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Abstract. Given a conjugation C on a separable complex Hilbert space H, a bounded linear operator T
on H is said to be C-skew symmetric if CTC = −T∗. This paper describes the maps, on the algebra of all
bounded linear operators acting on H, that preserve the difference of C-skew symmetric operators for every
conjugation C on H.

1. Introduction

The fundamental Hua’s theorems of the geometry of matrices characterize the general form of bijective
maps Φ on various spaces of matrices (Hermitian matrices, symmetric matrices, skew-symmetric matrices,
etc.) that preserve adjacent matrices in both directions, that is A−B is of rank one if and only if Φ(A)−Φ(B)
is of rank one for every A,B. Specially, the well-known Hua’s theorem from [9] states that a bijective map
Φ onMn(K), the space of all n × n matrices over the field K = R or C, preserves adjacent matrices in both
directions if and only if Φ has one of the following two forms

[ai j] 7→ P[τ(ai j)]Q + R or [ai j] 7→ P[τ(ai j)]trQ + R,

where P,Q,R ∈ Mn(K) with P,Q invertible, Atr denotes the transpose of A, and τ is an automorphism ofK.
This beautiful theorem has many applications, for example in the theory of Jordan automorphisms and Lie
automorphisms. For other applications of results on adjacency preserving maps, particularly in the theory
of local homomorphisms, linear preserver problems, and graph theory, we refer to [3, 6, 10] and to Wan’s
book [18], where most of the known results on the geometry of matrices are collected.

Hua’s theorem has motivated other researchers to consider general and similar situations in connection
with the so-called non-linear preservers problems that require to describe the general structure of all maps on
matrix algebras, linear bounded operators algebras or more generally Banach algebras, leaving invariant
certain functions, subsets, or relations, without assuming in advance algebraic conditions such as linearity
or additivity. While in the beginning, these problems were formulated for finite-dimensional vector spaces,
and later more sophisticated non-linear preservers problems defined in the infinite-dimensional context
have been investigated. In the meantime, the interested reader can find in [1–3, 5, 13], and the references
within, more through results on such problems.
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Email addresses: z.amara@ump.ac.ma (Zouheir Amara), m.oudghiri@ump.ac.ma (Mourad Oudghiri), k.souilah@ump.ac.ma

(Khalid Souilah)



Z. Amara et al. / Filomat 36:1 (2022), 243–254 244

Throughout this paper, H is a separable complex Hilbert space of dimension at least four, and B(H) is
used to refer to the algebra of all bounded linear operators acting on H. Recall that a conjugation C on H is
a conjugate-linear operator satisfying C2 = I and 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H. An operator T ∈ B(H) is
called C-symmetric (resp. C-skew symmetric) if CTC = T∗ (resp. CTC = −T∗) where T∗ denotes the adjoint of
T, and it is called a complex symmetric operator (resp. skew symmetric operator) if there exists a conjugation C
for which T is C-symmetric (resp. C-skew symmetric).

It is shown in [7] that an operator is skew symmetric if and only if it admits a skew symmetric matrix
representation with respect to some orthonormal basis of H. Thus skew symmetric operators can be viewed
as an infinite dimensional analogue of skew symmetric matrices. Skew symmetric operators have been
studied for many years in the finite dimensional setting. Recently, there has been growing interest in skew
symmetric operators in the infinite dimensional case, and some interesting results have been obtained in
[12, 16, 17].

The concept of skew symmetric operators and complex symmetric operators has numerous applications
in complex analysis, matrix theory, differential equations, function theory and even in quantum mechanics,
see for instance [7, 8, 11, 12, 15–17]. The examples of complex symmetric operators are numerous and
quite diverse. Besides the expected normal operators, we quote as complex symmetric operators: bi-
normal operators, diagonal operators, quadratic operators, Hankel operators, truncated Toeplitz operators
and many standard integral operators such as the Volterra integration operator. As for skew symmetric
operators, the most examples are inspired from the previous ones; for instance the commutator of two
C-symmetric operators is C-skew symmetric.

Recently, in [2] the authors considered a non-linear preserver problem involving complex symmetric
operators. More precisely, they showed that if Φ is a map on B(H) satisfying

T − S is C-symmetric ⇒ Φ(T) −Φ(S) is C-symmetric,

for every T,S ∈ B(H) and every conjugation C on H, then it must have the following form

T 7→ αT + βT∗ + f (T)I + Φ(0),

where α, β ∈ C and f is a functional on B(H) that vanishes at 0.
In this paper, we propose an analogue study for skew symmetric operators. Our arguments are influ-

enced by ideas from [2] and the approaches given therein, but the proofs of our main results require new
ingredients. The fundamental results of this paper can be stated as follow:

Theorem 1.1. Assume that H is infinite dimensional, and let Φ : B(H) → B(H) be a map. Then the following
statements are equivalent:

(i) For every T,S ∈ B(H) and every conjugation C on H,

T − S is C-skew symmetric ⇒ Φ(T) −Φ(S) is C-skew symmetric.

