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Abstract. In this paper, we present necessary and sufficient conditions for X̃ to be idempotent and
orthogonal idempotent, where X̃ ∈ {A †©,AD,AD,†,A†,D,Aw©

}. Several characteristics when X̃ is idempotent
and orthogonal idempotent are derived by core-EP decomposition. Additionally, we give some equivalent
conditions when matrix A is orthogonal idempotent, using the properties of some generalized inverses of
A.

1. Introduction

Idempotent and orthogonal idempotent matrices are very important concepts in linear algebra, which
have been widely used in matrix theory [16], physics [14], statistics and econometrics [18], or numerical
analysis [10]. A similar statement can be made about the generalized inverses of matrices, which is a
useful tool in areas such as cryptography [12], chemical equations [19], optimization theory [11] and so on.
Recently, Baksalary and Trenkler studied characterizations of matrices whose Moore-Penrose is idempotent
by the Hartwing-Spindelböck decomposition [2]. And some original features and new properties have been
given in [2]. The present paper is devoted to investigating characterizations for some generalized inverses
to be idempotent and orthogonal idempotent by utilizing the core-EP decomposition.

Let Cm×n be the set of m × n complex matrices. We denote the identity matrix of order n by In, range
space, null space, conjugate transpose and rank of A ∈ Cm×n by R(A), N(A), A∗ and r(A), respectively. The
index of A ∈ Cn×n denoted by ind(A) is the smallest integer k ≥ 0 such that r(Ak) = r(Ak+1). Let Cn×n

k be the
set consisting of n × n complex matrices with index k.

For the readers’ convenience, we first recall the definitions of some types of generalized inverses. For
A ∈ Cm×n, the Moore-Penrose(MP) inverse of A is the unique matrix A† ∈ Cn×m satisfying the four Penrose
equations [16]: AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The Drazin inverse of A ∈ Cn×n
k , denoted by AD [7], is defined to be the unique matrix X ∈ Cn×n satisfying

the following equations :

XAX = X, AX = XA, XAk+1 = Ak.
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In particular, the Drazin inverse of A is called the group inverse of A which is denoted by A# if ind(A) ≤ 1.
Recall that the existence of the group inverse is restricted to the matrices of index 1(known also as the core
matrices). For results on Drazin inverse and idempotents, see [4, 5, 13].

In addition, in this paper we use some properties of core-EP inverse, DMP inverse, dual DMP inverse
and weak group inverse. Definitions of these generalized inverses are listed below.

For a matrix A ∈ Cn×n
k , the unique solution X ∈ Cn×n of the following equations

XAX = X, R(X) = R(X∗) = R(Ak),

is called the core-EP inverse of A written as A †© [17].
The DMP inverse of A ∈ Cn×n

k is defined as the unique matrix X ∈ Cn×n that satisfying:

XAX = X, XA = ADA, AkX = AkA†.

Such solution X is denoted by AD,†. Moreover, it was certified that AD,† = ADAA†. Also, the dual DMP
inverse of A is defined to be the matrix A†,D = A†AAD [15].

In 2018, Wang and Chen [21] defined the weak group inverse X of A ∈ Cn×n
k satisfying:

AX2 = X, AX = A †©A,

denoted by Aw©. Moreover, it was proved that Aw© = (A †©)2A.
For convenience, we adopt the following notations: CP

n and COP
n will stand for the subsets of Cn×n

consisting of idempotent matrices and Hermitian idempotent matrices, respectively, i.e.,

• CP
n = {A | A ∈ Cn×n,A2 = A};

• COP
n = {A | A ∈ Cn×n,A2 = A = A∗} = {A | A ∈ Cn×n,A2 = A = A†}.

The present paper is organized as follows. In Section 2, some necessary and sufficient conditions for
characterizing X̃ as idempotent are given, where X̃ ∈ {A †©,AD,AD,†,A†,D,Aw©

}. In Section 3, some new
properties of X̃ are obtained, when X̃ is orthogonal idempotent. In Section 4, we list some equivalent
conditions when A is orthogonal idempotent, in terms of some generalized inverses of the matrix A.

