Interpolating Sesqui Harmonic Slant Curve in Generalized Sasakian Space Form

Mohd Iqbal ${ }^{\text {a }}$, Shyamal Kumar Hui ${ }^{\text {b }}$, Sarvesh Kumar Yadav ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Jamia Millia Islamia, New Delhi-110025, India
${ }^{b}$ Department of Mathematics, The University of Burdwan, Burdwan, 713104, West Bengal, India

Abstract

In this article, we discuss interpolating sesqui-harmonic slant curves in generalized Sasakian space form and find the necessary and sufficient conditions for slant curves to be interpolating sesquiharmonic. Next, we study sesqui minimal slant curves in generalized Sasakian space form. In particular we give an example of interpolating sesqui-harmonic slant curve in Sasakian space form. Our paper generalizes the results of the papers $[8,16,20]$.

1. Introduction

Harmonic and biharmonic maps play a vital role in geometry, analysis and physics. They are one of the most studied variational problems in geometric analysis and in theoretical physics they appear as critical points of non-linear sigma model. A smooth map $\pi:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$, where M^{m} and N^{n} are smooth Riemannian manifolds, is said to be a harmonic map if it is critical point of the energy functional [7]

$$
E(\pi)=\frac{1}{2} \int_{M}|d \pi|^{2} d v_{g}
$$

or equivalently, if the tension field

$$
\begin{equation*}
\tau(\pi)=\operatorname{tr}(\nabla d \pi) \tag{1}
\end{equation*}
$$

vanishes.
Biharmonic maps are a higher order generalization of harmonic maps and is defined as the critical point of the bienergy functional for a map π between two Riemannian manifolds, which is given by [7]

$$
E_{2}(\pi)=\int_{M}|\tau(\pi)|^{2} d v_{g}
$$

and characterized by the vanishing of bi-tension field

$$
\tau_{2}(\pi)=\operatorname{tr}\left(\nabla^{\pi} \nabla^{\pi}-\nabla_{\nabla}^{\pi}\right) \tau(\pi)-\operatorname{tr}\left(R^{N}(d \pi, \tau(\pi)) d \pi\right)=0
$$

[^0]B. Y. Chen and S. Ishikawa [6], studied biharmonic curves and surfaces in semi-Euclidean space. Moreover, Chen and Ishikawa proved the non-existence of proper biharmonic surfaces in the 3-dimensional Euclidean space \mathbb{R}^{3}. This result was further extended to surfaces in 3-dimensional space forms of non-positive curvature by R. Caddeo, S. Montaldo and C. Oniciuc [5]. Biharmonic submanifolds in the 3 -sphere \mathbb{S}^{3} were classified by Caddeo, Montaldo and Oniciuc [4]. Jiang studied the first-variational and second-variational formulas for the bi-energy functional using Euler-Lagrange equation [14]. On the other hand, E. Loubeau and S. Montaldo [18] introduced the notion of biminimal immersion. Then D. Fetcu [8] obtained biharmonic Legendre curve in Sasakian space form. Further C. Ozgur and S. Guvenc [20] extended the results in generalized Sasakian space form.
In [3], Branding introduced an action functional for maps between Riemannian manifolds that interpolated between the actions for harmonic and biharmonic maps. A map $\pi:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ is said to be interpolating sesqui-harmonic if it is a critical point of $E_{\delta_{1}, \delta_{2}}(\pi)$ [3]
$$
E_{\delta_{1}, \delta_{2}}(\pi)=\delta_{1} \int_{M}|d \pi|^{2} d v_{g}+\delta_{2} \int_{M}|\tau(\pi)|^{2} d v_{g}
$$
where $\delta_{1}, \delta_{2} \in \mathbb{R}$. The interpolating sesqui-harmonic map equation is given as
$$
\tau_{\delta_{1}, \delta_{2}}(\pi)=\delta_{2} \tau_{2}(\pi)-\delta_{1} \tau(\pi)=0
$$

Further, a curve φ is called Interpolating sesqui harmonic if the following equation satisfied [3]

$$
\begin{equation*}
\tau_{\delta_{1}, \delta_{2}}(\pi) \equiv \delta_{2}\left(\nabla_{T} \nabla_{T} \nabla_{T} T\right)-\delta_{2} R^{N}\left(T, \nabla_{T} T\right) T-\delta_{1} \nabla_{T} T=0, \tag{2}
\end{equation*}
$$

where $\delta_{1}, \delta_{2} \in \mathbb{R}$ and $T=\varphi^{\prime}$
In [16], F. Karaca et al. studied interpolating sesqui harmonic Legendre curves in Sasakian space forms. They found a necessary and sufficient condition for Legendre curves in Sasakian space forms to be interpolating sesqui harmonic and extended the results in generalized Sasakian space forms [15].
Motivated by the above study, we consider interpolating sesqui harmonic slant curves in generalized Sasakian space forms and find a neccessary and sufficient condition for a slant curve to be interpolating sesqui harmonic. Moreover, we define interpolating sesqui minimal curve and find the condition for a slant curve to be interpolating sesqui minimal. Finally we give an example to verify our result.

2. Preliminaries

Let $N^{2 n+1}$ with the structure (ϕ, ξ, η, g) be an almost contact metric manifold such that

$$
\eta(\xi)=1, \quad \phi^{2}(X)=-X+\eta(X) \xi
$$

and

$$
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for any vector fields X, Y in $T N$, where ϕ, ξ and η are the (1-1) tensor field, characteristic vector field and one form respectively.

If $d \eta(X, Y)=g(X, \phi Y)$ for all vector fields X, Y on $N^{2 n+1}(\phi, \xi, \eta, g)$, then the almost contact metric manifold $N^{2 n+1}(\phi, \xi, \eta, g)$ is called a contact metric manifold. The almost contact structure of N is said to normal if

$$
\begin{equation*}
[\phi, \phi](X, Y)=\phi^{2}[X, Y]+[\phi X, \phi Y]-\phi[\phi X, Y]-\phi[X, \phi Y] \tag{3}
\end{equation*}
$$

A normal contact metric manifold is called a Sasakian manifold [2]. An almost contact metric manifold $N^{2 n+1}$ is called a Kenmotsu manifold [17] if

$$
\left(\nabla_{X} \phi\right) Y=g(\phi X, Y) \xi-\eta(Y) \phi X
$$

where ∇ is the Levi-Civita connection.
An almost contact metric manifold $N^{2 n+1}$ is called a cosymplectic manifold [19] if $\nabla \phi=0$, which implies that $\nabla \xi=0$.