(ii) There exist two complex scalars α, β such that

Φ(T) = αT + βT∗ + Φ(0) for all T ∈ B(H).

We say that a map Φ : B(H)→ B(H) preserves strongly skew-symmetric operators if, for every conjugation
C on H and T ∈ B(H),

T is C-skew symmetric ⇒ Φ(T) is C-skew symmetric.

In [1, Theorem 3], it was shown that a unital linear continuous map on B(H) preserves strongly skew-
symmetric operators if and only if it is the identity map of B(H). We extend this result, as an immediate
consequence of the previous theorem, to additive maps only.
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Corollary 1.2. Assume that H is infinite dimensional, and let Φ : B(H) → B(H) be an additive map. Then Φ
preserves strongly skew-symmetric operators if and only if there exist α, β ∈ C such that Φ(T) = αT + βT∗ for all
T ∈ B(H).

Unfortunately, the approach used here does not allow us to obtain an analogue result of Theorem 1.1
in the setting of finite-dimensional Hilbert spaces. However, we focus to describe additive maps on B(Cn),
with n ≥ 4, preserving strongly skew-symmetric operators as an extension of [1, Theorem 4].

Theorem 1.3. Let Φ : B(Cn)→ B(Cn) be an additive map. Then the following statements are equivalent:

(i) Φ preserves strongly skew-symmetric operators.
(ii) There exist α, β ∈ C and an additive map Ψ : B(Cn)→ B(Cn) vanishing on sln(C), the subspace of all operators

with trace zero, such that
Φ(T) = αT + βT∗ + Ψ(T) for all T ∈ B(Cn).

In the next section, we shall establish some useful results to prove the above two theorems.

2. Proof of main results

Throughout the rest of the paper, Φ : B(H)→ B(H) is a map satisfying the first assertion of Theorem 1.1.
Moreover, as the map Φ − Φ(0) satisfies the same property as Φ, there is no loss of generality in assuming
that Φ(0) = 0. In this case, Φ preserves strongly skew symmetric operators.

For simplicity of notations, we make the following definition.

Definition 2.1. Let T,S ∈ B(H). We will write T ∼ S if for every conjugation J on H,

T is J-skew symmetric ⇒ S is J-skew symmetric.

Note that our map Φ satisfies A − B ∼ Φ(A) − Φ(B) for every A,B ∈ B(H). In particular, since Φ(0) = 0,
we have also A ∼ Φ(A) for every A ∈ B(H).

In what follows, the symbol ⊕will always stand for an orthogonal sum. We reformulate the result of [1,
Lemma 7] as follow.

Lemma 2.2. Let T,S ∈ B(H) be such that T = F ⊕ 0 with respect to an orthogonal decomposition of H and F is a
skew symmetric operator for some conjugation C. If T ∼ S, then S = R ⊕ 0 with respect to the same decomposition of
H and R is a C-skew symmetric operator.

Remark 2.3. (i) Let T,S ∈ B(H). If JTJ = S∗ for every conjugation J on H, then T = S = µI for some µ ∈ C.
Moreover, if T is skew symmetric, thus T = 0. Indeed, since J′ JT = TJ′ J and every unitary operator is the
product of two conjugations (see [8, Theorem 1]), we get that T commutes with every unitary operator in B(H).
This implies that T = S = µI for some scalar µ.

(ii) Let T,S be bounded linear operators between Hilbert spaces. If JTJ′ = S for every conjugations J, J′, then
T = S = 0. Indeed, as in the the previous assertion, we get that UT = TV for every unitary operators U, V,
and so T = S = 0.

The next lemma will be needed throughout the paper.

Lemma 2.4. Consider an orthogonal decomposition H = H1 ⊕ · · · ⊕ H5 where dim H1 = dim H2 and dim H3 =
dim H4, and let Eo,Fo ∈ B(H) be the operators defined by

Eo = I ⊕ −I ⊕ 0 ⊕ 0 ⊕ 0 and Fo = 0 ⊕ 0 ⊕ I ⊕ −I ⊕ 0.

For every A,B ∈ B(H), if A − B = λEo + µFo for some λ, µ ∈ C, then there exist λ′, µ′ ∈ C such that

Φ(A) −Φ(B) = λ′Eo + µ′Fo.

