-Takahashi functions and also Ω-type σ-set contractions.
Further, it can be noted that if χ : [0,∞)→ [0, 1) is a non-decreasing function or a non-increasing function,
then χ is an Mizoguchi-Takahashi function (in short, MT-function).

Definition 3.4. [24] Suppose that Υ denotes the class of Mizoguchi-Takahashi functions which satisfy the Mizoguchi-
Takahasi condition,

lim sup
s→t+

χ(s) < 1

for all t ∈ [0,∞).

This family consists of many a number of such functions. However in the following, we talk over an
interesting collection of control functions which is required for our succeeding result.
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Definition 3.5. [25] Let Ω consists of all functions ω : R+
→ R+ satisfying the following:

(i) ω is non-decreasing;
(ii) ω(t) = 0⇔ t = 0.

Next, we illustrate another fixed point result taking into account the aforementioned notions.

Theorem 3.6. Let A be a non-empty, bounded, closed and convex subset of a Banach space E and T : A → A be a
continuous operator satisfying;

ω(O(ξ;F (σ(TY), ϕ(σ(TY))))) ≤ χ(O(ξ;ω(σ(Y))))ω(O(ξ;F (σ(Y), ϕ(σ(Y)))))

for any ∅ , Y ⊆ A, where σ is an arbitrary MNC and O(•; .) ∈ Θ, ϕ : R+
→ R+ is a continuous function, χ ∈ Υ

and ω ∈ Ω. Then T has at least one fixed point in A.

Proof. Let us consider the sequence (An) by setting A0 = A and An+1 = conv(TAn), for n ≥ 0. If

F (σ(An), ϕ(σ(An))) = 0

for some natural number n = n0, then as F ∈ F, we have

σ(An0 ) + ϕ(σ(An0 )) ≤ F (σ(An0 ), ϕ(σ(An0 ))) =0
⇒ σ(An0 ) =0,

as σ and ϕ are non-negative functions. Hence An0 is a compact set and T(An0 ) ⊆ conv(TAn0 ) = An0+1 ⊆ An0 . Hence,
by Schauder fixed point theorem, T has a fixed point in A.

Now, we consider the case when
F (σ(An), ϕ(σ(An))) > 0

for all n ≥ 0. Then we have,

ω(O(ξ;F (σ(An+1), ϕ(σ(An+1))))) ≤ω(O(ξ;F (σ(conv(TAn)), ϕ(σ(conv(TAn))))))
=ω(O(ξ;F (σ(TAn), ϕ(σ(TAn))))))
≤χ(O(ξ;ω(σ(An))))ω(O(ξ;F (σ(An), ϕ(σ(An))))).

Since χ(s) < 1, we get

ω(O(ξ;F (σ(An+1), ϕ(σ(An+1))))) ≤ ω(O(ξ;F (σ(An), ϕ(σ(An))))).

This shows that the sequence (ω(O(ξ;F (σ(An), ϕ(σ(An)))))) is non-decreasing and bounded below. Therefore there
exists a real number ρ ≥ 0 such that

lim
n→∞

ω(O(ξ;F (σ(An), ϕ(σ(An))))) = ρ.

We claim that ρ = 0. In contrary, if possible, let ρ > 0. Since χ ∈ Υ, we have

lim
t→ρ+

χ(O(ξ; t)) < 1

and
χ(O(ξ;ρ)) < 1.

So we get a θ ∈ [0, 1) and ε > 0 such that χ(O(ξ; t)) ≤ θ for all t ∈ [ρ, ρ + ε). Hence there exists a natural number
n0 ∈N such that

ρ ≤ ω(O(ξ;F (σ(An), ϕ(σ(An))))) ≤ ρ + ε
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for all n ≥ n0. Now we have,

ω(O(ξ;F (σ(An+1), ϕ(σ(An+1))))) ≤χ(O(ξ;ω(σ(An))))ω(O(ξ;F (σ(An), ϕ(σ(An)))))
≤θω(O(ξ;F (σ(An), ϕ(σ(An))))).