The sectional curvature of a ϕ-section is called a ϕ-sectional curvature. A Sasakian (resp. Kenmotsu, cosymplectic) manifold with constant ϕ-sectional curvature c is called a Sasakian (resp. Kenmotsu, cosymplectic) space form.
The notion of a generalized Sasakian space form was introduced by Alegre et al. in [1]. An almost contact metric manifold ($N^{2 n+1}, \phi, \xi, \eta, g$) such that the curvature tensor satisfies

$$
\begin{align*}
R(X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\} \tag{4}\\
& +f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X\} \\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi
\end{align*}
$$

for certain differentiable functions f_{1}, f_{2} and f_{3} on $N^{2 n+1}$ is called a generalized Sasakian space form [1] denoted by $N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ and such space form were studied in [10], [11].
A generalized Sasakian space form is classified as:

1. If $f_{1}=\frac{c+3}{4}, f_{2}=f_{3}=\frac{c-1}{4}$, then $N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is a Sasakian space form $N^{2 n+1}(c)$.
2. If $f_{1}=\frac{c-3}{4}, f_{2}=f_{3}=\frac{c+1}{4}$, then $N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is a Kenmotsu space form $N^{2 n+1}(c)$.
3. If $f_{1}=f_{2}=f_{3}=\frac{c}{4}$, then $N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is a cosymplectic space form $N^{2 n+1}(c)$.

It is to be noted that interpolating sesqui-harmonic slant curve becomes interpolating sesqui harmonic Legendre curve for $\theta=\frac{\pi}{2}$ and biharmonic Legendre curve for $\theta=\frac{\pi}{2}, \delta_{2}=1$ and $\delta_{1}=0$.

3. Interpolating Sesqui-Harmonic slant curves in generalized Sasakian space form

Let $\varphi: I \rightarrow(N, g)$ be an arc length curve in an n-dimensional Riemannian manifold (N, g). If $\left\{E_{1}, E_{2}, \cdots, E_{n}\right\}$ is orthonormal vector field then the curve φ is called Frenet curve of osculating order $r, 1 \leq r \leq n$ if [21]

$$
\begin{align*}
T & =E_{1}=\varphi^{\prime} \tag{5}\\
\nabla_{T} E_{1} & =k_{1} E_{2} \\
\nabla_{T} E_{i} & =-k_{i-1} E_{i-1}+k_{i} E_{i+1}, \text { for } 2 \leq i \leq n-1 \\
\nabla_{T} E_{n} & =-k_{n-1} E_{n-1},
\end{align*}
$$

where $\left\{k_{1}, k_{2}, \cdots, k_{n-1}\right\}$ are curvature functions.

1. A geodesic is a Frenet curve of osculating order 1.
2. A circle is a Frenet curve of osculating order 2 if k_{1} is a nonzero positive constant.
3. A helix of order r is a Frenet curve of osculating order $r \geq 3$ if k_{1}, \cdots, k_{r-1} are nonzero positive constants.

Definition 3.1. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a unit speed curve in generalized Sasakian space form. Then φ is called a slant curve if there exist a constant angle θ such that $\eta\left(E_{1}\right)=\cos \theta$.

Theorem 3.2. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is a slant curve of osculating order $r, p=\min \{r, 4\}$ in generalized Sasakian space form. Then φ is interpolating sesqui harmonic if and only if there exists δ_{1}, δ_{2} such that
(1) $\phi T \perp E_{2}$ or $\phi T \in\left\{E_{2}, \cdots, E_{n}\right\}$,
(2) $\xi \perp E_{2}$ or $\xi \in\left\{E_{2}, \cdots, E_{n}\right\}$ and
(3) first p of the following equations are satisfied

$$
\left\{\begin{array}{l}
-3 \delta_{2} k_{1} k_{1}^{\prime}=0, \\
\delta_{2}\left[k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right]+\delta_{2} f_{1} k_{1}-\delta_{2} f_{3} \cos ^{2} \theta k_{1}+3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right)^{2}-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right)^{2}-\delta_{1} k_{1}=0, \\
2 \delta_{2} k_{1}^{\prime} k_{2}+\delta_{2} k_{1} k_{2}^{\prime}+3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right) g\left(\phi T, E_{3}\right)-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \eta\left(E_{3}\right)=0 \\
\delta_{2}\left(k_{1} k_{2} k_{3}\right)+3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right) g\left(\phi T, E_{4}\right)-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \eta\left(E_{4}\right)=0
\end{array}\right.
$$

Proof. Using (1) and (5) we have

$$
\begin{align*}
\nabla_{T} E_{1} & =k_{1} E_{2}=\tau(\varphi), \tag{6}\\
\nabla_{T} \nabla_{T} T & =-k_{1}^{2} E_{1}+k_{1}^{\prime} E_{2}+k_{1} k_{2} E_{3}, \tag{7}\\
\nabla_{T} \nabla_{T} \nabla_{T} T & =\left(-3 k_{1} k_{1}^{\prime}\right) E_{1}+\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right) E_{2}+\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) E_{3} \tag{8}\\
& +\left(k_{1} k_{2} k_{3}\right) E_{4} .
\end{align*}
$$

Next, making use of equation (4), we obtain

$$
\begin{align*}
R\left(T, \nabla_{T} T\right) T & =-f_{1} k_{1} E_{2}-3 f_{2} k_{1} g\left(\phi T, E_{2}\right) \phi T+f_{3}\left\{k_{1} \cos ^{2} \theta E_{2}\right. \tag{9}\\
& \left.-k_{1} \cos \theta \eta\left(E_{2}\right) E_{1}+k_{1} \eta\left(E_{2}\right) \xi\right\} .
\end{align*}
$$