2. Characterizations of matrices whose some generalized inverses are idempotent

In the section, some necessary and sufficient conditions for the idempotency of A †©, AD, AD,†, A†,D and
Aw© are investigated. We start with the core-EP decomposition.

Wang proposed a new decomposition of A ∈ Cn×n
k , which is referred to as core-EP decomposition [20].

It can be given in what follows.

Lemma 2.1. [20](core-EP decomposition) Let A ∈ Cn×n
k . Then A can be written as the sum of matrices A1 and A2,

i.e., A = A1 + A2, where

(a) A1 ∈ CCM
n ;

(b) Ak
2 = 0;

(c) A∗1A2 = A2A1 = 0.

Lemma 2.2. [20] Let the core-EP decomposition of A ∈ Cn×n be as in Lemma 2.1. Then there exists a unitary matrix
U such that:
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A1 = U
[

T S
0 0

]
U∗, A2 = U

[
0 0
0 N

]
U∗, (2.1)

where T is nonsingular, r(T) = r(Ak) = t and N is nilpotent of index k. Furthermore, the core-EP inverse of
A is

A †© = U
[

T−1 0
0 0

]
U∗. (2.2)

The decomposition of A, A = A1 + A2, where A1 and A2 are given by (2.1), is unique [19, Theorem 2.4].
Matrices A1 and A2 are called core part and nilpotent part, respectively. It is easy to verify that A1 = AA †©A.

Lemma 2.3. [9] Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then

AD = U
[

T−1 (Tk+1)−1T̃
0 0

]
U∗, (2.3)

where T̃ =
k−1∑
j=0

T jSNk−1− j. Furthermore, T̃ = 0 if and only if S = 0.

Lemma 2.4. [6] Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then

A† = U
[

T∗4 −T∗4SN†

(In−t −N†N)S∗4 N† − (In−t −N†N)S∗4SN†

]
U∗, (2.4)

where 4 = (TT∗ + S(In−t −N†N)S∗)−1.

According to Lemma 2.2 and Lemma 2.3, a straightforward computation shows that [9]

AD,† = U
[

T−1 (Tk+1)−1T̃NN†

0 0

]
U∗, (2.5)

A†,D = U
[

T∗4 T∗4T−kT̃
(In−t −N†N)S∗4 (In−t −N†N)S∗4T−kT̃

]
U∗. (2.6)

Lemma 2.5. [21] Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then

Aw© = U
[

T−1 T−2S
0 0

]
U∗. (2.7)

It’s easy to prove that the group inverse of A is idempotent if and only if A is idempotent. In [1], the
authors gave that the core inverse of A is idempotent if and only if A is idempotent. Baksalary and Trenkler
have shown that, in general, the idempotency of a matrix is not inherited by its Moore-Penrose inverse(see
[2]). These authors have given some equivalent conditions for A† to be idempotent. The following results
are given for X̃ to be idempotent, where X̃ ∈ {A †©,AD,AD,†,A†,D,Aw©

}.

Theorem 2.6. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1), X ∈

{A †©,AD,AD,†,Aw©
}. Then X is idempotent if and only if any of the following statements is satisfied:

(a) T = It;

(c) AX = X;

(e) AkXk = X;

(b) Ak = Ak+1;

(d) AXk = Xk;

(f) XAk = Ak.
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Proof. (a). By (2.2), (2.3), (2.5) and (2.7), it is easy to verify that A †©, AD, AD,† and Aw© are idempotents if and
only if T = It.

(b). By A = U
[

T S
0 N

]
U∗,we have

Ak = U
[

Tk T̃
0 0

]
U∗, (2.8)

where T̃ =
k−1∑
j=0

T jSNk−1− j. Thus, we get that

Ak = Ak+1
⇐⇒ U

[
Tk T̃
0 0

]
U∗ = U

[
Tk+1 TT̃

0 0

]
U∗

⇐⇒ T = It.