Hence,

ω(O(ξ;F (σ(An+1), ϕ(σ(An+1))))) ≤θω(O(ξ;F (σ(An), ϕ(σ(An))))). (3.4)

Taking limit n→∞ in (3.4) and applying the property of O(•; .) we get,

ρ ≤ θρ.

Since θ ∈ [0, 1), we have

ρ = 0.

This implies that

lim
n→∞

ω(O(ξ;F (σ(An), ϕ(σ(An))))) = 0.

Since (ω(O(ξ;F (σ(An), ϕ(σ(An)))))) is non-increasing andω is a non-decreasing sequence, by the property ofO(•; .),
we conclude that (F (σ(An), ϕ(σ(An)))) is a decreasing sequence of positive reals. So there is a δ′ > 0 such that

lim
n→∞
F (σ(An), ϕ(σ(An))) = δ′.

Therefore,

F (σ(An), ϕ(σ(An))) ≥ δ′

for all n ∈N. Hence by the property of O(•; .) we get

O(ξ;F (σ(An), ϕ(σ(An)))) ≥ O(ξ; δ′).

As ω is non-decreasing, we obtain

ω(O(ξ;F (σ(An), ϕ(σ(An))))) ≥ ω(O(ξ; δ′)).

Now, letting n→∞ in the previous inequality, we get

0 ≥ ω(O(ξ; δ′)).

From the above it follows that, O(ξ; δ′) = 0. Therefore,

lim
n→∞
F (σ(An), ϕ(σ(An))) = 0.

Since F ∈ F, we have

lim
n→∞

σ(An) + lim
n→∞

ϕ(σ(An)) ≤ lim
n→∞
F (σ(An), ϕ(σ(An))) = 0.

Since (An) is a decreasing sequence of subsets, i.e., An+1 ⊆ An for all n ∈ N, we can claim that A∞ = ∩∞n=1An is
a non-empty, closed and convex subset of A. Also, we have A∞ is an element of ker σ. Therefore A∞ is compact and
invariant under the mapping T. It follows from the Schauder fixed point theorem that T has a fixed point in A.
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4. An Application

In this section, we employ our results obtained in the previous section, to find some sufficient conditions
for the existence of solution(s) of the following non-linear quadratic integral equation

x(t) = 1(t, x(t)) + λ

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds, (4.1)

for t > 0, where 1, µ1, µ2, ζ1, ζ2 are real-valued continuous functions defined on R+
× R and λ is a positive

constant.
We use the notation E to denote the set of all real-valued continuous bounded functions which are

defined on (0,∞). Then we know that E is a Banach space with respect to the sup norm. We now recall a
special type MNC on E. Let A be a non-empty subset of E and L be a positive real number. For x ∈ A and
ε > 0, we use the notation wL(x, ε) to denote the set sup{|x(t)− x(u)| : t,u ∈ [0,L], |t− u| ≤ ε}. Next we use the
following notations

wL(A, ε) = sup{wL(x, ε) : x ∈ A}

wL
0(TA) = lim

ε→0
wL(TA, ε)

w0(TA) = lim
L→∞

wL
0(TA).

Again we use the notations

A(t) = {x(t) : x ∈ A}
diam A(t) = sup

{
|x(t) − y(t)| : x, y ∈ A

}
α(A) = lim sup

t→∞
diam A(t).

Now we define a real-valued function σ onME by

σ(A) = w0(A) + α(A).

Then it can be checked that σ is an MNC on E, see [8, 9].
In order to present some sufficient conditions for the existence of the solution of the integral equation

given by Equation 4.1, we need to restrict the class of operatorsO(ξ; t) discussed in Definition 2.5, by adding
some mild assumption, which is as follows:

O(αξ; t) ≤ αO(ξ; t)

for all t > 0, where α ∈ (0, 1). Next, we prove the following theorem.

