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Abstract. Using Mawhin’s coincidence degree theory, we investigate the existence of solutions for a class
of weighted p(t)−Laplacian boundary value problems at resonance and involving left and right Caputo
fractional derivatives. An example is provided to illustrate the main existence results.

1. Introduction

The mathematical modeling of several physical processes leads to a class of boundary value problems
at resonance, that have recently received a lot of attention since any works are devoted to the study of the
existence of solutions for this type of problem, see [5,9,11,13,14,18,19,21,23,31]. For some interesting results
on boundary value problems in literature see [1,8,10,12,26,27,28,29].

Moreover, considerable attention is paid to p-Laplacian differential equations due to their importance
in theory and application of mathematics and physics. Recently, the existence, uniqueness and the stability
of solutions for differential equations with p(t)-Laplacian operator is studied in some papers [30-32], which
is an interesting subject for investigation.

This work is devoted to the study of the existence of solutions for a class of p(t)-Laplacian differential
equations involving left and right Caputo fractional derivatives:

(P)

 Dθ
1−

(
ω (t)φp(t)

(
Dυ

0+ x (t)
))

= f (t, x (t)) , 0 < t < 1,
x (0) = 0, φp(t)

(
Dυ

0+ x (t)
)
|t=0

= φp(t)

(
Dυ

0+ x (t)
)
|t=1

,

where 0 < θ, υ < 1, θ + υ > 1, φp(t) (u) = |u|p(t)−2 u, for (t,u) ∈ [0, 1] × R, p (t) > 1, 0 ≤ t ≤ 1, p ∈ C1 [0, 1] ,
p (0) = p (1) , min0≤t≤1 p (t) = p∗, max0≤t≤1 p (t) = p∗, ω ∈ C [0, 1] , ω (t) > 0, ω (0) = ω (1) , f ∈ C ([0, 1] ×R,R) ,
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Dθ
1− and Dυ

0+ refer to the left and right Caputo fractional derivatives respectively. Note that the problem (P)
is at resonance, i.e., the corresponding homogeneous fractional boundary value problem

Dθ
1−

(
ω (t)φp(t)

(
Dυ

0+ x (t)
))

= 0, 0 < t < 1,

x (0) = 0, φp(t)

(
Dυ

0+ x (t)
)
|t=0

= φp(t)

(
Dυ

0+ x (t)
)
|t=1

,

has x (t) = Iυ0+

(
φp(t) (a)

)
, a ∈ R, as nontrivial solutions. We establish some sufficient conditions for the

existence of at least one solution for problem (P). Since the operator Dθ
1−φp(t)

(
Dυ

0+ x
)

is nonlinear and in order
to apply Mawhin’s coincidence degree, we transform the problem (P) into an equivalent system of two
differential equations

(S)


Dυ

0+ x (t) = φ−1
p(t)

(
(ω (t))−1 z (t)

)
,

Dθ
1−z (t) = f (t, x (t)) ,

x (0) = 0, z (0) = z (1) ,

that permits to write the linear operator as

L (x, z) =
(
Dυ

0+ x (t) ,Dθ
1−z (t)

)
,

see Section 3. Let us mention that the study of resonant boundary value problems involving mixed
fractional-order derivatives have not been extensively studied, we can expose some existing works:

In [30], the authors investigated the existence and uniqueness of solution by the use of some fixed
point theorems and Mawhin’s coincidence degree, in resonance and non resonance cases, for the following
Riemann-Liouville fractional boundary value problem:

Dp
0+φp(t)

(
Dq

0+ x (t)
)

+ f (t, x (t)) = 0, 0 < t < 1,
x (0) = 0,Dq

0+ x (0) = 0,Dq−1
0+ x (1) = γIq−1

0+ x
(
η
)
,

where 1 < q ≤ 2, 0 < p < 1, 0 < η < 1, γ > 0.
In [31], the authors studied, by means of Mawhin’s coincidence degree, the existence of solutions for

the following Caputo-Riemann-Liouville fractional boundary value problem at resonance:

CDp
0+φp(t)

(
Dq

0+ x (t)
)

= f
(
t, x (t) ,Dq

0+ x (t)
)
, 0 < t < T,

t1−qx (t)|t=0 = 0,Dq
0+ x (t)|t=0 = Dq

0+ x (t)|t=T ,
0 < p, q < 1, 1 < p + q < 2.

