Filomat 36:1 (2022), 195–206 https://doi.org/10.2298/FIL2201195D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Positive Solutions for Some Asymptotically Linear and Superlinear Weighted Problems

Makkia Dammak^{a,c}, Hanadi Zahed^a, Chahira Jerbi^b

^aDepartment of Mathematics, College of Science, Taibah University, Medina Saudi Arabia. ^bDepartment of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia. ^cDepartment of Mathematics, Faculty of Sciences, University of Sfax, Tunisia.

Abstract. In this paper, we study the following nonlinear elliptic problem

$$-\operatorname{div}(a(x)\nabla u) = f(x, u), \ x \in \Omega \ u \in H^1_0(\Omega)$$
(P)

where Ω is a regular bounded domain in \mathbb{R}^N , $N \ge 2$, a(x) a bounded positive function and the nonlinear reaction source is strongly asymptotically linear in the following sense

$$\lim_{t \to +\infty} \frac{f(x,t)}{t} = q(x)$$

uniformly in $x \in \Omega$.

We use a variant version of Mountain Pass Theorem to prove that the problem (*P*) has a positive solution for a large class of f(x, t) and q(x). Here, the existence of solution is proved without use neither the Ambrosetti-Rabionowitz condition nor one of its refinements. As a second result, we use the same techniques to prove the existence of solutions when f(x, t) is superlinear and subcritical on t at infinity.

1. Introduction and Main Results

In this paper, let Ω be a regular bounded domain in \mathbb{R}^N , $N \ge 2$ and consider the following quasi-linear elliptic weighted problem:

$$\begin{cases} -\operatorname{div}(a(x)\nabla u) = f(x,u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where a(x) is a continuous function on $\overline{\Omega}$ and f(x, t) is strongly asymptotically linear function:

$$\lim_{t\to+\infty}\frac{f(x,t)}{t}=q(x),$$

²⁰²⁰ Mathematics Subject Classification. 35J05, 35J65, 35J20, 35J60, 35K57, 35J70

Keywords. Asymptotically linear, mountain pass theorem, weighted problem, Cerami sequence.

Received: 20 January 2021; Revised: 07 March 2021; Accepted: 11 July 2021

Communicated by Marko Nedeljkov

Email addresses: makkia.dammak@gmail.com (Makkia Dammak), hanadi71@hotmail.com (Hanadi Zahed),

chahira.jerbi@hotmail.fr (Chahira Jerbi)

where q(x) is a bounded function. When modeling morphogenesis phenomena in Biology and the population dynamic, Turing (1952) induce this type of equations for the interaction of species or chemicals:

$$\frac{\partial u}{\partial t} - \operatorname{div}(a(x)\nabla u) = f(x, u),$$

u is the density and div($a(x)\nabla u$) represents the substance of diffusion through the system and finally *f* models the interaction of substances. In the stationary case and when f(x,t) = f(t) depends only on *t* and *f* is asymptotically linear at $+\infty$, that is $q(x) \equiv l = const.$, the problem (1) was studied by Sâanouni and Trabelsi in [21]. In fact the results in [21] was a generalisation of those founded by Mironescu and Rădulescu in [10, 15, 16, 18] where *a* is constant with the same conditions on the nonlinearity f(t). Their proof of the existence of positive solutions is based on the condition f(0) > 0, since they take a positive, C^1 , convex increasing real values function *f*. Also, with this conditions on the reaction function *f* and when *f* is super-linear ($l = +\infty$) the problem was studied in [5, 13, 14]. After that, the same problem (1) (and the same conditions on *f*) with a(x) = const. was generated to the *p*-Laplace operator in [9, 20]. The problem with the Bi-Laplacian operator was treated in [1, 2, 22, 25].

In order to study the problem for more large class of functions, Zhou in [26] consider the case when the asymptotically nonlinear term f(x, s) depends on x and s and f(x, 0) = 0. More precisely, he considered the following conditions:

(F1)
$$f(x,t) \in C(\overline{\Omega} \times \mathbb{R}), f(x,t) \ge 0$$
 for all $t > 0$ and $x \in \overline{\Omega}$ and $f(x,t) \equiv 0$ for $t \le 0$ and $x \in \overline{\Omega}$.

(F2) $\lim_{t\to 0} \frac{f(x,t)}{t} = p(x), \lim_{t\to +\infty} \frac{f(x,t)}{t} = q(x)$ uniformly in a.e. $x \in \Omega$, where p(x) and q(x) are bounded functions and $\|p(x)\|_{\infty} < \lambda_1$, where $\lambda_1 > 0$ is the first eigenvalue of $(-\operatorname{div}(a(x)\nabla.), H_0^1(\Omega))$.

(F3) The function $\frac{f(x, t)}{t}$ is nondecreasing with respect to t > 0, for $a.e.x \in \Omega$.

In this paper, we will study the solvability of the problem (1) when the function a is not constant and f(x, s) is strongly asymptotically linear.

We start by giving the definition of solution (weak solution) for the problem (1).

Definition 1.1. A function $u \in H_0^1(\Omega)$ is called solution of the problem (1) if

$$\int_{\Omega} a(x)\nabla u\nabla \varphi dx = \int_{\Omega} f(x,u)\varphi dx,$$
(2)

for all $\varphi \in H_0^1(\Omega)$.

Our approach is variational and we consider the following functional I defined on $H_0^1(\Omega)$ by

$$I(u) = \frac{1}{2} \int_{\Omega} a(x) |\nabla u|^2 dx - \int_{\Omega} F(x, u) dx$$
(3)

where

$$F(x,s) = \int_0^s f(x,t)dt.$$

To prove the existence of nonzero critical point of *I*, we use a different version of the Mountain Pass Theorem given in [7].