Further, reporting equations (6), (8) and (9) in (2), we get

$$
\begin{aligned}
\tau_{\delta_{1}, \delta_{2}}(\varphi) & =\delta_{2}\left[-3 k_{1} k_{1}^{\prime}\right] E_{1}+\left[\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)\right. \\
& \left.-\delta_{2} f_{3} \cos ^{2} \theta k_{1}+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}\right] E_{2}+\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) E_{3}+\delta_{2}\left(k_{1} k_{2} k_{3}\right) E_{4} \\
& +3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right) \phi T-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \xi .
\end{aligned}
$$

Taking inner product with E_{1}, E_{2}, E_{3} and E_{4} we obtain the result.
Now we discuss the following five cases based on above theorem.
Case 1: $\phi T \perp E_{2}$ and $\xi \perp E_{2}$
Proposition 3.3. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is a slant curve of osculating order $r, p=\min \{r, 4\}$ in generalized Sasakian space form with $\phi T \perp E_{2}$ and $\xi \perp E_{2}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

$$
\left\{\begin{array}{l}
k_{1}=\text { constant }>0 \tag{10}\\
k_{1}^{2}+k_{2}^{2}=f_{1}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}} \\
k_{2}=\text { constant } \\
k_{2} k_{3}=0
\end{array}\right.
$$

where $f_{1}>f_{3} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$.
Proof. If $\phi T \perp E_{2}$ and $\xi \perp E_{2}$ then we have $g\left(\phi T, E_{2}\right)=0$ and $g\left(E_{2}, \xi\right)=0$. Now making use of Theorem 3.2 we obtain

$$
\left\{\begin{array}{l}
k_{1}=\text { constant }>0 \tag{11}\\
k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}+f_{1} k_{1}-f_{3} \cos ^{2} \theta k_{1}-\frac{\delta_{1}}{\delta_{2}} k_{1}=0 \\
2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}=0 \\
k_{1} k_{2} k_{3}=0
\end{array}\right.
$$

By using $k_{1}=$ constant >0 in last three equations of (11) we get the result.
Theorem 3.4. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a slant curve of osculating order r in generalized Sasakian space form such that $\phi T \perp E_{2}$ and $\xi \perp E_{2}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

1. φ is of osculating order $r=2$ and it is a circle with $k_{1}=\sqrt{f_{1}-f_{3} \cos ^{2}(\theta)-\frac{\delta_{1}}{\delta_{2}}}$, where $f_{1}-f_{3} \cos ^{2} \theta>\frac{\delta_{1}}{\delta_{2}}$.
2. φ is of osculating order $r=3$ and it is a helix with $k_{1}^{2}+k_{2}^{2}=f_{1}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}$, where $f_{1}>f_{3} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$.

Proof. Suppose $\phi T \perp E_{2}$ and $\xi \perp E_{2}$ then we have $g\left(\phi T, E_{2}\right)=0$ and $g\left(\xi, E_{2}\right)=0$.
If $f_{1}>f_{3} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$, then by Proposition 3.3, we get
(a) if φ is of osculating order $r=2$ then it is a circle with

$$
k_{1}=\sqrt{f_{1}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}}
$$

where, $f_{1}-f_{3}^{2} \cos ^{2} \theta>\frac{\delta_{1}}{\delta_{2}}$.
(b) If φ is of osculating order $r=3$ then it is helix with

$$
k_{1}^{2}+k_{1}^{2}=f_{1}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}
$$

where $f_{1}>f_{3} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$.
Conversely, if φ is a circle with $k_{1}=\sqrt{f_{1}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}}$ or a helix with $k_{1}^{2}+k_{1}^{2}=f_{1}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}$. Then φ satisfies Theorem 3.2 and this completes the proof.
In particular, using $f_{1}=\frac{c+4}{4}, f_{3}=\frac{c-1}{4}$ and $\theta=\frac{\pi}{2}$ in above theorem we have
Corollary 3.5. [16] Let $\varphi: I \rightarrow N^{2 n+1}(c)$ is a Legendre curve of osculating order r in Sasakian space form such that $\phi T \perp E_{2}$ with $c \neq 1$. Then

1. If $c \leq 4 \frac{\delta_{1}}{\delta_{2}}-3$, then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if it geodesic.
2. If $c>4 \frac{\delta_{1}}{\delta_{2}}-3$, then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if either
(a) If φ is of osculating order $r=2, n \geq 2$ and it is circle with $k_{1}^{2}=\frac{c+3}{4}-\frac{\delta_{1}}{\delta_{2}}$, or
(b) If φ is of osculating order $r=3, n \geq 3$ and it helix with $k_{1}^{2}+k_{2}^{2}=\frac{(c+3)}{4}-\frac{\delta_{1}}{\delta_{2}}$.

Moreover, for $\theta=\frac{\pi}{2}, \delta_{1}=0$ and $\delta_{2}=1$ in Theorem 3.2 we have
Corollary 3.6. [8] Let $\varphi: I \rightarrow N^{2 n+1}$ (c) be a Legendre Frenet curve in a Sasakian-space form and $\phi T \perp E_{2}$. Then φ is proper biharmonic if and only if either

1. $n \geq 2$ and φ is a circle with $k_{1}=\frac{1}{2} \sqrt{c+3}$, where $c>-3$ and $\left\{T=E_{1}, E_{2}, \phi T, \nabla_{T} \phi T, \xi_{1}, \cdots, \xi_{s}\right\}$ is linearly independent or
2. $n \geq 3$ and φ is a helix with $k_{1}^{2}+k_{2}^{2}=c+3$, where $c>-3$ and $\left\{T=E_{1}, E_{2}, \phi T, \nabla_{T} \phi T, \xi_{1}, \cdots, \xi_{s}\right\}$ is linearly independent.
If $c \leq-3$, then φ is biharmonic if and only if it is a geodesic.
Case 2: $\phi T \| E_{2}$ and $\xi \perp E_{2}$.
Proposition 3.7. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is a slant curve of osculating order $r, p=\min \{r, 4\}$ in generalized Sasakian space form. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0, \\
k_{1}^{2}+k_{2}^{2} & =f_{1}+3 f_{2}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}} \\
k_{2} & =\text { constant, } k_{2} k_{3}=0 .
\end{aligned}
$$

Theorem 3.8. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a slant curve of osculating order r in generalized Sasakian space form such that $\phi T \| E_{2}$ and $\xi \perp E_{2}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if either

1. φ is of osculating order $r=2$ and it is circle with $k_{1}=\sqrt{f_{1}+3 f_{2}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}}$, where $f_{1}+3 f_{2}-f_{3} \cos ^{2} \theta>$ $\frac{\delta_{1}}{\delta_{2}}$, or
2. φ is of osculating order $r=3$ and it is a helix with $k_{2}=1$ and $k_{1}^{2}=f_{1}+3 f_{2}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}$.