Fractional differential equations containing mixed type fractional derivatives have been studied in
some works, by different methods such, Lower and upper solutions method, fixed point theorems..., see
[2,3,4,7,15,16,17].

Next, we start with some necessary background. In Section 3, we prove some lemmas that will used
in the proof of the main results. In Section 4, we give the existence result, then we end this paper by an
illustrative example.

2. Preliminaries

We began by defining Riemann-Liouville fractional integrals and Caputo fractional derivatives, then
we state some of their properties, that can be found in details in [6,20,24,25].

The left and right Riemann-Liouville fractional integrals of order θ > 0, on [a, b] of a function y are
defined respectively by

Iθa+ y(t) =
1

Γ(θ)

∫ t

a
(t − s)θ−1y(s)ds, t > a,

Iθb− y(t) =
1

Γ(θ)

∫ b

t
(s − t)θ−1y(s)ds, t < b.
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The left and the right Caputo derivatives Dθ
a+ and Dθ

b− of orderθ > 0, on [a, b] of the function y ∈ ACn [a, b] ,
are defined

Dθ
a+ y (t) =

1
Γ (n − θ)

∫ t

a
(t − s)n−θ−1 y(n) (s) ds, t > a,

Dθ
b− y (t) =

(−1)n

Γ (n − θ)

∫ b

t
(s − t)n−θ−1 y(n) (s) ds, t < b

respectively, where n = [θ] + 1, [θ] is the integer part of θ.
We present some properties of fractional integrals and Caputo derivatives.
1- The homogeneous fractional differential equations Dq

a+1(t) = 0 and Dq
b−1(t) = 0 have respectively the

following solutions

1(t) =

n−1∑
i=0

ci (t − a)i and 1(t) =

n−1∑
i=0

ai (b − t)i ,

where, ai, ci ∈ R, i = 1, ...,n and n = [q] + 1, if q <N, n = q, if q ∈N.
2- Dθ

a+ Iθa+ y (t) = y (t) , Dθ
b− I

θ
b− y(t) = y(t).

3- Dθ
a+ (t − a)γ−1 =

Γ(γ)
Γ(γ−θ) (t − a)γ−θ−1 ,

Dθ
b− (b − t)γ−1 =

Γ(γ)
Γ(γ−θ) (b − t)γ−θ−1, γ > [θ] + 1.

Now, we present some definitions and notations which will be used later.

Lemma 2.1. [32] For any (t,u) ∈ [0,T] × R, φp(t) (u) = |u|p(t)−2 u is a homeomorphism from R to R and strictly

monotone increasing for any fixed t. Moreover, its inverse operator is defined by φ−1
p(t) = φq(t) (u) = |u|

2−p(t)
p(t)−1 u, where

1
p(t) + 1

q(t) = 1, and is continuous and sends bounded sets to bounded sets.

Let X and Y be two real Banach spaces and let L : domL ⊂ X→ Y be a linear operator.

Definition 2.2. A linear operator L is said to be Fredholm operator of index zero, if ImL is closed subset in Y and
dim ker L = co dim ImL < ∞.

Define the continuous projections P and Q respectively by P : X→ X, Q : Y→ Y such that ImP = ker L,
ker Q = ImL. Then X = ker L ⊕ ker P, Y = ImL ⊕ ImQ, thus L |domL∩ker P :domL ∩ ker P → ImL is invertible,
denote its inverse by KP.

Definition 2.3. Let Ω be an open bounded subset of X such that domL ∩Ω , ∅. The map N : X → Y is said to be
L-compact on Ω if the map QN

(
Ω

)
is bounded and KP (I −Q) N : Ω→ X is compact.

Since ImQ is isomorphic to ker L, there exists an isomorphism J : ImQ → ker L. It is known that the
coincidence equation Lx = Nx is equivalent to x = (P + JQN)x + KP(I −Q)Nx.