(c). By (2.2), (2.3), (2.5) and (2.7), we have

X = U
[

T−1 X1
0 0

]
U∗, (2.9)

where X1 ∈ {0, (Tk+1)−1T̃, (Tk+1)−1T̃NN†, T−2S}, in the case when X ∈ {A †©,AD,AD,†,Aw©
}, respectively.

Thus, we obtain that

AX = X ⇐⇒ U
[

It TX1
0 0

]
U∗ = U

[
T−1 X1

0 0

]
U∗

⇐⇒ T = It.

(d) . By (2.9), it follows that

Xk = U
[

T−k T−k+1X1
0 0

]
U∗, (2.10)

where X1 ∈ {0, (Tk+1)−1T̃, (Tk+1)−1T̃NN†, T−2S}, in the case when X ∈ {A †©,AD,AD,†,Aw©
}, respectively.

Since AXk = Xk, it follows that

AXk = Xk
⇐⇒ U

[
T−k+1 T−k+2X1

0 0

]
U∗ = U

[
T−k T−k+1X1
0 0

]
U∗

⇐⇒ T = It.

(e) and ( f ). These proofs are similar to that of (d).

If A†,D is idempotent, it can be verified that each of the statements (a), (b) in Theorem 2.6 holds. However,
we can see that any of the four statements (c), (d), (e), ( f ) in Theorem 2.6 is not satisfied when X = A†,D is
idempotent. We now give the following example to illustrate it.

Example 2.7. Consider the matrix

A =


1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

 .
We have that ind(A) = 2, and

A†,D =


2
3 −

1
3

1
3 0

−
1
3

2
3

1
3 0

1
3

1
3

2
3 0

0 0 0 0

 , A2 =


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

 , (A†,D)2 =


2
3 −

1
3

1
3 0

−
1
3

2
3

1
3 0

1
3

1
3

2
3 0

0 0 0 0

 .
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It is easy to see that AA†,D , A†,D, A(A†,D)2 , (A†,D)2, A2(A†,D)2 , A†,D and A†,DA2 , A2.

Now, the equivalent conditions when A†,D is idempotent are given in what follows.

Theorem 2.8. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then A†,D is

idempotent if and only if any of the following statements is satisfied:

(a) T = It;

(c) A†,DA = A†,D;

(e) (A†,D)kAk = A†,D;

(b) Ak = Ak+1;

(d) (A†,D)kA = (A†,D)k;

(f) AkA†,D = Ak.

Proof. (a). Since (A†,D)2 = A†AD, we have that A†,D is idempotent if and only if A†,D = A†AD. Premultiplying
A†AAD = A†AD by A, we obtain that AAD = AD. By the point (b) of Theorem 2.6, we get T = It.

Conversely, if T = It, it can be directly checked that A†,D = A†AD from (2.3), (2.4) and (2.6).
(b). This follows similarly as in the point (b) of Theorem 2.6.
(c). If A†,D is idempotent, then (A†,D)∗ is also idempotent. It is noteworthy that (A†,D)∗ = (A∗)DA∗(A∗)† =

(A∗)D,†. Thus we now have (A∗)D,† is idempotent, then it follows from condition (c) in Theorem 2.6 that
A∗(A∗)D,† = (A∗)D,†. By taking the conjugate transpose of A∗(A∗)D,† = (A∗)D,†, we now obtain that A†,DA =
A†,D. The above proof is completely reversible.

The proofs of the last three conditions are similar to point (c).

Remark 2.9. If A†,D in Theorem 2.8 is replaced by AD, Theorem 2.8 is still valid.

We know that A†,D ∈ CP
n doesn’t satisfy each of the four statements (c), (d), (e) and ( f ) in Theorem 2.6. Next

theorem gives the necessary and sufficient conditions such that all four statements are satisfied.

Theorem 2.10. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then the

following assertions are equivalent:

(a) T = It andN(N) ⊆ N(S); (b) AA†,D = A†,D;

(c) A(A†,D)k = (A†,D)k; (d) Ak(A†,D)k = A†,D;

(e) A†,DAk = Ak.

Proof. (a)⇒ (b). Notice thatN(N) ⊆ N(S) is equivalent with S(In−t −N†N) = 0. If T = It, then the result can
be directly checked by (2.6).