Theorem 4.1. Let us consider the Equation 4.1 and assume that the following conditions hold:

(i) there exists a constant γ with 0 < γ < 1 such that |1(t, x) − 1(u, y)| ≤ γ|x − y| holds for all x, y ∈ R and t ≥ 0;

(ii) lim
t→∞

∣∣∣∣∣∣
∫ t

0
[µ1(t, s)ζ1(s, x(s)) − µ1(t, s)ζ1(s, y(s))]ds

∣∣∣∣∣∣ = 0 and

lim
t→∞

∣∣∣∣∣∣
∫ t

0
[µ2(t, s)ζ2(s, x(s)) − µ2(t, s)ζ2(s, y(s))]ds

∣∣∣∣∣∣ = 0

uniformly with respect to x, y ∈ E;
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(iii) there exist two real numbers A1,A2 > 0 such that∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∣∣∣∣∣∣ ≤ A1

and ∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds

∣∣∣∣∣∣ ≤ A2

for all t > 0 and for all x, y ∈ E.

Then the integral equation given by Equation 4.1, has a solution.

Proof. Let E be the set of all continuous bounded functions which are defined on (0,∞). Then we know that
E is a Banach space with respect to the sup norm. Note that if we choose x, y ∈ E, then

1(t, x(t)) + λ

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds

is also continuous on (0,∞), i.e.,

1(t, x(t)) + λ

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds ∈ E.

So the mapping T defined on E by

Tx(t) = 1(t, x(t)) + λ

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds

is indeed a self-mapping on E. It is an easy task to note that x(t) is a solution of Equation 4.1 if and only if
x(t) is a fixed point of T. Let A be an arbitrary non-empty subset of E. Then we know that

O(ξ; σ(TA)) = O(ξ; w0(TA) + α(TA)), where

w0(TA) = lim
L→∞

wL
0(TA) = lim

L→∞
lim
ε→0

wL(TA, ε)

wL(TA, ε) = sup{wL(x, ε) : x ∈ TA}

wL(x, ε) = sup{|x(t) − x(u)| : t,u ∈ [0,L], |t − u| ≤ ε},

and

α(TA) = lim sup
t→∞

diam TA(t)

where

diam TA(t) = sup
{
|Tx(t) − Ty(t)| : x, y ∈ A

}
.
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Now let t,u ∈ [0,L] be such that |t − u| ≤ ε. Without loss of generality, we assume that t ≥ u. Then we have

|Tx(t) − Tx(u)|

=
∣∣∣∣1(t, x(t)) + λ

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds − 1(u, x(u))

+ λ

∫ u

0
µ1(u, s)ζ1(s, x(s))ds

∫ u

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
≤ |1(t, x(t)) − 1(u, x(u))| + λ

∣∣∣∣ ∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds

−

∫ u

0
µ1(u, s)ζ1(s, x(s))ds

∫ u

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
≤ |1(t, x(t)) − 1(u, x(u))| + λ

∣∣∣∣ ∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds

−

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

−

∫ t

0
µ1(u, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ t

0
µ1(u, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

−

∫ u

0
µ1(u, s)ζ1(s, x(s))ds

∫ u

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
= |1(t, x(t)) − 1(u, x(u))| + λ

∣∣∣∣ ∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds

−

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

−

∫ t

0
µ1(u, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ t

0
µ1(u, s)ζ1(s, x(s))ds

∫ u

0
µ2(u, s)ζ2(s, x(s))ds

+

∫ t

0
µ1(u, s)ζ1(s, x(s))ds

∫ t

u
µ2(u, s)ζ2(s, x(s))ds

−

∫ u

0
µ1(u, s)ζ1(s, x(s))ds

∫ u

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
= |1(t, x(t)) − 1(u, x(u))| + λ

∣∣∣∣ ∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds

−

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds
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−

∫ t

0
µ1(u, s)ζ1(s, x(s))ds

∫ t

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ u

0
µ2(u, s)ζ2(s, x(s))ds

{ ∫ t

0
µ1(u, s)ζ1(s, x(s))ds −

∫ u

0
µ1(u, s)ζ1(s, x(s))ds

}
+

∫ t

0
µ1(u, s)ζ1(s, x(s))ds

∫ t

u
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣.
Therefore,

|Tx(t) − Tx(u)|

≤ γ|x(t) − x(u)| + λ
∣∣∣∣ ∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∣∣∣∣∣∣∣∣ ∫ t

0

{
µ2(t, s)ζ2(s, x(s)) − µ2(u, s)ζ2(s, x(s))