Proof. If $\phi T \| E_{2}$ and $\xi \perp E_{2}$ then we have

$$
\begin{equation*}
g\left(\phi T, E_{2}\right)= \pm 1, \quad \text { and } \quad g\left(\xi, E_{2}\right)=0 \tag{12}
\end{equation*}
$$

If $f_{1}+3 f_{2}-f_{3} \cos ^{2} \theta>\frac{\delta_{1}}{\delta_{2}}$, then φ is a circle with $k_{2}=1$ and $k_{1}=\sqrt{f_{1}+3 f_{2}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}}$.
Also, if φ is of osculating order $r=3, n \geq 3$, then it is a helix with $k_{2}=1$ given by $k_{1}^{2}=f_{1}+3 f_{2}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}$. Conversely, if φ is helix with $k_{1}^{2}+k_{2}^{2}=f_{1}+3 f_{2}-f_{3} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}$ and $k_{2}=1$. Then φ satisfies Theorem 3.2.

Case 3: $\phi T \perp E_{2}$ and $\xi \in \operatorname{span}\left\{E_{2}, E_{3}, \cdots, E_{m}\right\}$.
Theorem 3.9. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a slant curve of osculating order $r \geq 4$ in generalized Sasakian space form such that $\phi T \perp E_{2}$ and $\xi \in \operatorname{span}\left\{E_{2}, E_{3}, \cdots, E_{m}\right\}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0, \\
k_{1}^{2}+k_{2}^{2} & =f_{1}-f_{3} \cos ^{2} \theta-f_{3} \cos ^{2} u-\frac{\delta_{1}}{\delta_{2}} \\
k_{2}^{\prime} & =f_{3} \cos u \sin u \cos v, \\
k_{2} k_{3} & =f_{3} \cos u \sin u \sin v
\end{aligned}
$$

where u and v are real valued angle functions.
Proof. Suppose φ is an interpolating sesqui-harmonic slant curve of osculating order $r \geq 4$ in $N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$. Then we have [15],

$$
\begin{equation*}
\xi=\cos u E_{2}+\sin u \cos v E_{3}+\sin u \sin v E_{4}, \tag{13}
\end{equation*}
$$

where u, v are the real valued angle between ξ and E_{2}, E_{3} and the orthogonal projection of ξ onto $\operatorname{span}\left\{E_{2}, E_{4}\right\}$ respectively. Thus we have

$$
\begin{array}{r}
\eta\left(E_{2}\right)=\cos u \\
\eta\left(E_{3}\right)=\sin u \cos v \\
\eta\left(E_{4}\right)=\sin u \sin v
\end{array}
$$

By using above equations and Theorem 3.2, the curve is interpolating sesqui-harmonic if

$$
\begin{aligned}
k_{1} & =\text { constant }>0, \\
k_{1}^{2}+k_{2}^{2} & =f_{1}-f_{3} \cos ^{2} \theta-f_{3} \cos ^{2} u-\frac{\delta_{1}}{\delta_{2}} \\
k_{2}^{\prime} & =f_{3} \cos u \sin u \cos v, \\
k_{2} k_{3} & =f_{3} \cos u \sin u \sin v .
\end{aligned}
$$

Conversely, if φ satisfies the converse statement then the above four equations in Theorem 3.2 are satisfied. Hence φ is an interpolating sesqui-harmonic.

For $\delta_{1}=0, \delta_{2}=1$ and $\theta=\frac{\pi}{2}$, we have

Corollary 3.10. [20] Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a Legendre Frenet curve of osculating order r in a generalized Sasakian space form. Then φ is proper biharmonic if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2} & =f_{1}-f_{3} \cos ^{2} u \\
k_{2}^{\prime} & =f_{3} \cos u \sin u \cos v \\
k_{2} k_{3} & =f_{3} \cos u \sin u \sin v
\end{aligned}
$$

Case 4: $\xi \perp E_{2}$ and $\phi T \in \operatorname{span}\left\{E_{2}, E_{3}, \cdots, E_{m}\right\}$.
Theorem 3.11. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a slant curve of osculating order $r \geq 4$ in generalized Ssakian space form such that $\xi \perp E_{2}$ and $\phi T \in \operatorname{span}\left\{E_{2}, E_{3}, \cdots, E_{m}\right\}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2} & =f_{1}-f_{3} \cos ^{2} \theta+3 f_{2} \cos ^{2} w-\frac{\delta_{1}}{\delta_{2}} \\
k_{2}^{\prime} & =-3 f_{3} \cos w \sin w \cos z \\
k_{2} k_{3} & =-3 f_{3} \cos w \sin w \sin z
\end{aligned}
$$

where w and z are real valued angle function.
Proof. Suppose φ is an interpolating sesqui-harmonic slant curve of osculating order $r \geq 4$ in $N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$. Then we have [15]

$$
\begin{equation*}
\phi T=\cos w E_{2}+\sin w \cos z E_{3}+\sin w \sin z E_{4} \tag{14}
\end{equation*}
$$

where w, z are the real valued angle between ξ and E_{2}, E_{3}, and the orthogonal projection of ξ onto $\operatorname{span}\left\{E_{2}, E_{4}\right\}$ respectively. Thus we have

$$
\begin{array}{r}
g\left(E_{2}, \phi T\right)=\cos w \\
g\left(E_{3}, \phi T\right)=\sin w \cos z \\
g\left(E_{4}, \phi T\right)=\sin w \sin z
\end{array}
$$

By using above equations and Theorem 3.2, the curve is interpolating sesqui-harmonic if

$$
\begin{aligned}
k_{1} & =\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2} & =f_{1}-f_{3} \cos ^{2} \theta+3 f_{2} \cos ^{2} w-\frac{\delta_{1}}{\delta_{2}} \\
k_{2}^{\prime} & =-3 f_{2} \cos w \sin w \cos z \\
k_{2} k_{3} & =-3 f_{2} \cos w \sin w \sin z
\end{aligned}
$$

Conversely, if φ satisfies the converse statement then the above four equations in Theorem 3.2 are satisfied. Hence φ is an interpolating sesqui-harmonic.