Moreover, if µ is zero, then so is µ′, and Φ(A) −Φ(B) = λ′′(A − B) for some λ′′ ∈ C.
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Proof. Let A,B ∈ B(H) be such that A − B = λEo + µFo for some λ, µ ∈ C, and set F = λI ⊕ −λI ⊕ µI ⊕ −µI
with respect to the subspace G := H1 ⊕ · · · ⊕H4. Fix unitary operators U : H1 → H2 and V : H3 → H4. Now,
take two arbitrary conjugations J1, J3 on H1,H3 respectively, and put

C =


0 J1U∗ 0 0

UJ1 0 0 0
0 0 0 J3V∗

0 0 VJ3 0

 .
It is easy to check that C is a conjugation on G for which the operator F is skew symmetric. Since A−B = F⊕0
and A − B ∼ Φ(A) −Φ(B), it follows from Lemma 2.2 that

Φ(A) −Φ(B) = R ⊕ 0

accordingly to the decomposition H = G ⊕H5, where R is a C-skew symmetric operator on G. Taking into
account that CRC = −R∗, and by writing

R =


T1 T2 S1 S2
T3 T4 S3 S4
R1 R2 Q1 Q2
R3 R4 Q3 Q4

 ,
simple matrix calculations show that

J1U∗T4UJ1 J1U∗T3 J1U∗ J1U∗S4VJ3 J1U∗S3 J3V∗

UJ1T2UJ1 UJ1T1 J1U∗ UJ1S2VJ3 UJ1S1 J3V∗

∗ ∗ J3V∗Q4VJ3 J3V∗Q3 J3V∗

∗ ∗ VJ3Q2VJ3 VJ3Q1 J3V∗

 = −


T∗1 T∗3 R∗1 R∗3
T∗2 T∗4 R∗2 R∗4
∗ ∗ Q∗1 Q∗3
∗ ∗ Q∗2 Q∗4

 .
Accordingly,

J1U∗S4VJ3 = −R∗1, J1U∗S3 J3V∗ = −R∗3, UJ1S2VJ3 = −R∗2, UJ1S1 J3V∗ = −R∗4,

UJ1T2UJ1 = −T∗2, J1U∗T3 J1U∗ = −T∗3, J3V∗Q3 J3V∗ = −Q∗3, VJ3Q2VJ3 = −Q∗2,

J1U∗T4UJ1 = −T∗1, J3V∗Q4VJ3 = −Q∗1.

As J1 and J3 are arbitrary, we get easily from Remark 2.3 (ii) that Si = Ri = 0 for 1 ≤ i ≤ 4. On
the other hand, considering the equality UJ1T2UJ1 = −T∗2, we see that T2U is skew-symmetric, and so
T2 = 0 by Remark 2.3 (i). In a similar way, we obtain that T3 = Q3 = Q2 = 0. Furthermore, we get from
J1U∗T4UJ1 = −T∗1 that U∗T4U is a scalar multiple of the identity, and hence so is T4. Thus, T4 = −λ′I and
T1 = λ′I for some λ′ ∈ C. Analogously, we have Q4 = −µ′I and Q1 = µ′I for some µ′ ∈ C. Therefore,

Φ(A) −Φ(B) = R ⊕ 0 = λ′I ⊕ −λ′I ⊕ µ′I ⊕ −µ′I ⊕ 0 = λ′Eo + µ′Fo.

Finally, if µ = 0, then A − B is zero on (H1 ⊕H2)⊥, and so is Φ(A) −Φ(B) by the previous lemma because
(A − B)|H1⊕H2 = λI ⊕ −λI is skew-symmetric with respect to the conjugation C =

(
0 J1U∗

UJ1 0

)
. Thus, µ′ = 0.

Given two non-zero vectors u, v ∈ H, we denote by u ⊗ v the rank one operator given by (u ⊗ v)(x) =<
x, v > u for all x ∈ H.

Let F2(H) denote the subset of B(H) of all operators of the form e ⊗ e − f ⊗ f where e, f ∈ H are linearly
independent unit vectors.

Remark 2.5. Each operator A ∈ F2(H) can be represented by

A = α(I ⊕ −I ⊕ 0)

with respect to an orthogonal decomposition H = H1⊕H2⊕H3 with dim H1 = dim H2 = 1 and α ∈ C. Indeed, since
A is a normal operator of trace zero, we can find orthonormal vectors e1, e2 in the range of A and a non-zero α ∈ C
such that A = α(e1 ⊗ e1 − e2 ⊗ e2). Thus, it suffices to take H1 = Span{e1}, H2 = Span{e2} and H3 = Span{e1, e2}

⊥.
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The next result gives us a partial information on the form of Φ, and it will be extremely useful for other
lemmas.