}
ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ t

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣∣∣∣∣{ ∫ t

0
µ1(t, s)ζ1(s, x(s)) − µ1(u, s)ζ1(s, x(s))

}
ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ u

0
µ1(u, s)ζ1(s, x(s))ds

∣∣∣∣∣∣∣∣ ∫ t

u
µ2(u, s)ζ2(s, x(s))

∣∣∣∣
+ λ

∣∣∣∣ ∫ u

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣∣∣∣∣ ∫ t

u
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
≤ γ|x(t) − x(u)| + λA1

∣∣∣∣ ∫ t

0

{
µ2(t, s)ζ2(s, x(s)) − µ2(u, s)ζ2(s, x(s))

}
ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ u

0
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣∣∣∣∣ ∫ t

0

{
µ1(t, s)ζ1(s, x(s))ds − µ1(u, s)ζ1(s, x(s))

}
ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ t

u
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣∣∣∣∣ ∫ t

0

{
µ1(t, s)ζ1(s, x(s))ds − µ1(u, s)ζ1(s, x(s))

}
ds

∣∣∣∣
+ λA1

∣∣∣∣ ∫ t

u
µ2(u, s)ζ2(s, x(s))

∣∣∣∣ + λA2

∣∣∣∣ ∫ t

u
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣
≤ γ|x(t) − x(u)| + λA1

∣∣∣∣ ∫ t

0

{
µ2(t, s)ζ2(s, x(s)) − µ2(u, s)ζ2(s, x(s))

}
ds

∣∣∣∣
+ λA2

∣∣∣∣ ∫ t

0

{
µ1(t, s)ζ1(s, x(s))ds − µ1(u, s)ζ1(s, x(s))

}
ds

∣∣∣∣
+ λ

∣∣∣∣ ∫ t

u
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣∣∣∣∣ ∫ t

0

{
µ1(t, s)ζ1(s, x(s))ds − µ1(u, s)ζ1(s, x(s))

}
ds

∣∣∣∣
+ λA1

∣∣∣∣ ∫ t

u
µ2(u, s)ζ2(s, x(s))

∣∣∣∣ + λA2

∣∣∣∣∣∣∣∣ ∫ t

u
µ2(u, s)ζ2(s, x(s))ds

∣∣∣∣. (4.2)

Since x(s) is continuous and s ∈ [0,L], we have x(s) ∈ [a, b] for some a, b ∈ R with a < b for all s ∈ [0,L].
Therefore, the functions µ1 : [0,L] × [0,L] → R and ζ1 : [0,L] × [a, b] → R are continuous and hence there
exists a real number BL

1 > 0 such that |µ1(u, s)ζ1(s, x(s))| < BL
1 for all u, s ∈ [0,L]. Similarly there exists a real

number BL
2 > 0 such that |µ2(u, s)ζ1(s, x(s))| < BL

2 for all u, s ∈ [0,L]. Next, we assume that

wL(µ1, ζ1, ε) = sup{|µ1(t, s)ζ1(s, x) − µ1(u, s)ζ1(s, x)| : u, t ∈ [0,L], |t − u| ≤ ε}

and

wL(µ2, ζ2, ε) = sup{|µ2(t, s)ζ2(s, x) − µ2(u, s)ζ2(s, x)| : u, t ∈ [0,L], |t − u| ≤ ε}.
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Using the above facts in (4.2), we get

|Tx(t) − Tx(u)| < γ|x(t) − x(u)| + λLA1wL(µ2, ζ2, ε) + λLA2wL(µ1, ζ1, ε)

+ λLBL
2wL(µ1, ζ1, ε)|t − u| + λA1BL

2 |t − u| + λA2BL
2 |t − u|. (4.3)

Let Λ = λLA1wL(µ2, ζ2, ε)+λLA2wL(µ1, ζ1, ε) and G(t,u) = λLBL
2wL(µ1, ζ1, ε)|t−u|+λA1BL

2 |t−u|+λA2BL
1 |t−u|.