For $\delta_{1}=0, \delta_{2}=1$, and $\theta=\frac{\pi}{2}$ we have
Corollary 3.12. [20] Let φ be a Legendre Frenet curve of osculating order r in a generalized Sasakian space form with $f_{2} \neq 0, f_{3} \neq 0, \phi T \in \operatorname{span}\left\{E_{2}, \ldots, E_{m}\right\}$ and $\xi \perp E_{2}$. Then φ is proper biharmonic if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2} & =f_{1}+3 f_{2} \cos ^{2} w \\
k_{2}^{\prime} & =-3 f_{2} \cos w \sin w \cos z \\
k_{2} k_{3} & =-3 f_{2} \cos w \sin w \sin z .
\end{aligned}
$$

Case 5: $\xi \in \operatorname{span}\left\{E_{2}, E_{3}, \cdots, E_{m}\right\}$ and $\phi T \in \operatorname{span}\left\{E_{2}, E_{3}, \cdots, E_{m}\right\}$.
Making use of equations (13), (14) and Theorem 3.2 we obtain
Theorem 3.13. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a slant curve of osculating order $r \geq 4$ in generalized Sasakian space form such that $\phi T \in \operatorname{span}\left\{E_{2}, E_{3}, \cdots, E_{m}\right\}$ and $\xi \in \operatorname{span}\left\{E_{2}, E_{3}, \cdots, E_{m}\right\}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0, \\
k_{1}^{2}+k_{2}^{2} & =f_{1}-f_{3} \cos ^{2} \theta+3 f_{2} \cos ^{2} w+f_{3} \cos ^{2} u-\frac{\delta_{1}}{\delta_{2}} \\
k_{2}^{\prime} & =f_{3} \cos u \sin u \cos v-3 f_{2} \cos w \sin w \cos z \\
k_{2} k_{3} & =f_{3} \cos u \sin u \sin v-3 f_{2} \cos w \sin w \sin z
\end{aligned}
$$

where u, v, w and z are real valued angle function.
Using $\delta_{1}=0, \delta_{2}=1$ and $\theta=\frac{\pi}{2}$ in above proposition we have
Corollary 3.14. [20] Let φ be a Legendre Frenet curve of osculating order r in a generalized Sasakian space form such that $\phi T \in \operatorname{span}\left\{E_{2}, \cdots, E_{m}\right\}$ and $\xi \in \operatorname{span}\left\{E_{2}, \cdots, E_{m}\right\}$. Then φ is proper biharmonic if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2} & =f_{1}+3 f_{2} \cos ^{2} w+f_{3} \cos ^{2} u \\
k_{2}^{\prime} & =-3 f_{2} \cos w \sin w \cos z+f_{3} \cos u \sin u \cos v \\
k_{2} k_{3} & =-3 f_{2} \cos w \sin w \sin z-f_{3} \cos u \sin u \sin v .
\end{aligned}
$$

4. Interpolating sesqui-harmonic minimal curves

An isometric immersion $\pi:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ is said to be biminimal if it is a critical point of the bienergy functional under all normal variations [18]. Thus the biminimality is weaker than biharmonicity for isometric immersions, in general. In this section we obtain the minimality of interpolating sesqui-harmonic slant curves in 3-dimensional generalized Sasakian spaceform.

Definition 4.1. See [14] An immersion $\pi:(M, g) \rightarrow(N, h)$ is called biminimal if it is a critical point of the functional

$$
\begin{equation*}
E_{2, \lambda}(\pi):=E_{2}(\pi)+\lambda E(\pi), \quad \lambda \in \mathbb{R} . \tag{15}
\end{equation*}
$$

The Euler-Lagrange equation of biminimal immersions is

$$
\begin{equation*}
\left[\tau_{2}(\pi)\right]^{\perp}+\lambda[\tau(\pi)]^{\perp}=0 \tag{16}
\end{equation*}
$$

where $\lambda \in \mathbb{R}$ and \perp stand for normal component of [.].
In the similar way f-biminmal immersion was defined by F. Gurler and C. Ozgur [9]. Motivated by these studies we define interpolating sesqui minimal curve as follows:

Definition 4.2. An immersion π between two Riemannian manifolds M and N is called interpolating sesqui minimal if it is critical point of the energy functional $E_{\delta_{1}, \delta_{2}}(\pi)$ for variations normal to the image $\pi(M) \subset N$ with fixed energy. Equivalently, there exist a constant $\lambda \in \mathbb{R}$ such that

$$
\begin{equation*}
E_{\delta_{1}, \delta_{2}, \lambda}(\pi)=E_{\delta_{1}, \delta_{2}}(\pi)+\lambda E(\pi) . \tag{17}
\end{equation*}
$$

The Euler Lagrange equation for λ-interpolating sesqui minimal immersion is

$$
\begin{equation*}
\left[\tau_{\delta_{1}, \delta_{2}, \lambda}(\pi]^{\perp}=\left[\tau_{\delta_{1}, \delta_{2}}(\pi)\right]^{\perp}-\lambda[\tau(\pi)]^{\perp}=0\right. \tag{18}
\end{equation*}
$$

where $\lambda \in \mathbb{R}$.
Then the tension field of π is computed as

$$
\begin{aligned}
\tau_{\delta_{1}, \delta_{2}}(\pi) & =\left[-3 \delta_{2} k_{1} k_{1}^{\prime}\right] E_{1}+\left[\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} \cos ^{2} \theta k_{1}+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}\right] E_{2} \\
& +\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) E_{3}+\left(k_{1} k_{2} k_{3}\right) E_{4}+3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right) \phi T-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \xi . \\
\tau_{\delta_{1}, \delta_{2}}^{\perp}(\pi) & =\left[\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} \cos ^{2} \theta k_{1}+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}\right] E_{2}+\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) E_{3} \\
& +\left(k_{1} k_{2} k_{3}\right) E_{4}+3 \delta_{2} f_{2} g\left(\phi T, k_{1} E_{2}\right) \phi T-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \xi .
\end{aligned}
$$