Lemma 2.6. There exists a map h : C→ C such that

Φ
(
λA + µB

)
= h(λ)A + h(µ)B,

for all linearly independent operators A,B ∈ F2(H) and all λ, µ ∈ C.

Proof. First, we claim that there exists a map h : C → C such that Φ (λA) = h(λ)A for every A ∈ F2(H) and
λ ∈ C.

Let A = u ⊗ u − v ⊗ v be an operator in F2(H). According to the previous remark and Lemma 2.4, for
every λ ∈ C, there exists a unique scalar hu,v(λ) such that

Φ (λA) = hu,v(λ)A.

Let us show that hu,v does not depend on u and v. For this, we start by showing that we can replace
in hu,v the vector u (resp. v) by another unit vector linearly independent with v (resp. u). Without loss of
generality, we take a unit vector w ∈ H such that {v,w} is a linearly independent set, and we will establish
that hu,v = hw,v. Observe that if u and w are linearly dependent, then u = αw for some unimodular α ∈ C
and so hu,v = hαw,v = hw,v. Hence, we may assume that u and w are linearly independent. Clearly

λA − λ(w ⊗ w − v ⊗ v) = λ(u ⊗ u − w ⊗ w).

Hence, we get by Lemma 2.4 and Remark 2.5 that

Φ(λA) −Φ(λ(w ⊗ w − v ⊗ v)) = c(u ⊗ u − w ⊗ w)

for some c ∈ C. That is
hu,v(λ)A − hw,v(λ)(w ⊗ w − v ⊗ v) = c(u ⊗ u − w ⊗ w).

Hence, it may be concluded that(
hu,v(λ) − c

)
u ⊗ u +

(
hw,v(λ) − hu,v(λ)

)
v ⊗ v =

(
hw,v(λ) − c

)
w ⊗ w

Since v and w are linearly independent, we can find a vector e satisfies 〈e, v〉 = 1 and 〈e,w〉 = 0. Applying
the above operator equality to e, we get

(hu,v(λ) − c)〈e,u〉u + (hw,v(λ) − hu,v(λ))v = 0,

and so hu,v(λ) = hw,v(λ).
Now let u′, v′ ∈ H be two other linearly independent unit vectors, and let us show that hu,v = hu′,v′ .

Obviously, either {u′,u} or {u′, v} is a linearly independent set. Without loss of generality, we may suppose
that {u′, v} is a linearly independent set. Hence, it follows by what has already been proved that

hu,v = hu′,v = hu′,v′ .

Therefore, Φ (λA) = h(λ)A for every A ∈ F2(H) and λ ∈ C.
Now, let µ ∈ C, and let B ∈ F2(H) be linearly independent with A. Since λA + µB − λA = µB and

λA + µB − µB = λA, we infer by Lemma 2.4 that

Φ
(
λA + µB

)
−Φ(λA) = Φ

(
λA + µB

)
− h(λ)A = cB

and
Φ

(
λA + µB

)
−Φ(µB) = Φ

(
λA + µB

)
− h(µ)B = c′A

for some c, c′ ∈ C. Consequently h(µ)B − h(λ)A = cB − c′A, and so h(λ) = c′ and h(µ) = c, which establishes
the desired result.
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Now, we describe explicitly the form of the map h obtained in the previous lemma.

Lemma 2.7. There exist two complex numbers α and β such that

h(z) = αz + βz for every z ∈ C. (1)

Proof. We begin by proving that h is additive. Let z, z′ ∈ C, and consider A,B ∈ F2(H) given by A =
e1 ⊗ e1 − e2 ⊗ e2 and B = e3 ⊗ e3 − e4 ⊗ e4 where {e1, e2, e3, e4} is an orthonormal set. On account of the previous
lemma, we have

Φ((z + z′)A + zB) = h(z + z′)A + h(z)B and Φ(z′A) = h(z′)A.

But, since (z + z′)A + zB − z′A = z(A + B) = zI ⊕ (−zI) ⊕ 0 with respect to H = Span{e1, e3} ⊕ Span{e2, e4} ⊕

Span{e1, . . . , e4}
⊥, Lemma 2.4 implies that

Φ((z + z′)A + zB) −Φ(z′A) = c(A + B)

for some c ∈ C. This implies that

h(z + z′)A + h(z)B − h(z′)A = c(A + B),

and so h(z + z′) − h(z′) = c = h(z). Thus, h is additive as claimed.
Now, we establish the form of h. For this, we start by proving that h restricted to real numbers is a scalar

multiple of the identity. There is no loss of generality in assuming that h(t0) is non-zero for a certain real
number t0.