(b)⇒ (c). It is evident.
(c) ⇒ (a). Note that (A†,D)k=A†(AD)k−1. By (c), we have AA†(AD)k−1 = A†(AD)k−1. Thus, it follows from

(2.3) and (2.4) that[
T−k+1 T−2k+1T̃

0 0

]
=

[
T∗4T−k+1 T∗4T−2k+1T̃

(In−t −N†N)S∗4T−k+1 (In−t −N†N)S∗4T−2k+1T̃

]
,

where T̃ =
k−1∑
j=0

T jSNk−1− j. Hence T∗4 = It, (In−t −N†N)S∗ = 0, which implies T = It, N(N) ⊆ N(S).

(b) ⇒ (d). Combining AA†,D = AAD with AA†,D = A†,D immediately leads to the conclusion that
Ak(A†,D)k = (AD)kAk = ADA = AAD = A†,D.

(d)⇒ (e). By (d) and the fact that Ak(A†,D)k = AAD, we get that A†,DAk = Ak(A†,D)kAk = AADAk = Ak.
(e)⇒ (b). Postmultiplying A†,DAk = Ak by (AD)k we have that A†,D = AAD = AA†,D.
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Similarly, we can also deduce that A †©, AD,† and Aw© don’t satisfy any of the four conditions (c), (d), (e)
and ( f ) in Theorem 2.8 as will be shown in the next example:

Example 2.11. Consider the matrix

A =


1 0 1 2
0 1 1 2
0 0 2 4
0 0 −1 −2

 .
We have that ind(A) = 2, and

A †© = AD,† =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A2 =


1 0 1 2
0 1 1 2
0 0 0 0
0 0 0 0

 .
As in the Example 4.3, we can get that X′A , X′, (X′)2A , (X′)2, (X′)2A2 , X′ and A2X′ , A2 for X′ ∈ {A †©,AD,†

}.

Example 2.12. Let

A =


1 0 1 −1
0 1 1 1
0 0 0 1
0 0 0 0

 .
We have that ind(A) = 2, and

Aw© = (Aw©)2 =


1 0 1 −1
0 1 1 1
0 0 0 0
0 0 0 0

 , A2 =


1 0 1 0
0 1 1 2
0 0 0 0
0 0 0 0

 .
It is easy to see that Aw©A , Aw©, (Aw©)2A , (Aw©)2, (Aw©)2A2 , Aw© and A2Aw© , A2.

The following theorems present some conditions such that A †©, AD,† and Aw© satisfy (c), (d), (e) and ( f )
of Theorem 2.8.

Theorem 2.13. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then the

following assertions are equivalent:

(a) T = It and S = 0;

(c) (A †©)kA = (A †©)k;

(b) A †©A = A †©;

(d) (A †©)kAk = A †©;

(e) AkA †© = Ak.

Proof. (b)⇔ (a). From (2.2), it follows that

A †©A = A †© ⇐⇒ U
[

It T−1S
0 0

]
U∗ = U

[
T−1 0

0 0

]
U∗

⇐⇒ T = It, S = 0.

(c)⇔ (a). The proof is similar to (b)⇔ (a).
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(d)⇔ (a). From (2.2) and (2.8), we obtain that

(A †©)kAk = A †© ⇐⇒ U
[

It T−kT̃
0 0

]
U∗ = U

[
T−1 0

0 0

]
U∗

⇐⇒ T = It, T̃ = 0(where T̃ =

k−1∑
j=0

SN j)

⇐⇒ T = It, S = 0.

(e)⇔ (a). Similar as the part (d)⇔ (a).

Theorem 2.14. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then the

following assertions are equivalent:

(a) T = It andN(N∗) ⊆ N(T̃);

(c) (AD,†)kA = (AD,†)k;

(b) AD,†A = AD,†;

(d) (AD,†)kAk = AD,†;

(e) AkAD,† = Ak.

where T̃ =
k−1∑
j=0

SN j.

Proof. (a) ⇒ (b). We know that N(N∗) ⊆ N(T̃) is equivalent to T̃(In−t − NN†) = 0. Thus the result can be
directly verified by (2.5).