Now by the interpolating sesqui minimality condition

$$
\begin{aligned}
\tau_{\delta_{1}, \delta_{2}}^{\perp}(\pi)-\lambda \tau^{\perp}(\pi) & =\left[\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} \cos ^{2} \theta k_{1}+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}-\lambda k_{1}\right] E_{2} \\
& +\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) E_{3}+\left(k_{1} k_{2} k_{3}\right) E_{4}+3 \delta_{2} f_{2} g\left(\phi T, k_{1} E_{2}\right) \phi T \\
& -\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \xi=0 .
\end{aligned}
$$

Taking inner product with E_{2}, E_{3} and E_{4}, respectively, we obtain

$$
\begin{array}{r}
{\left[\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} \cos ^{2}(\theta) k_{1}+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}-\lambda k_{1}\right]} \tag{19}\\
+3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right)^{2}-\delta_{2} f_{3} k_{1}\left(\eta\left(E_{2}\right)\right)^{2}=0, \\
\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right)+3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right) g\left(\phi T, E_{3}\right)-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \eta\left(E_{3}\right)=0, \\
\left(k_{1} k_{2} k_{3}\right)++3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right) g\left(\phi T, E_{3}\right)-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \eta\left(E_{4}\right)=0 .
\end{array}
$$

Case 1. $\phi T \perp E_{2}$ and $\xi \perp E_{2}$

$$
\begin{array}{r}
\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} \cos ^{2}(\theta) k_{1} \\
+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}+\lambda k_{1}=0 \\
\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right)=0 \\
k_{1} k_{2} k_{3}=0
\end{array}
$$

Case 2. $\phi T \| E_{2}$ and $\xi \perp E_{2}$

$$
\begin{array}{r}
\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} c^{2} k_{1} \\
+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}+\lambda k_{1}+3 \delta_{2} f_{2} k_{1}=0 \\
\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right)=0 \\
k_{1} k_{2} k_{3}=0
\end{array}
$$

Theorem 4.3. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a slant curve in generalized Sasakian space form. Then φ is interpolating sesqui harmonic minimal if and only if there exists δ_{1}, δ_{2} such that

$$
\begin{array}{r}
{\left[\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} \cos ^{2}(\theta) k_{1}+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}-\lambda k_{1}\right]} \tag{12}\\
+3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right)^{2}-\delta_{2} f_{3} k_{1}\left(\eta\left(E_{2}\right)\right)^{2}=0, \\
\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right)+3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right) g\left(\phi T, E_{3}\right)-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \eta\left(E_{3}\right)=0, \\
\left(k_{1} k_{2} k_{3}\right)++3 \delta_{2} f_{2} k_{1} g\left(\phi T, E_{2}\right) g\left(\phi T, E_{3}\right)-\delta_{2} f_{3} k_{1} \eta\left(E_{2}\right) \eta\left(E_{4}\right)=0 .
\end{array}
$$

Proposition 4.4. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a slant curve in a 3-dimensional generalized Sasakian space form with $\phi T \perp E_{2}$. Then φ is interpolating sesqui harmonic minimal if and only if

$$
\begin{aligned}
& \delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} c^{2} k_{1} \\
& \quad+\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}+\lambda k_{1}=0 \\
& 2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}=0 .
\end{aligned}
$$

Proposition 4.5. Let $\varphi: I \rightarrow N^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a slant curve in a 3-dimensional generalized Sasakian space form with $\phi T \| E_{2}$. Then φ is interpolating sesqui harmonic minimal if and only if

$$
\begin{aligned}
& \quad \delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)-\delta_{2} f_{3} c^{2} k_{1} \\
& +\delta_{2} f_{1} k_{1}-\delta_{1} k_{1}+\lambda k_{1}+3 \delta_{2} f_{2}=0, \\
& 2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}=0 .
\end{aligned}
$$

5. Example

Let $\left(N^{2 n+1}, \phi, \xi, \eta, g\right)$ be a Sasakian-space form with coordinate functions $\left\{x_{1}, \cdots, x_{n}\right.$, $\left.y_{1}, \cdots, y_{n}, z\right\}$. The vector fields

$$
\begin{equation*}
X_{i}=2 \frac{\partial}{\partial y_{i}}, X_{n+i}=\phi X_{i}=2\left(\frac{\partial}{\partial x_{i}}+y_{i} \frac{\partial}{\partial z}\right), \xi=2 \frac{\partial}{\partial z} \tag{4}
\end{equation*}
$$

form a g-orthonormal basis and the Levi-Civita connection is calculated as

$$
\left\{\begin{array}{l}
\nabla_{X_{i}} X_{j}=\nabla_{X_{n+i}} X_{n+j}=0, \nabla_{X_{i}} X_{n+j}=\delta_{i j} \xi, \nabla_{X_{n+i}} X_{j}=-\delta_{i j} \xi, \tag{5}\\
\nabla_{X_{i}} \xi=\nabla_{\xi} X_{i}=-X_{n+i}, \nabla_{X_{n+i}} \xi=\nabla_{\xi} X_{n+i}=X_{i} .
\end{array}\right.
$$

Let $\varphi(t)=\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t), \varphi_{4}(t), \varphi_{5}(t), \varphi_{6}(t), \varphi_{7}(t)\right)$ be a unit speed slant curve in $\mathbb{R}^{7}(-5)$. Then for a tangent vector we have

$$
\begin{equation*}
T=\frac{1}{2}\left(\varphi_{1}^{\prime} \frac{\partial}{\partial x_{1}}+\varphi_{2}^{\prime} \frac{\partial}{\partial x_{2}}+\varphi_{3}^{\prime} \frac{\partial}{\partial x_{3}}+\varphi_{4}^{\prime} \frac{\partial}{\partial y_{1}}+\varphi_{5}^{\prime} \frac{\partial}{\partial y_{2}}+\varphi_{6}^{\prime} \frac{\partial}{\partial y_{3}}+\varphi_{7}^{\prime} \frac{\partial}{\partial z}\right) \tag{6}
\end{equation*}
$$