Let t ∈ R be non-zero, and choose two operators F,K ∈ F2(H) linearly independent and having the
same range. Under the fact that t0F + tK is a normal operator of rank two and trace zero, there exist two
orthonormal vectors e1, e2 and a non-zero c ∈ C such that t0F + tK = c(e1 ⊗ e1 − e2 ⊗ e2). Hence,

Φ(t0F + tK) = h(t0)F + h(t)K = h(c)(e1 ⊗ e1 − e2 ⊗ e2).

It follows that

h(c)t0F + h(c)tK − h(t0)cF − h(t)cK = h(c)t0F + h(c)tK − c (h(t0)F + h(t)K)
= h(c)t0F + h(c)tK − h(c)c(e1 ⊗ e1 − e2 ⊗ e2)
= h(c)t0F + h(c)tK − h(c)(t0F + tK) = 0,

and so
h(t0)

t0
=

h(c)
c

=
h(t)

t
,

because F,K are linearly independent. Consequently, for δ0 =
h(t0)

t0
, we get h(t) = δ0t for every t ∈ R.

Note that the operator t0F + tK remains normal of rank two and trace zero if t0 and t are replaced by
purely imaginary non-zero numbers. Accordingly, we obtain in the same way the existence of a complex
number δ′ satisfying h(it) = δ′it for every t ∈ R. Therefore, by setting δ1 = δ′i, we obtain that h(it) = δ1t for
every t ∈ R.

Letting z = a + ib ∈ Cwhere a and b are real numbers, we get that

h(z) = h(a) + h(ib) = δ0a + δ1b

=
δ0 − iδ1

2
(a + ib) +

δ0 + iδ1

2
(a − ib)

= αz + βz,

where α = 2−1(δ0 − iδ1) and β = 2−1(δ0 + iδ1). This finishes the proof.

For an operator T ∈ B(H), write ran(T) for its range and ker(T) for its kernel.
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Lemma 2.8. Consider an orthogonal decomposition H = H1 ⊕ · · · ⊕ H5 where dim H1 = dim H2 and dim H3 =
dim H4. Let Eo,Fo ∈ B(H) be defined by

Eo = I ⊕ −I ⊕ 0 ⊕ 0 ⊕ 0 and Fo = 0 ⊕ 0 ⊕ I ⊕ −I ⊕ 0.

Then
Φ(λEo + µFo) = h(λ)Eo + h(µ)Fo for every λ, µ ∈ C.

Proof. Let λ, µ ∈ C, and put A = λEo + µFo. By Lemma 2.4, we can write Φ(A) = λ′Eo + µ′Fo. Choose an
orthonormal system {e1, . . . , e4}where ei ∈ Hi, and set F = e1 ⊗ e1 − e2 ⊗ e2 and K = e3 ⊗ e3 − e4 ⊗ e4. Note that
we can represent

A − (λF + µK) = λI ⊕ −λI ⊕ µI ⊕ −µI ⊕ 0

with respect to the new decomposition H = H′1 ⊕ · · · ⊕ H′5 where H′i = Hi 	 Span{ei} for 1 ≤ i ≤ 4 and
H′5 = Span{e1, . . . , e4} ⊕H5. It follows by Lemma 2.6 that Φ(λF +µK) = h(λ)F + h(µ)K, and by Lemma 2.4 that(

Φ(A) −Φ(λF + µK)
)
|H′5

=
(
Φ(A) − h(λ)F − h(µ)K

)
|H′5

= 0.

Computing for e1 and e3, we obtain that λ′ = h(λ) and µ′ = h(µ).

In the sequel, H is assumed to be infinite dimensional. Recall that an orthogonal projection is said to be
a proper projection if its kernel and range are infinite dimensional subspaces. We denote by P∞(H) the set of
all proper projections in B(H).

Lemma 2.9. We have
Φ(λP) = h(λ)P for every P ∈ P∞(H) and λ ∈ C.

Proof. Let P ∈ P∞(H) and λ ∈ C. Then, P = 0 ⊕ I ⊕ 0 ⊕ 0 ⊕ 0 with respect to an orthogonal decomposition of
H into infinite-dimensional subspaces. Consider Q,R ∈ P∞(H) defined by

Q = 0 ⊕ I ⊕ I ⊕ 0 ⊕ 0 and R = 0 ⊕ 0 ⊕ 0 ⊕ I ⊕ 0.

Since λ(Q−R)−λP = λ(Q−R−P) = λ(0⊕ 0⊕ I⊕−I⊕ 0), Lemma 2.4 ensures the existence of c ∈ C such that

Φ(λ(Q − R)) −Φ(λP) = c(Q − R − P).