Theorem 2.4. ([22]) Let L be a Fredholm operator of index zero and N be L− compact on Ω.Assume that the following
conditions are satisfied :

(1) Lx , λNx for every (x, λ) ∈ [(domL\ker L) ∩ ∂Ω] × (0, 1) .
(2) Nx < ImL for every x ∈ ker L ∩ ∂Ω.
(3) deg (QN |ker L,Ω ∩ ker L, 0) , 0, where Q : Y→ Y is a projection
such that ImL = ker Q.
Then the equation Lx = Nx has at least one solution in domL ∩Ω.
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3. Some Lemmas

We rewrite the problem (P) as an equivalent system (S):

(S)


Dυ

0+ x (t) = φ−1
p(t)

(
(ω (t))−1 z (t)

)
,

Dθ
1−z (t) = f (t, x (t)) ,

x (0) = 0, z (0) = z (1) .

It is clear that if (x, z) is a solution for system (S), then x is a solution for problem (P). Let X be the Banach
product space X = C ([0, 1] ,R) × C ([0, 1] ,R) , with the norm ‖(x, z)‖X = max (‖x‖ , ‖z‖) , where ‖.‖ is the
uniform norm in C ([0, 1] ,R) .

Define the linear operator L : domL ⊂ X→ X by

L (x, z) =
(
Dυ

0+ x (t) ,Dθ
1−z (t)

)
, (3.1)

where

domL =
{
(x, z) ∈ X,Dυ

0+ x,Dθ
1−z (t) ∈ C ([0, 1] ,R) , x (0) = 0, z (0) = z (1)

}
.

Let N : X→ X be the operator

N (x (t) , z (t)) =
(
φ−1

p(t)

(
(ω (t))−1 z (t)

)
, f (t, x (t))

)
, t ∈ [0, 1] ,

then the system (S) can be written as L (x, z) = N (x, z) .

Lemma 3.1. We have

ker L = {(x, z) ∈ domL, (x (t) , z (t)) = (0, a) , a ∈ R, t ∈ [0, 1]} ,

ImL =

{(
y1, y2

)
∈ X,

∫ 1

0
sθ−1y2(s)ds = 0

}
.

Proof. Let U = (x, z) ∈ ker L, then LU = 0, i.e Dυ
0+ x (t) = 0 and Dθ

1−z (t) = 0. From the properties of fractional
derivatives we get x (t) = b and z (t) = a, a, b ∈ R, thus b = 0 by condition x (0) = 0 and consequently
U = (0, a) , a ∈ R.

Let Y =
(
y1, y2

)
∈ ImL, then there exists U = (x, z) ∈ domL, such LU = Y. Thus y1 (t) = Dυ

0+ x (t) and
y2 (t) = Dθ

1−z (t) . Taking into account the properties of fractional integrals and derivatives and the boundary
conditions in the system (S), it yields x (t) = Iυ0+ y1 (t) and∫ 1

0
sθ−1y2 (s) ds = 0. (3.2)

Conversely if (3.2) holds, set (x (t) , z (t)) =
(
Iυ0+ y1 (t) , Iθ1− y2 (t)

)
, then x (0) = 0 and z (0) = z (1), thus (x, z) ∈ domL

and L (x, z) =
(
y1, y2

)
, that is Y =

(
y1, y2

)
∈ ImL. The proof is complete.

Lemma 3.2. The operator L : domL ⊂ X→ X is a Fredholm operator of index zero. The linear projector operators P,
Q : X→ X satisfy

P (x (t) , z (t)) = (0, z (0)) ,

Q
(
y1 (t) , y2 (t)

)
=

(
0, θ

∫ 1

0
sθ−1y2(s)ds

)
.