(b)⇒ (c). Evident.
(c)⇒ (a). Using (2.5), by (AD,†)kA = (AD,†)k, we get that[

T−k+1 TkS + T−2kT̃N
0 0

]
=

[
T−k T−2kT̃NN†

0 0

]
.

Hence T = It, T̃(In−t −NN†) = 0, which is equivalent to T = It,N(N∗) ⊆ N(T̃).
(b) ⇒ (d). Combining AD,†A = AD,† with AD,†A = ADA immediately leads to the conclusion that

(AD,†)kAk = AAD = ADA = AD,†.
(d)⇒ (e). Since (AD,†)k = (AD)k−1A†. By (d), if k = 1, we get that AkAD,† = Ak(AD,†)kAk = Ak(AD)k−1A†Ak =

AA†A = A. If k ≥ 2, we have that AkAD,† = Ak(AD,†)kAk = Ak(AD)k−1A†Ak = ADA2A†Ak = Ak.
(e)⇒ (b). Multiplying AkAD,† = Ak by (AD)k we have that AD,† = ADA = AD,†A.

Theorem 2.15. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then the

following assertions are equivalent:

(a) T = It and SN = 0;

(c) (Aw©)kA = (Aw©)k;

(b) Aw©A = Aw©;

(d) (Aw©)kAk = Aw©;

(e) AkAw© = Ak.

Proof. (b)⇔ (a). From (2.7), it follows that

Aw©A = Aw©
⇐⇒ U

[
It T−1S + T−2SN
0 0

]
U∗ = U

[
T−1 T−2S

0 0

]
U∗

⇐⇒ T = It, SN = 0.
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(c)⇔ (a). Similar as (b)⇔ (a).
(d)⇔ (a). From (2.7) and (2.8), it follows that

(Aw©)kAk = Aw©
⇐⇒ U

[
It T−kT̃
0 0

]
U∗ = U

[
T−1 T−2S

0 0

]
U∗

⇐⇒ T−1 = It, T̃ = S
⇐⇒ T = It, SN = 0.

(e)⇔ (a). Similar as (d)⇔ (a).

Remark 2.16. If the integer k in Theorems 2.6, 2.8, 2.10, 2.13, 2.14 and 2.15 is placed by l(l ≥ k), all the Theorems
are still valid.

3. Characterizations of matrices whose some generalized inverses are orthogonal idempotent

It is widely known that COP
n ⊆ CP

n . Meanwhile, it follows from (2.2) that A †© ∈ COP
n if and only if

A †© ∈ CP
n . Therefore each of the six terms listed in Theorem 2.6 is equivalent to A †© ∈ COP

n . Then the main
aim of this section is to investigate some characterizations for Aw©, AD, AD,† and A†,D to be an orthogonal
idempotent.

We will discuss some equivalent conditions for Aw© and AD to be an orthogonal idempotent.

Theorem 3.1. Suppose that A ∈ Cn×n
k is given by A = A1 +A2, where A1 and A2 are given by (2.1), X2 ∈ {AD, Aw©

}.
Then X2 is orthogonal idempotent if and only if any of the following statements is satisfied:

(a) T = It and S = 0;

(c) AX2 = X∗2;

(e) AX2 = A2A †©;

(g) AkX∗2 = Ak;

(i) A †©A = A †©;

(k) (A †©)kAk = A †©;

(b) Ak = A∗Ak;

(d) X2A = X∗2;

(f) X2A = A2A †©;

(h) X∗2Ak = Ak;

(j) AkA †© = Ak;

(l) (A †©)kA = (A †©)k.

Proof. (a). By (2.3) we get that AD is an orthogonal projector if and only if T = It and T̃ = 0, i.e., T = It and
S = 0. Similarly, by (2.7) we have that Aw©

∈ COP
n if and only if T = It and S = 0.

(b). Suppose Ak = A∗Ak. Using (2.8), it follows that[
Tk T̃
0 0

]
=

[
T∗Tk T∗T̃
S∗Tk S∗T̃

]
.