Note that, with respect to a suitable orthogonal decomposition of H into infinite-dimensional subspaces,
we may write Q = I ⊕ 0 ⊕ 0 and R = 0 ⊕ I ⊕ 0, so that Q − R = I ⊕ −I ⊕ 0. Thus, by Lemma 2.8, we have

Φ(λ(Q − R)) = h(λ)(Q − R).

It may be concluded that

Φ(λP) = Φ(λ(Q − R)) − c(Q − R − P) = cP + (h(λ) − c)Q + (c − h(λ))R.

Replacing R by R′ = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ I, we get in a similar way that

Φ(λP) = c′P + (h(λ) − c′)Q + (c′ − h(λ))R′

for some c′ ∈ C. Since {P,Q,R,R′} is a linearly independent set, we infer that c′ = c = h(λ). Therefore,
Φ(λP) = h(λ)P as desired.

In order to establish the form of Φ for a linear combination of proper projections, we start by the
following special case.

Lemma 2.10. Let P,Q ∈ P∞(H) be such that codim ran(P) + ran(Q) = ∞. Then

Φ(λP + µQ) = h(λ)P + h(µ)Q for every λ, µ ∈ C.
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Proof. Suppose first that PQ = 0. The fact that codim ran(P) + ran(Q) = ∞ leads to P = I ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0
and Q = 0 ⊕ I ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 on a suitable orthogonal decomposition of infinite-dimensional subspaces. As

λP + µQ − (λ + µ)Q = λ(P −Q),

Lemma 2.4 implies that
Φ(λP + µQ) −Φ((λ + µ)Q) = c(P −Q)

for some c ∈ C. But, by the previous lemma Φ((λ + µ)Q) = h(λ + µ)Q, and then

Φ(λP + µQ) = cP + (h(λ + µ) − c)Q.

Consider A = λI ⊕ µI ⊕ λI ⊕ −λI ⊕ µI ⊕ −µI. Since

A − (λP + µQ) = 0 ⊕ 0 ⊕ λI ⊕ −λI ⊕ µI ⊕ −µI,

we infer by Lemma 2.4 that
(
Φ(A) −Φ(λP + µQ)

)
|ran(P) = 0, and thus Φ(A)|ran(P) = cI. According to Lemma

2.8, we have
Φ(A) = h(λ)I ⊕ h(µ)I ⊕ h(λ)I ⊕ −h(λ)I ⊕ h(µ)I ⊕ −h(µ)I,

that is Φ(A)|ran(P) = h(λ)I. Therefore, c = h(λ) and so Φ(λP + µQ) = h(λ)P + h(µ)Q.
Now, for the general case, we can choose a proper projection R such that RP = RQ = 0. Hence, Lemma

2.4 asserts that
Φ(λP + µQ) −Φ(λR + µQ) = c′(P − R)

for some c′ ∈ C. Taking into account the previous case, we get that

Φ(λP + µQ) = h(λ)R + h(µ)Q + c′(P − R).

Since the choice of R is arbitrary, we obtain necessary that h(λ) = c′, and thus

Φ(λP + µQ) = h(λ)P + h(µ)Q.

This completes the proof.

Lemma 2.11. Let Pi ∈ P∞(H), 1 ≤ i ≤ n, be such that codim ran(P1) + · · · + ran(Pn) = ∞. Then, for every
λ1, . . . , λn ∈ C, we have

Φ

 n∑
i=1

λiPi

 =

n∑
i=1

h(λi)Pi. (2)

Proof. The proof is by induction on n. According to Lemmas 2.9 and 2.10, we can assume that (2) holds for
a fixed n ≥ 2.

Let λi ∈ C and Pi ∈ P∞(H), 1 ≤ i ≤ n + 1, where codim ran(P1) + · · · + ran(Pn+1) = ∞. The fact that h is
additive allows to assume, without loss of generality, that Pi , P j for i , j.

Firstly, consider the particular case when Pn+1Pn = Pn+1P1 = 0. Let K ∈ {P1,Pn}. Clearly, the operator
Pn+1−K can be written as I⊕−I⊕0 with respect to a suitable orthogonal decomposition of infinite-dimensional
subspaces, and hence by Lemma 2.4 we have

Φ

n+1∑
i=1

λiPi

 −Φ

 n∑
i=1

λiPi + λn+1K

 = cK(Pn+1 − K)

for some cK ∈ C. From induction hypothesis, we obtain

Φ

 n∑
i=1

λiPi + λn+1K

 =

n∑
i=1

h(λi)Pi + h(λn+1)K.
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Consequently,

Φ

n+1∑
i=1

λiPi

 − n∑
i=1

h(λi)Pi = h(λn+1)K + cK(Pn+1 − K).