Furthermore, the operator Kp : ImL→ domL ∩ ker P defined by

Kp
(
y1 (t) , y2 (t)

)
=

(
Iυ0+ y1 (t) , Iθ1− y2 (t)

)
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is the inverse of L |domL∩ker P and satisfies∥∥∥KpY
∥∥∥

X ≤ max
(

1
Γ (υ)

,
1

Γ (θ)

)
‖Y‖X . (3.3)

Proof. Let Y =
(
y1, y2

)
, we claim that the continuous operator Q is a projector. In fact

Q2 (Y (t)) = Q
((

0, θ
∫ 1

0
sθ−1y2(s)ds

))
= Q (Y (t)) ,

and ImL = ker Q.
We claim that L is a Fredholm operator of index zero.

Indeed, since Y = (Y −QY) + QY, then Y − QY ∈ ker Q = ImL, QY ∈ ImQ and ImQ ∩ ImL = {0}, hence
X = ImL ⊕ ImQ. Thus, 1 = dim ker L = dim ImQ = co dim ImL.
Now, Let U = (x, z),

P2U (t) = P (0, z (0)) = (0, z (0)) = PU (t) ,

thus P is a projection and ImP = ker L.
In view of U = (U − PU) + PU, then X = ker P + ker L. Moreover we have ker L ∩ ker P = {0}, thus
X = ker L ⊕ ker P. We claim that the generalized inverse of L is KP. In fact, let Y =

(
y1, y2

)
∈ ImL, then(

LKp

)
Y (t) =

(
Dυ

0+ Iυ0+ y1 (t) ,Dθ
1− I

θ
1− y2 (t)

)
= Y (t) .

Furthermore, if U = (x, z) ∈ domL ∩ ker P, it yields(
KpL

)
U (t) = Kp

(
Dυ

0+ x (t) ,Dθ
1−z (t)

)
=

(
Iυ0+ Dυ

0+ x (t) , Iθ1−D
θ
1−z (t)

)
= (x (t) + x (0) , z (t) + z (1)) .

Since P (x (t) , z (t)) = 0, then z (0) = z (1) = 0, consequently
(
KpL

)
U (t) = U (t) , that implies Kp = (L|domL∩ker P)−1 .

By definition of Kp, we get∥∥∥KpY
∥∥∥

X = max
(∥∥∥Iυ0+ y1

∥∥∥ , ∥∥∥Iθ1− y2

∥∥∥) ≤ max
(

1
Γ (υ)

∥∥∥y1

∥∥∥ , 1
Γ (θ)

∥∥∥y2

∥∥∥)
≤ max

(
1

Γ (υ)
,

1
Γ (θ)

)
‖Y‖X ,

The proof is complete.

4. Existence of solutions

We make the following hypotheses:
(H1) There exist functions α, β ∈ C [0, 1] , such that for all x ∈ R, t ∈ [0, 1] , we have∣∣∣ f (t, x)

∣∣∣ ≤ α (t) |x| + β (t) . (4.1)

(H2) There exists a constant M > 0, such that if
∣∣∣Dυ

0+ x (t)
∣∣∣ > M, for all t ∈ [0, 1] , then∫ 1

0
sθ−1 f (s, x (s)) ds , 0. (4.2)

(H3) There exists a constant M∗ > 0, such that for any (0, a) ∈ ker L with |a| > M∗, either

a
∫ 1

0
sθ−1 f (s, 0) ds < 0, (4.3)
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or

a
∫ 1

0
sθ−1 f (s, 0) ds > 0. (4.4)

Lemma 4.1. Let Ω is be an open bounded subset of X such that domL ∩ Ω , ∅. Under hypothesis (H1), N is
L−compact on Ω.

Proof. To prove that N is L−compact on Ω, it suffices to prove that QN
(
Ω

)
is bounded and KP (I −QN)

(
Ω

)
is compact. Let U = (x, z) ∈ Ω, then there exists r > 0, such that ‖U‖X = max (‖x‖ , ‖z‖) ≤ r. We have

QNU (t) = Q
(
φ−1

p(t)

(
(ω (t))−1 z (t)

)
, f (t, x (t))

)
,

=

(
0, θ

∫ 1

0
sθ−1 f (s, x (s)) ds

)
, t ∈ [0, 1] .