From equation (4), we have

$$
\begin{aligned}
& X_{1}=2 \frac{\partial}{\partial y_{1}}, \quad X_{2}=2 \frac{\partial}{\partial y_{2}}, \quad X_{3}=2 \frac{\partial}{\partial y_{3}} \\
& X_{4}=\phi X_{1}=2\left(\frac{\partial}{\partial x_{1}}+y_{1}\left(\frac{\partial}{\partial z}\right)\right), X_{5}=\phi X_{2}=2\left(\frac{\partial}{\partial x_{2}}+y_{2}\left(\frac{\partial}{\partial z}\right)\right), \\
& X_{6}=\phi X_{3}=2\left(\frac{\partial}{\partial x_{3}}+y_{3}\left(\frac{\partial}{\partial z}\right)\right), \quad \xi_{1}=2 \frac{\partial}{\partial z}
\end{aligned}
$$

By using these values we have

$$
\begin{aligned}
T & =\frac{1}{2}\left(\varphi_{4}^{\prime} X_{1}+\varphi_{5}^{\prime} X_{2}+\varphi_{6}^{\prime} X_{3}+\varphi_{1}^{\prime} X_{4}+\varphi_{2}^{\prime} X_{5}+\varphi_{3}^{\prime} X_{6}\right. \\
& \left.+\left(\varphi_{7}^{\prime}-\varphi_{1}^{\prime} \varphi_{4}-\varphi_{2}^{\prime} \varphi_{5}-\varphi_{3}^{\prime} \varphi_{6}\right) \xi\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\phi T=\frac{1}{2}\left(-\varphi_{1}^{\prime} X_{1}-\varphi_{2}^{\prime} X_{2}-\varphi_{3}^{\prime} X_{3}+\varphi_{4}^{\prime} X_{4}+\varphi_{5}^{\prime} X_{5}+\varphi_{6}^{\prime} X_{6}\right) \tag{4}
\end{equation*}
$$

For slant curve $\eta(T)=\cos (\theta)$, we have

$$
\begin{equation*}
\varphi_{7}^{\prime}=\varphi_{1}^{\prime} \varphi_{4}+\varphi_{2}^{\prime} \varphi_{5}+\varphi_{3}^{\prime} \varphi_{6}+2 \cos (\theta) \tag{5}
\end{equation*}
$$

Differentiating equation (4) and making use of (5)

$$
\begin{equation*}
\nabla_{T} T=\frac{1}{2}\left[\varphi_{4}^{\prime \prime} X_{1}+\varphi_{5}^{\prime \prime} X_{2}+\varphi_{6}^{\prime \prime} X_{3}+\varphi_{1}^{\prime \prime} X_{4}+\varphi_{2}^{\prime \prime} X_{5}+\varphi_{3}^{\prime \prime} X_{6}\right] \tag{6}
\end{equation*}
$$

Since $\phi T \perp E_{2}$ if and only if

$$
\varphi_{1}^{\prime} \varphi_{1}^{\prime \prime}+\varphi_{2}^{\prime} \varphi_{5}^{\prime \prime}+\varphi_{3}^{\prime} \varphi_{6}^{\prime \prime}=\varphi_{4}^{\prime} \varphi_{1}^{\prime \prime}+\varphi_{5}^{\prime} \varphi_{2}^{\prime \prime}+\varphi_{6}^{\prime} \varphi_{3}^{\prime \prime}
$$

Then using $\theta=\frac{\pi}{3}$ and $\varphi_{4}=\varphi_{5}=\varphi_{6}=0$ in above equations, we get $\varphi_{1}=\sqrt{3} \sin t, \varphi_{2}=0$ and $\varphi_{3}=\sqrt{3} \cos$. Therefore we have $\varphi(t)=\left(\sqrt{3} \sin t, 0, \sqrt{3} \cos t, 0,0,0, \frac{t}{2}\right)$. Now making use of equation (6) we have

$$
\nabla_{T} T=\frac{1}{2}\left[\sqrt{3} \cos t X_{4}-\sqrt{3} \sin t X_{6}\right]
$$

Taking inner product of above equation with itself we have $k_{1}=\sqrt{3}$, which satisfy Theorem 3.2 for the case of osculating order $2, \phi T \perp E_{2}, \delta_{1}=-25$ and $\delta_{2}=8$.

6. Applications

For particular values of f_{1}, f_{2} and f_{3}, we have the following results for Sasakian, cosymplectic and Kenmotsu space forms.
Corollary 6.1. Let $\varphi: I \rightarrow N^{2 n+1}(c)$ be a slant curve of osculating order r in Sasakian space form such that $\varphi T \perp E_{2}$, $p=\min \{r, 4\}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2} & =\frac{c+3}{4}-\frac{c-1}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}} \\
k_{2} k_{3} & =0
\end{aligned}
$$

Corollary 6.2. Let $\varphi: I \rightarrow N^{2 n+1}(c)$ be a slant curve of osculating order r in cosymplectic space form such that $\phi T \perp E_{2}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2} & =\frac{c}{4}-\frac{c}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}} \\
k_{2} k_{3} & =0
\end{aligned}
$$

Corollary 6.3. Let $\varphi: I \rightarrow N^{2 n+1}(c)$ be a slant curve of osculating order r in Kenmotsu space form such that $\phi T \perp E_{2}, p=\min \{r, 4\}$. Then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if

$$
\begin{aligned}
k_{1} & =\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2} & =\frac{c-3}{4}-\frac{c+1}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}} \\
k_{2} k_{3} & =0
\end{aligned}
$$

Theorem 6.4. Let $\varphi: I \rightarrow N^{2 n+1}(c)$ be a slant curve of osculating order r in Sasakian space form such that $\phi T \perp E_{2}$. Then

1. If $\frac{c+3}{4} \leq \frac{c-1}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$ then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if it is geodesic.
2. If $\frac{c+3}{4}>\frac{c-1}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$ then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if either one of the following holds:
(a) φ is of osculating order $r=2, n \geq 2$ and it is a circle with $k_{1}=\sqrt{\frac{c+3}{4}-\frac{c-1}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}}$, where, $\frac{c+3}{4}-\frac{c-1}{4} \cos ^{2} \theta>\frac{\delta_{1}}{\delta_{2}}$.
(b) φ is of osculating order $r=3, n \geq 3$ and it is a helix with $k_{1}^{2}+k_{2}^{2}=\frac{c+3}{4}-\frac{c-1}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}$, where $\frac{c+3}{4}>\frac{c-1}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$.