Writing this equality for K = P1 and for K = Pn, we get that

h(λn+1)P1 + c1(Pn+1 − P1) = h(λn+1)Pn + cn(Pn+1 − Pn).

The multiplication by Pn+1 leads to c1 = cn, and so

(h(λn+1) − c1)P1 = (h(λn+1) − c1)Pn.

As P1 , Pn, we obtain h(λn+1) = c1 and

Φ

n+1∑
i=1

λiPi

 =

n+1∑
i=1

h(λi)Pi.

Now, we consider the general case. As codim ran(P1) + · · · + ran(Pn+1) = ∞, we can choose Q ∈ P∞(H)
such that QPi = 0 for every 1 ≤ i ≤ n + 1. From Lemma 2.4, there is c ∈ C such that

Φ

n+1∑
i=1

λiPi

 −Φ

 n∑
i=1

λiPi + λn+1Q

 = c(Pn+1 −Q).

On the other hand, by the previous case, we have

Φ

 n∑
i=1

λiPi + λn+1Q

 =

n∑
i=1

h(λi)Pi + h(λn+1)Q.

Therefore,

Φ

n+1∑
i=1

λiPi

 =

n∑
i=1

h(λi)Pi + cPn+1 + (h(λn+1) − c)Q.

Since Q is not unique, we necessary get that c = h(λn+1), and so

Φ

n+1∑
i=1

λiPi

 =

n+1∑
i=1

h(λi)Pi,

as desired.

Remark 2.12. Given two subspaces M,N ⊆ H of infinite dimension and codimension, there exist two orthogonal
subspaces M1,M2 of M such that

dim Mi = dim M 	Mi = codim Mi + N = ∞, for i ∈ {1, 2}.

Indeed, take an orthonormal basis {un : n ≥ 1} of N⊥ and write un = xn + yn where xn ∈ M and yn ∈ M⊥.
Choose a subsequence {xnk }k of {xn}n so that the subspace K = M 	 Span{xnk : k ≥ 1} has infinite dimension. Then
unk ∈ K⊥ ∩ N⊥ for every k ≥ 1. Therefore, every orthogonal infinite-dimensional subspaces M1, M2 of K satisfy the
requirement properties.

Lemma 2.13. Let Pi ∈ P∞(H), 1 ≤ i ≤ n, and let Q j ∈ P∞(H), 1 ≤ j ≤ m, be such that codim ran(Q1) + · · · + ran(Qm) =
∞. Then, for every λ1, . . . , λn, µ1, . . . , µm ∈ C, we have

Φ

 n∑
i=1

λiPi +

m∑
j=1

µ jQ j

 =

n∑
i=1

h(λi)Pi +

m∑
j=1

h(µ j)Q j. (3)
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Proof. We proceed by induction on n. It is customary to use the standard convention that the sum over an
empty set is zero, and hence the case n = 0 is proved in Lemma 2.11.

Suppose that (3) holds for n ≥ 0. Let Pi ∈ P∞(H), 1 ≤ i ≤ n + 1, and let Q j ∈ P∞(H), 1 ≤ j ≤ m, be
such that codim ran(Q1) + ... + ran(Qm) = ∞. Taking M = ran(Pn+1) and N = ran(Q1) + · · · + ran(Qm) in the
previous remark, we can easily construct proper projections R1 and R2 that fulfill {R1,R2,Pn+1} is a linearly
independent set, ran(Rk) ⊂ ran(Pn+1) and

dim ran(Pn+1 − Rk) = codim ran(Rk) + ran(Q1) + · · · + ran(Qm) = ∞,

for k = 1, 2. Fix k ∈ {1, 2}, and set

A =

n+1∑
i=1

λiPi +

m∑
j=1

µ jQ j and B =

n∑
i=1

λiPi + 2λn+1Rk +

m∑
j=1

µ jQ j.

Since ran(Rk) ⊂ ran(Pn+1), we can write Pn+1−2Rk = I⊕−I⊕0 with respect to the orthogonal decomposition
H = ran(Pn+1 − Rk) ⊕ ran(Rk) ⊕ ker(Pn+1). As A − B = λn+1(Pn+1 − 2Rk), it follows from Lemma 2.4 and
induction hypothesis that

Φ(A) −Φ(B) = Φ(A) −

 n∑
i=1

h(λi)Pi + 2h(λn+1)Rk +

m∑
j=1

h(µ j)Q j


= ck(Pn+1 − 2Rk)

for some ck ∈ C, and so

Φ(A) =

n∑
i=1

h(λi)Pi +

m∑
j=1

h(µ j)Q j + ckPn+1 + (2h(λn+1) − 2ck)Rk.