Thanks to hypothesis (H1), we get∣∣∣∣∣∣θ
∫ 1

0
sθ−1 f (s, x (s)) ds

∣∣∣∣∣∣ ≤ ‖α‖ ‖x‖ +
∥∥∥β∥∥∥ ≤ r ‖α‖ +

∥∥∥β∥∥∥ ,
thus

‖QNU‖X ≤ r ‖α‖ +
∥∥∥β∥∥∥ , (4.5)

from which we conclude QN
(
Ω

)
is bounded.

Next, we claim that KP (I −Q) N
(
Ω

)
is compact. In fact, set

$ = max
0≤t≤1

(
(ω (t))

−1
p(t)−1

)
,

so, ∣∣∣∣φ−1
p(t)

(
ω−1 (t) z (t)

)∣∣∣∣ =
∣∣∣(ω (t))−1 z (t)

∣∣∣ 1
p(t)−1
≤ $ ‖z‖

1
P∗−1 ≤ $r

1
P∗−1 , (4.6)

and (4.1) gives∣∣∣ f (t, x (t))
∣∣∣ ≤ r ‖α‖ +

∥∥∥β∥∥∥ . (4.7)

Since

NU (t) =
(
φ−1

p(t)

(
(ω (t))−1 z (t)

)
, f (t, x (t))

)
,

then, taking (4.6) and (4.7) into account, it yields

‖NU‖X ≤ max
(
r ‖α‖ +

∥∥∥β∥∥∥ , $r
1

P∗−1

)
. (4.8)

Now, from the definition of KP and inequalities (3.3), (4.5) and (4.8), we obtain

‖KP (I −Q) NU‖X ≤ max
(

1
Γ (υ)

,
1

Γ (θ)

)
‖(I −Q) NU‖X ,

≤ max
(

1
Γ (υ)

,
1

Γ (θ)

) [
‖NU‖X + ‖QNU‖X

]
,
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≤ max
(

1
Γ (υ)

,
1

Γ (θ)

) [
max

((
r ‖α‖ +

∥∥∥β∥∥∥) , $r
1

P∗−1

)
+

(
r ‖α‖ +

∥∥∥β∥∥∥)] . (4.9)

that implies KP (I −Q) N
(
Ω

)
is uniformly bounded.

Let us prove that KP (I −Q) N
(
Ω

)
is equicontinuous. Define the operators Ti : X→ C [0, 1] , i = 1, 2, by

T1 (x (t) , z (t)) = Iυ0+φ−1
p(t)

(
(ω (t))−1 z (t)

)
,

T2 (x (t) , z (t)) = Iθ1− f (t, x (t)) −
(1 − t)θ

Γ (θ)

∫ 1

0
sθ−1 f (s, x (s)) ds,

then

(KP (I −Q) NU) (t) = (T1 (x (t) , z (t)) ,T2 (x (t) , z (t))) .

To prove that KP (I −Q) N
(
Ω

)
is equicontinuous it suffices to prove that Ti

(
Ω

)
, i = 1, 2 are equicontinuous.

For any U = (x, z) ∈ Ω, and t1, t2 ∈ [0, 1] , t1 < t2, we get by the help of (4.6),

|T1 (x (t1) , z (t1)) − T1 (x (t2) , z (t2))|

=
∣∣∣∣Iυ0+φ−1

p(t)

(
(ω (t1))−1 z (t1)

)
− Iυ0+φ−1

p(t)

(
(ω (t2))−1 z (t2)

)∣∣∣∣ ,
≤

1
Γ (θ)

∫ t1

0

(
(t1 − s)ν−1

− (t2 − s)υ−1
) ∣∣∣∣φ−1

p(s)

(
(ω (s))−1 z (s)

)∣∣∣∣ ds

+
1

Γ (θ)

∫ t2

t1

(t2 − s)υ−1
∣∣∣∣φ−1

p(s)

(
(ω (s))−1 z (s)

)∣∣∣∣ ds,

≤
$r

1
P∗−1

Γ (θ + 1)

(
tυ1 + 2 (t2 − t1)υ) − tυ2

)
→ 0, as t1 → t2.