Hence T∗ = It and T̃ = 0, which is equivalent to T = It and S = 0. The sufficient condition can be easily
checked.

(c). Assume X2 ∈ COP
n , it’s easy to verify that AX2 = (X2)∗.

On the contrary, from (2.3) and (2.7), we have

X2 = U
[

T−1 W
0 0

]
U∗, (3.1)
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where W ∈ {(Tk+1)−1T̃, T−2S}. If AX2 = (X2)∗, it follows from (3.1) that[
It TW
0 0

]
=

[
(T−1)∗ 0

W∗ 0

]
,

where W ∈ {(Tk+1)−1T̃, T−2S}. It implies T = It and S = 0 since T is nonsingular.
(d), (e) and ( f ). These proofs are analogous to that of (c).
(1). By (2.8) and (3.1), it follows that

Ak(X2)∗ = Ak
⇐⇒ U

[
Tk(T−1)∗ + T̃W∗ 0

0 0

]
U∗ = U

[
Tk T̃
0 0

]
U∗

⇐⇒ T̃ = 0, Tk(T−1)∗ = Tk

⇐⇒ S = 0, T = It.

(h). By (2.8) and (3.1), we have that X∗2Ak = Ak is equivalent with,

U
[

(T−1)∗Tk (T−1)∗T̃
W∗Tk W∗T̃

]
U∗ = U

[
Tk T̃
0 0

]
U∗,

where W ∈ {(Tk+1)−1T̃, T−2S}, which is equivalent with T = It, S = 0.
(i)− (l). Note that X2 is orthogonal idempotent if and only if T = It and S = 0. Thus, these can be directly

demonstrated by Theorem 2.13.

Secondly, several sufficient and necessary conditions for AD,†
∈ COP

n are given in the following theorem.

Theorem 3.2. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then AD,† is

orthogonal idempotent if and only if any of the following statements is satisfied:

(a) T = It and SN = 0;

(c) AD,†A = Aw©;

(e) Aw©A = Aw©;

(g) (Aw©)kAk = Aw©;

(b) AAD,† = (AD,†)∗;

(d) AAw© = AD;

(f) AkAw© = Ak;

(h) (Aw©)kA = (Aw©)k.

Proof. (a). By (2.5) it is easy to verify that AD,†
∈ COP

n if and only if T = It and T̃NN† = 0, i.e., T = It and
SN = 0.

(b). By (2.5) we have that AAD,† = (AD,†)∗ is equivalent with[
It T−kT̃NN†

0 0

]
=

[
(T−1)∗ 0

((Tk+1)−1T̃NN†)∗ 0

]
,

which is further equivalent with T = It and SN = 0.
(c). By (2.5) and (2.7), it follows that

AD,†A = Aw©
⇐⇒ U

[
It T−kT̃
0 0

]
U∗ = U

[
T−1 T−2S

0 0

]
U∗

⇐⇒ T−1 = It, T−kT̃ = T−2S
⇐⇒ T = It, SN = 0.

(d). The proof follows directly by (c).
(e) − (h). The proof follows by (a) and Theorem 2.15.
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Finally, some equivalent conditions for A†,D ∈ COP
n are given in the following theorem.

Theorem 3.3. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). Then the

following assertions are equivalent:

(a) A†,D ∈ COP
n ;

(b) T = It and T̃ = S(In−t −N†N);

(c) T = It and A†Ak = (A†,D)∗.

Proof. (a)⇒ (b). Since A†,D ∈ COP
n ⊆ C

P
n , we have by Theorem 2.8 that T = It. It follows from (2.6) that

A†,D = U
[

4 4T̃
(In−t −N†N)S∗4 (In−t −N†N)S∗4T̃

]
U∗, (3.2)

where T̃ =
k−1∑
j=0

SN j and 4 = (It + S(In−t −N†N)S∗)−1. Since A†,D ∈ COP
n , we get that T̃ = S(In−t −N†N).