Corollary 6.5. Let $\varphi: I \rightarrow N^{2 n+1}(c)$ be a slant curve of osculating order r in cosymplectic space form such that $\phi T \perp E_{2}$. Then

1. If $\frac{c}{4} \leq \frac{c}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$ then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if it is geodesic.
2. If $\frac{c}{4}>\frac{c}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$ then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if either one of the following holds:
(a) φ is of osculating order $r=2, n \geq 2$ and it is circle with

$$
k_{1}=\sqrt{\frac{c}{4}-\frac{c}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}} \text {, where } \frac{c}{4}-\frac{c}{4} \cos ^{2} \theta>\frac{\delta_{1}}{\delta_{2}} .
$$

(b) φ is of osculating order $r=3, n \geq 3$ and it is a helix with

$$
k_{1}^{2}+k_{2}^{2}=\frac{c}{4}-\frac{c}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}, \text { where } \frac{c}{4}>\frac{c}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}} .
$$

Corollary 6.6. Let $\varphi: I \rightarrow N^{2 n+1}$ (c) be a slant curve of osculating order r in Kenmotsu space form such that $\phi T \perp E_{2}$ and. Then

1. If $\frac{c-3}{4} \leq \frac{c+1}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$ then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if it is geodesic.
2. If $\frac{c-3}{4}>\frac{c+1}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$ then φ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if either one of the following holds:
(a) φ is of osculating order $r=2, n \geq 2$ and it is circle with

$$
k_{1}=\sqrt{\frac{c-3}{4}-\frac{c+1}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}} \text { where } \frac{c-3}{4}-\frac{c+1}{4} \cos ^{2} \theta>\frac{\delta_{1}}{\delta_{2}} .
$$

(b) φ is of osculating order $r=3, n \geq 3$ and it is a helix with
$k_{1}^{2}+k_{2}^{2}=\frac{c-3}{4}-\frac{c+1}{4} \cos ^{2} \theta-\frac{\delta_{1}}{\delta_{2}}$, where $\frac{c-3}{4}>\frac{c+1}{4} \cos ^{2} \theta+\frac{\delta_{1}}{\delta_{2}}$.
Acknowledgment: The authors are very thankful to the referees for their valuable suggestions towards the improvement of this article.

References

[1] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 14 (2004), 157-183.
[2] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, vol. 203 (Birkauser Boston, Inc., Boston, MA, 2002).
[3] V. Branding, On interpolating sesqui-harmonic maps between Riemannian manifolds, J. Geom. Anal., (2019).
[4] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of S3, Internat. J. Math., 12 (8) (2001), 867-876.
[5] R. Caddeo, S. Montaldo and C.Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math., 130 (2002), 109-123.
[6] B.-Y. Chen and S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45 (2) (1991), 323-347.
[7] J. Eells, Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.
[8] D. Fetcu, Biharmonic Legendre curves in Sasakian space forms. J. Korean Math. Soc., 45 (2008), 393-404.
[9] F. Gurler and C. Ozgur, f-Biminimal immersions, Turk. J. Math., 41 (2017), 564-575.
[10] S. K. Hui, R. S. Lemence and P. Mandal, Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms, Commentationes Mathematicae Universitatis Carolinae, 61(1) (2020), 105-117.
[11] S. K. Hui, S. Uddin, A. H. Alkhaldi and P. Mandal, Invariant submanifolds of generalized Sasakian-space-forms, International Journal of Geometric Methods in Modern Physics, 15 (2018), 1-21.
[12] J. Inoguchi, Biharmonic curves in Minkowski 3-space, Internat. J. Math. Math. Sci., 21 (2003), 1365-1368.
[13] J. Inoguchi, Biharmonic curves in Minkowski 3-space. Part II, Internat. J. Math. Math. Sci.,(2006) Article ID 92349, 4 pages.
[14] G.Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chin. Ann. Math., A7 (1986), 389-402.
[15] F. Karaca, A note on generalized Sasakian space forms with interpolating sesqui harmonic Legendre curves, Mathematical sciences and applications E-notes, 8 (1) (2020), 78-90.
[16] F. Karaca, C. Ozgur and U.C.De, On interpolating sesqui harmonic legendre curves in Sasakian space forms, Int. J.Geom. Methods in Modern Phy., (2020), 2050005.
[17] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Mathematical Journal, 24 (1972), 93-103.
[18] E. Loubeau and S. Montaldo, Biminimal immersions,Proc. Edin. Math. Soc. 51(2008) 421-437.
[19] G. D. Ludden, Submanifolds of cosymplectic manifolds, J. Differential Geometry, 4 (1970), 237-244.
[20] C. Ozgur and S. Guvenc, On some classes of biharmonic Legendre curves in generalised Sasakian space forms, Collect. Math., 65 (2014), 203-218.
[21] C. Ozgur and S. Guvenc, On biharmonic Legendre curves in S-space forms, Turk. J. Math., 38 (2014), 454-461.

[^0]: 2020 Mathematics Subject Classification. 53A04; 53A35
 Keywords. Harmonic maps, biharmonic maps, interpolating sesqui-harmonic slant curves, generalized Sasakian space form
 Received: 29 January 2021; Revised: 25 March 2021; Accepted: 05 April 2021
 Communicated by Mića S. Stanković
 Corresponding author: Shyamal Kumar Hui
 Email addresses: iqbalikgl12@gmail.com (Mohd Iqbal), skhui@math.buruniv.ac.in (Shyamal Kumar Hui), yadavsarvesh74@gmail.com (Sarvesh Kumar Yadav)