Furthermore, we have

|T2 (x (t1) , z (t1)) − T2 (x (t2) , z (t2))|
≤

∣∣∣Iθ1− f (t1, x (t1)) − Iθ1− f (t2, x (t2))
∣∣∣

+
(1 − t2)θ − (1 − t1)θ

Γ (θ)

∫ 1

0
sθ−1

∣∣∣ f (s, x (s))
∣∣∣ ds,

≤
1

Γ (θ)

∫ t2

t1

(s − t1)θ−1
∣∣∣ f (s, x (s))

∣∣∣ ds

+
1

Γ (θ)

∫ 1

t2

(
(s − t2)θ−1

− (s − t1)θ−1
) ∣∣∣ f (s, x (s))

∣∣∣ ds

+
(1 − t1)θ − (1 − t2)θ

Γ (θ)

∫ 1

0
sθ−1

∣∣∣ f (s, x (s))
∣∣∣ ds,

≤

2
(
r ‖α‖ +

∥∥∥β∥∥∥)
Γ (θ + 1)

(t2 − t1)θ → 0, as t1 → t2.

So KP (I −Q) N
(
Ω

)
is equicontinuous on [0, 1], and then KP (I −QN) : Ω→ X is compact.

Lemma 4.2. Let Ω1 =
{
U ∈ domL\ker L : LU = λNU for some λ ∈ (0, 1)

}
. If conditions (H1)-(H2) hold, then

Ω1 is bounded.
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Proof. Suppose that U = (x, z) ∈ Ω1, then x (0) = 0 and z (0) = z (1) . Since Iυ0+ Dυ
0+ x (t) = x (t) , then

‖x‖ ≤

∥∥∥Dυ
0+ x

∥∥∥
Γ (υ + 1)

.

Taking into account that NU ∈ ImL, we get
∫ 1

0 sθ−1
∣∣∣ f (s, x (s))

∣∣∣ ds = 0, then by hypothesis (H2), we deduce
that

∣∣∣Dυ
0+ x (t)

∣∣∣ ≤M, for all t ∈ [0, 1] . Hence

‖x‖ ≤
M

Γ (υ + 1)
. (4.10)

In addition we have

z (t) = Iθ1−D
θ
1−z (t) − z (1) ,

using the condition z (0) = z (1) , it yields

z (1) =
1

2Γ (θ)

∫ 1

0
sθ−1Dθ

1−z (s) ds,

that implies

‖z‖ ≤
3
∥∥∥Dθ

1−z
∥∥∥

2Γ (θ + 1)
. (4.11)

Now, since Dθ
1−z (t) = λ f (t, x (t)) for some λ ∈ (0, 1), then in view of hypothesis (H1) and (4.10), we obtain

∥∥∥Dθ
1−z

∥∥∥ ≤ ‖x‖ ‖α‖ +
∥∥∥β∥∥∥ ≤ M ‖α‖

Γ (υ + 1)
+

∥∥∥β∥∥∥ , (4.12)

combining (4.11) and (4.12) it yields

‖z‖ ≤
3

2Γ (θ + 1)

(
M ‖α‖

Γ (υ + 1)
+

∥∥∥β∥∥∥) . (4.13)

From (4.10) and (4.13) we obtain

‖U‖X = max (‖x‖ , ‖z‖) ,

≤ max
(

M
Γ (υ + 1)

,
3

2Γ (θ + 1)

(
M ‖α‖

Γ (υ + 1)
+

∥∥∥β∥∥∥)) < ∞,
which shows that Ω1 is bounded.

Lemma 4.3. Assume that (H3) holds. Then the set

Ω2 = {U ∈ ker L : NU ∈ ImL }

is bounded.

Proof. Let U = (x, z) ∈ Ω2, then x (t) = 0 and z (t) = a, a ∈ R, t ∈ [0, 1] . Now since ImL = ker Q, we get

QNU = 0, thus
∫ 1

0 sθ−1 f (s, 0)ds = 0, which implies by hypothesis (H3) that |a| ≤M∗, so ‖U‖X ≤M∗, hence Ω2
is bounded.
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Lemma 4.4. Assume that conditions (H2) and (H3) hold. Then the set

Ω3 = {U ∈ ker L : −λJU + (1 − λ) QNU = 0, λ ∈ [0, 1]}

is bounded, where J : ker L→ ImQ is the linear isomorphism given by
J (0, c) = (0, c) , ∀c ∈ R.