(b)⇒ (c). It follows by a direct calculations with the use of (2.4), (2.6) and (2.8).
(c)⇒ (a). Since T = It, we get

A† = U
[

4 −4SN†

(In−t −N†N)S∗4 N† − (In−t −N†N)S∗4SN†

]
U∗, Ak = U

[
It T̃
0 0

]
U∗.

Thus, it follows from A†Ak = (A†,D)∗ and (3.2) that[
4 4T̃

(In−t −N†N)S∗4 (In−t −N†N)S∗4T̃

]
=

[
4 4S(In−t −N†N)

(T̃)∗4 (T̃)∗S(In−t −N†N)

]
.

Hence T̃ = S(In−t −N†N). Consequently, we have A†,D ∈ COP
n .

Corollary 3.4. Suppose that A ∈ Cn×n
k is given by A = A1 +A2, where A1 and A2 are given by (2.1), X2 ∈ {AD, Aw©

}.
If X2 ∈ COP

n , then any of the following statements is satisfied:

(a) AD,†
∈ COP

n ;

(b) A†,D ∈ COP
n .

Proof. It’s evident from Theorems 3.1, 3.2 and 3.3.

Remark 3.5. If the integer k in Theorems 3.1, 3.2 and 3.3 is placed by l(l ≥ k), all the Theorems are still valid in the
section.

4. Further properties of orthogonal idempotent

In this section, we study equivalent conditions for a matrix A to be orthogonal idempotent in terms of
some other generalized inverses, like core-EP, Drazin, DMP and dual DMP and weak group inverse.

Theorem 4.1. Let A ∈ Cn×n
k and X̃ ∈ {A †©,AD,AD,†,A†,D,Aw©

}. Then A is orthogonal idempotent if and only if
X̃ ∈ CP

n and Al = A∗, for some l ∈N, l ≥ k.
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Proof. Suppose that A is given by A = U
[

T S
0 N

]
U∗, it’s clear that A ∈ COP

n if and only if T = It, S = 0 and

N = 0. Thus we can easily conclude that X̃ ∈ CP
n and Al = A∗.

Conversely, if X̃ ∈ CP
n , we have T = It by Theorem 2.6. We now obtain that

A = U
[

It S
0 N

]
U∗. (4.1)

By Al = A∗, it’s easy to verify that S = 0 and N = 0.

Theorem 4.2. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1) and let

X ∈ {A †©,Aw©,AD
}. Then A is orthogonal idempotent if and only if any of the following statements is satisfied:

(a) A∗X = A∗;

(c) AD,†A∗ = A∗;

(b) XA∗ = A∗;

(d) A∗A†,D = A∗.

Proof. It is noteworthy that we just have to verify that each of the four conditions is equivalent to T = It,
S = 0 and N = 0.

(a) and (b). According to (2.2), (2.3) and (2.7), it’s not difficult to demonstrate that statement (a) and (b)
are equivalent to T = It, S = 0 and N = 0.

(c). By (2.5), we obtain that

AD,†A∗ = A∗ ⇐⇒ U
[

T−1T∗ + (Tk+1)−1T̃NN†S∗ (Tk+1)−1T̃NN†N∗

0 0

]
U∗ = U

[
T∗ 0
S∗ N∗

]
U∗

⇐⇒ T∗T−1 = T∗, S∗ = 0, N∗ = 0
⇐⇒ T = It, S = 0, N = 0.

(d). Suppose that A∗A†,D = A∗, it follows from (2.6) that[
(T∗)2
4 (T∗)2

4T−kT̃
S∗T∗4 + N∗(In−t −N†N)S∗4 S∗T∗4T−kT̃ + N∗(In−t −N†N)S∗4T−kT̃

]
=

[
T∗ 0
S∗ N∗

]
.

Since T and 4 are nonsingular, we now deduce that (T∗)2
4 = T∗, T̃ = 0 and N∗ = 0. Combining these three

equations, we obtain that T = It, S = 0 and N = 0. The reverse is obvious.

Notice that we can imply A∗AD,† = A∗ and A†,DA∗ = A∗ if A ∈ COP
n in Theorem 4.1. But, the converse is

invalid. We present the following example to illustrate that.