Then from (4.3), we get

|Tx(t) − Tx(u)| < γ|x(t) − x(u)| + Λ + G(t,u),

for all t,u ∈ [0,L] and |t − u| ≤ ε. So we have

sup{|Tx(t) − Tx(u)| : t,u ∈ [0,L], |t − u| ≤ ε}
≤ γ sup{|x(t) − x(u)| : t,u ∈ [0,L], |t − u| ≤ ε} + Λ

+ sup{G(t,u) : t,u ∈ [0,L], |t − u| ≤ ε}

⇒ wL(Tx, ε) ≤ γwL(x, ε) + Λ + sup{G(t,u) : t,u ∈ [0,L], |t − u| ≤ ε}.

The above relation holds for all x ∈ A. Therefore we have

wL(TA, ε) ≤ γwL(A, ε) + Λ + sup{G(t,u) : t,u ∈ [0,L], |t − u| ≤ ε}

⇒ lim
ε→0

wL(TA, ε) ≤ γ lim
ε→0

wL(A, ε) + lim
ε→0

Λ + lim
ε→0

sup{G(t,u) : t,u ∈ [0,L], |t − u| ≤ ε}

⇒ wL
0(TA) ≤ γwL

0(A)

⇒ lim
L→∞

wL
0(TA) ≤ γ lim

L→∞
wL

0(A)

⇒ w0(TA) ≤ γw0(A). (4.4)

Now for any x, y ∈ A, we have

|Tx(t) − Ty(t)|

=

∣∣∣∣∣∣1(t, x(t)) + λ

∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds − 1(t, y(t))

+ λ

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
≤ |1(t, x(t)) − 1(t, y(t))| + λ

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds

∫ t

0
µ2(t, s)ζ2(s, x(s))ds

−

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
≤ γ|x(t) − y(t)| + λ

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
+ λ

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
+ λ

∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣
≤ γ|x(t) − y(t)| + λ

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣
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∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
+ λA1

∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
+ λA2

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣
≤ γ diam A(t) + λ

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
+ λA1

∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
+ λA2

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣.
Therefore,

diam TA(t) ≤ γ diam A(t)

+ sup
x,y∈A

{
λ

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
+ λA1

∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
+ λA2

∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣
}
.

From the previous inequality, we obtain,

lim sup
t→∞

diam TA(t)

≤ γ lim sup
t→∞

diam TA(t)

+ λ lim sup
t→∞

sup
x,y∈A

{∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
}

+ λA1 lim sup
t→∞

sup
x,y∈A

{∣∣∣∣∣∣
∫ t

0
µ2(t, s)ζ2(s, x(s))ds −

∫ t

0
µ2(t, s)ζ2(s, y(s))ds

∣∣∣∣∣∣
}

+ λA2 lim sup
t→∞

sup
x,y∈A

{∣∣∣∣∣∣
∫ t

0
µ1(t, s)ζ1(s, x(s))ds −

∫ t

0
µ1(t, s)ζ1(s, y(s))ds

∣∣∣∣∣∣
}

⇒ α(TA) ≤ γα(A) [using assumption (ii)]. (4.5)
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Adding (4.4) and (4.5), we get

w0(TA) + α(TA) ≤ γ{w0(A) + α(A)}
⇒ σ(TA) ≤ γσ(A)

⇒ O(ξ; σ(TA)) ≤ γO(ξ; σ(A)). (4.6)

We choose two real numbers α1 and α2 such that 0 < α1, α2 < 1 and α1α2 ≥ γ. Let us choose F (x, y) =
max{x, y}, η(t) = t, β(t) = α1(t), ϕ(t) = t

2 and α(t) = α2 for all t ∈ R+. Then we have

η(O(ξ;F (σ(TA);ϕ(σ(TA))))) = O(ξ; σ(TA))

and

α(O(ξ; η(σ(A))))β(O(ξ;F (σ(A), ϕ(σ(A))))) = α1α2O(ξ; σ(A)).

Therefore, from (4.6), we obtain

η(O(ξ;F (σ(TA);ϕ(σ(TA))))) ≤ α(O(ξ; η(σ(A))))β(O(ξ;F (σ(A), ϕ(σ(A))))).

The above relation is true for all non-empty subsets A of E. So by Theorem 3.1, T has a fixed point in E.
Hence the integral equation given by Equation 4.1, has a solution.
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