Proof. Let U0 = (x0, z0) ∈ Ω3, then x0 (t) = 0, z0 (t) = a, a ∈ R, t ∈ [0, 1] . Since λJU0 = (1 − λ) QNU0 then

λa = (1 − λ)θ
∫ 1

0
sθ−1 f (s, 0)ds.

Let 0 < λ < 1, and assume that (4.3) is satisfied, then

λa2 = (1 − λ) aθ
∫ 1

0
sθ−1 f (s, 0)ds < 0,

which contradicts the fact that λa2
≥ 0, consequently |a| ≤ M∗ and ‖U0‖X ≤ M∗, hence Ω3 is bounded. Now

λ = 1, gives a = 0, so U0 = 0. If λ = 0, we get
∫ 1

0 sθ−1 f (s, 0)ds = 0, thus by the help of hypothesis (H3),
it yields |a| ≤ M∗, thus ‖U0‖X ≤ M∗. If we assume that (4.4) holds then we prove by analoguously that
Ω3 = {U ∈ ker L : λJU + (1 − λ) QNU = 0, λ ∈ [0, 1]} is bounded.

Theorem 4.5. Assume that hypotheses (H1)-(H3) hold. Then the problem (P) has at least one solution in X.

Proof. Let Ω to be an open bounded subset of X such that ∪3
i=1Ωi ⊂ Ω. We know by Lemmas 6 and 7, that L

is a Fredholm operator of index zero and N is L-compact on Ω. From Lemma 8, we deduce that LU , λNU
pour tout (U, λ) ∈ [(domL\ker L) ∩ ∂Ω]× (0, 1) . By Lemma 9, we see that NU < ImL pour tout U ∈ ker L∩∂Ω.
Now, let H be the homotopy joining maps ±J and QN :

H (U, λ) = ±λJU + (1 − λ) QNU,

then H (·, 0) = QN and H (·, 1) = ±J. Since Ω3 ⊂ Ω, then H (U, λ) , 0 for every U ∈ ker L ∩ ∂Ω. By the
homotopy property of degree, we get

deg (QN |ker L,Ω ∩ ker L, 0) = deg (H (·, 0) ,Ω ∩ ker L, 0) ,
= deg (H (·, 1) ,Ω ∩ ker L, 0) ,
= deg (±J,Ω ∩ ker L, 0) , 0.

Thanks to Theorem 4, the equation LU = NU has at least one solution in domL ∩ Ω, thus the problem (P)
has at least one solution in X. The proof is completed.

Example 4.6. Let us consider the problem (P) with

θ = 0.6, υ = 0.2, p (t) = 2 + t sin (1 − t) , ω (t) = (1 + (e − 1) t) e−t,

f (t, x) = e−t |sin x|
1 + x2 + et cos t, (t, x) ∈ [0, 1] ×R,

then all hypotheses of Theorem 11 are satisfied indeed,∣∣∣ f (t, x)
∣∣∣ ≤ α (t) |x| + β (t) , with α (t) = e−t, β (t) = et,∫ 1

0
sθ−1 f (s, x (s)) ds ≥

∫ 1

0
sθ−1es cos sds = 2.1571,
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thus condition (H2) is satisfied for any constant M > 0. Moreover for M∗ = 1 > 0, such that for any (0, a) ∈ ker L
with |a| > M∗, we have∫ 1

0
sθ−1 f (s, 0) ds =

∫ 1

0
sθ−1es cos sds = 2.1571 > 0.

then a
∫ 1

0 sθ−1 f (s, 0) ds > 0, if a > 0 or a
∫ 1

0 sθ−1 f (s, 0) ds < 0, if a < 0. Consequently, problem (P) has at least one
solution in X.
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