Example 4.3. Consider the matrix

A =


1 0 1 −1
0 1 1 −1
0 0 0 0
0 0 0 0

 .
We have that ind(A) = 1,

AD,† =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A†,D =


3
5 −

2
5

1
5 −

1
5

−
2
5

3
5

1
5 −

1
5

1
5

1
5

2
5 −

2
5

−
1
5 −

1
5 −

2
5

2
5

 .
It is easy to see that A∗AD,† = A∗, A†,DA∗ = A∗ and A2 = A, but A∗ , A.
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In the following theorem, we are going to give some new equivalent conditions such that the reverse is
also true.

Lemma 4.4. [2] Assume that A ∈ Cn×n. Then A is orthogonal idempotent if and only if both A and A† are idempotent.

Theorem 4.5. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). If A† is

idempotent, then A is orthogonal idempotent if and only if any of the following statements is satisfied:

(a) A∗AD,† = A∗;

(b) A†,DA∗ = A∗.

Proof. Combining Theorem 4.1 and Lemma 4.4, we just have to prove that each of the two statements is
equivalent to the fact that A is idempotent, which is also equivalent to the requirement that T = It and
N = 0.

(a). From (2.5), it follows that

A∗AD,† = A∗ ⇐⇒ U
[

T∗T−1 T∗(Tk+1)−1T̃NN†

S∗T−1 S∗(Tk+1)−1T̃NN†

]
U∗ = U

[
T∗ 0
S∗ N∗

]
U∗

⇐⇒ T∗T−1 = T∗, N∗ = 0
⇐⇒ T = It, N = 0.

(b). By (2.6), it follows that

A†,DA∗ = A∗ ⇐⇒ U
[

T∗4(T∗ + T−kT̃S∗) T∗T−kT̃N∗

(In−t −N†N)S∗4(T∗ + T−kT̃S∗) (In−t −N†N)S∗4T−kT̃N∗

]
U∗ = U

[
T∗ 0
S∗ N∗

]
U∗

⇐⇒ T∗4(T∗ + T−kT̃S∗) = T∗, N∗ = 0
⇐⇒ T = It, N = 0.

Theorem 4.6. Suppose that A ∈ Cn×n
k is given by A = A1 +A2, where A1 and A2 are given by (2.1), X2 ∈ {AD,Aw©

}.
Then the following assertions are equivalent:

(a) A is idempotent and X2 is orthogonal idempotent;

(b) A is idempotent and A is either Hermitian, EP, or normal ;

(c) A is core matrix and X2 is orthogonal idempotent;

(d) A is orthogonal idempotent.

Proof. (a) ⇒ (b). Obviously, condition (a) in the theorem can be equivalently expressed as the conjunction
T = It, S = 0 and N = 0. Therefore, the point (b) is apparently satisfied.

(b)⇒ (c). We know that idempotency of A is equivalent with T = It and N = 0. Then, A can be expressed
in the following form

A = U
[

It S
0 0

]
U∗. (4.2)

Thus, if A is either Hermitian, EP, or normal, we get S = 0. From Theorem 3.1, it follows that X2 is orthogonal
idempotent.

(c)⇒ (d). Because A is core matrix, we get that N = 0. It can be verified directly by Theorem 3.1 that A
is orthogonal idempotent.

(d)⇒ (a). The proof is obvious.

Corollary 4.7. Suppose that A ∈ Cn×n
k is given by A = A1 + A2, where A1 and A2 are given by (2.1). If A ∈ CP

n ,
then A is orthogonal idempotent if and only if any of the following statements is satisfied:
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(a) A †©A = A †©;

(c) (A †©)kAk = A †©;

(b) AkA †© = Ak;

(d) (A †©)kA = (A †©)k.

Proof. From (2.1), it’s easy to prove that A ∈ CP
n if and only if T = It, N = 0. By Theorem 2.13, we have that

each of the four statements given in the theorem is equivalent with S = 0. Thus the corollary holds.

Remark 4.8. If the integer k in Corollary 4.7 is replaced by l(l ≥ k), Corollary 4.7 still holds.
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