We deduce that
c1Pn+1 + (2h(λn+1) − 2c1)R1 = c2Pn+1 + (2h(λn+1) − 2c2)R2,

and hence 2h(λn+1) − 2c1 = 0, that is c1 = h(λn+1). Therefore

Φ(A) =

n+1∑
i=1

h(λi)Pi +

m∑
j=1

h(µ j)Q j,

the desired equality.

From [14, Corollary 2.3], every operator on H is a linear combination of sixteen orthogonal projections.
It follows that every operator on H is a finite linear combination of proper projections. Indeed, for a given
projection P, H can be decomposed as an orthogonal sum of ran(P) and ker(P). When ran(P) (resp. ker(P))
has infinite-dimension, we decompose it as an orthogonal sum of two infinite-dimensional subspaces, and
we write P = I ⊕ I ⊕ 0 = I ⊕ 0 ⊕ 0 + 0 ⊕ I ⊕ 0 (resp. P = I ⊕ 0 ⊕ 0 = I ⊕ I ⊕ 0 − 0 ⊕ I ⊕ 0).

Now, we present the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.1] (i)⇒(ii). Let α and β be the complex numbers obtained in Lemma 2.7, and let
T ∈ B(H). Then, there are complex numbers λ1, . . . , λn and proper projections Pi ∈ P∞(H), 1 ≤ i ≤ n, such
that T =

∑n
i=1 λiPi. Taking m = 1 in the previous lemma, we get that

Φ(T) = Φ

 n∑
i=1

λiPi

 = Φ

n−1∑
i=1

λiPi + λnPn

 =

n∑
i=1

h(λi)Pi

= α

 n∑
i=1

λiPi

 + β

 n∑
i=1

λiPi

 = αT + βT∗.
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The implication (ii)⇒(i) follows immediately from the fact that for a fixed conjugation C on H, the set of
C-skew symmetric operators forms a ∗-closed subspace of B(H).

For T ∈ B(Cn), we denote by tr(T) the trace of T. We present now the proof of Theorem 1.3.

Proof. [Proof of Theorem 1.3] (i)⇒(ii). First, we establish the form of Φ on the set of scalar multiple of
rank-one projections. Let u ∈ Cn be a unit vector, and let λ ∈ C. We can choose an orthonormal basis
{ek}1≤k≤n of Cn such that e1 = u. It follows from Lemma 2.6 that Φ(λ(e1 ⊗ e1 − ek ⊗ ek)) = h(λ)(e1 ⊗ e1 − ek ⊗ ek)
for every 2 ≤ k ≤ n, and hence

Φ (nλu ⊗ u − λI) = Φ

 n∑
k=2

λ(e1 ⊗ e1 − ek ⊗ ek)

 =

n∑
k=2

Φ (λ(e1 ⊗ e1 − ek ⊗ ek))

=

n∑
k=2

h(λ) (e1 ⊗ e1 − ek ⊗ ek) = nh(λ)u ⊗ u − h(λ)I.

Therefore, we get that

Φ(λu ⊗ u) = h(λ)u ⊗ u +
1
n

[Φ(λI) − h(λ)I] .

Note that h(λ) = αλ + βλ for every λ ∈ C by Lemma 2.7. Since, by the spectral theorem [4, Theorem
II.7.6], every normal operator N on Cn is a linear combination of rank-one projections ui ⊗ ui, it may be
concluded that

Φ(N) = Φ

 n∑
i=1

λiui ⊗ ui

 =

n∑
i=1

Φ(λiui ⊗ ui)

=

n∑
i=1

(αλi + βλi)ui ⊗ ui +

n∑
i=1

1
n

[Φ(λiI) − h(λi)I]

= αN + βN∗ +
1
n

(Φ(tr(N)I) − h(tr(N))I) .

This form of Φ remains true for every T ∈ B(Cn) because every operator is the sum of two normal ones. If
we let Ψ(T) = 1

n (Φ(tr(T)I) − h(tr(T))I) for every T ∈ B(Cn), then clearly Ψ is an additive map on B(Cn) that
vanishes on sln(C), and

Φ(T) = αT + βT∗ + Ψ(T).

(ii)⇒(i) follows from the fact that every skew-symmetric operator T has trace zero. Indeed, if M is the
representation matrix of T in some orthonormal basis that satisfy Mtr = −M, with Mtr being the transpose
of M, then we should have

tr(T) = tr(M) = −tr(Mtr) = −tr(M) = 0.

We close this paper by the following question:

Question 2.14. It would be interesting to know if an analogue result of Theorem 1.1 can be obtained in the setting
of finite-dimensional Hilbert spaces.
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