Theorem 1.2. [7] Let *H* be a real Banach space and suppose that $I \in C^1(H, \mathbb{R})$ satisfies the condition

$$\max\{I(0), I(e)\} \le \alpha < \beta \le \inf_{\|u\|=\rho} I(u)$$

for some $\alpha < \beta$, $\rho > 0$, and $e \in H$ with $||e|| \ge \rho$. Let $c \ge \beta$ be characterized by

$$c := \inf_{\gamma \in \Gamma t \in [0,1]} I(\gamma(t)),$$

where $\Gamma := \{\gamma \in C([0,1],H); \gamma(0) = 0 \text{ and } \gamma(1) = e\}$ the set of continuous paths joining 0 and e. Then, there exists a sequence (u_n) in H satisfying the Cerami conditions:

$$I(u_n) \to c \quad as \ n \to +\infty \tag{4}$$

and

 $(1 + ||u_n||)||I'(u_n)||_* \rightarrow 0 \quad as \quad n \rightarrow +\infty.$ (5)

In order to prove that the Cerami sequence given by Theorem 1.2 has a convergent subsequence and so the functional *I* has a nontrivial critical point, it is often assumed that the nonlinearity satisfies the following Ambrosetti-Rabionovitz condition introduced in [3, 17]:

there exist some constants $\theta > 2$ and M > 0 such that

$$(AR) 0 < \theta F(x,t) \le f(x,t)t$$

for all $|t| \ge M$ and $x \in \Omega$.

But here, for the asymptotically nonlinearities, we can not suppose such condition since the condition (AR) implies that $\lim_{t \to +\infty} \frac{F(x,t)}{t^2} = +\infty$ and as consequence $\lim_{t \to +\infty} \frac{f(x,t)}{t} = +\infty$ which contradicts (*F*2). There are many other conditions imposed to solve the compact-

ness problem, we can refer to [6, 7, 11, 20, 23, 24, 26] and the references therein. In this paper we will prove the compactness property for the Cerami sequence without any additive assumption or hypothesis on the function *f*.

Before introducing our results, we remark that the asymptotically nonlinearities attract more and more attention: In [12] Li and Huang consider a generalized quasilinear Schrödinger equations with asymptotically linear nonlinearities. They supposed that the nonlinearities f depend only on t and they proved the existence of positive solutions using variational methods.

In this paper, we suppose that a(x) is positive and bounded:

$$(A) \qquad 0 < a_1 \le a(x) \le a_2,$$

for some positive constants a_1 and a_2 a.e. $x \in \Omega$. Let $||u||_p = \left(\int_{\Omega} |u|^p\right)^{1/p}$ denotes the $L^p(\Omega)$ -norm. Consider the inner product in $H_0^1(\Omega)$ given by

$$< u, v >= \int_{\Omega} a(x) \nabla u . \nabla v \, dx,$$

and the induced norm will be denoted

$$||u|| = \left(\int_{\Omega} a(x)|\nabla u|^2 dx\right)^{\frac{1}{2}}.$$

Set φ_1 a normalised positive eigenfunction associated to λ_1 the first eigenvalue of the operator $-\operatorname{div}(a(x)\nabla u)$ with Dirichlet boundary condition on the open domain Ω .

$$\begin{aligned}
\left(\begin{array}{ccc}
-\operatorname{div}(a(x)\nabla\varphi_1) &=& \lambda_1\varphi_1 & \text{in} & \Omega\\ & \varphi_1 &=& 0 & \text{on} & \partial\Omega \\ & \int_{\Omega} \varphi_1^2 dx = 1.
\end{aligned}$$
(6)

In this paper, we define

$$\Lambda_1 = \inf_{u \in H_0^1(\Omega), u \neq 0} \frac{\int_{\Omega} a(x) |\nabla u|^2 dx}{\int_{\Omega} q(x) u^2 dx}$$
(7)

and we will see in Lemma 2.1, in the next section, that $\Lambda_1 > 0$ and it is achieved by some positive function ϕ_1 in $H_0^1(\Omega)$.

Before stating our main results, let us recall the assumptions on the nonlinearity.

(*F*1) $f(x,t) \in C(\overline{\Omega} \times \mathbb{R}), f(x,t) \ge 0$ for all t > 0 and $x \in \overline{\Omega}$ and $f(x,t) \equiv 0$ for $t \le 0$ and $x \in \overline{\Omega}$.

(*F*2) $\lim_{t\to 0} \frac{f(x,t)}{t} = p(x), \lim_{t\to +\infty} \frac{f(x,t)}{t} = q(x)$ uniformly in a.e. $x \in \Omega$, where p(x) and q(x) are bounded functions and $||p(x)||_{\infty} < \lambda_1$, where $\lambda_1 > 0$ is the first eigenvalue of $(-\operatorname{div}(a(x)\nabla.), H_0^1(\Omega))$.

(F3) The function $\frac{f(x,t)}{t}$ is nondecreasing with respect to t > 0, for $a.e.x \in \Omega$.

Theorem 1.3. Suppose that (F1) and (F2) hold, then we have.

- (*i*) If $\Lambda_1 > 1$ and (F3) holds, then the problem (1) does not have a positive solution.
- (ii) If $\Lambda_1 < 1$, then the problem (1) has a non-trivial positive solution.
- (iii) If $\Lambda_1 = 1$ and (F3) holds, then (1) has a non-trivial positive solution

 $u \in H_0^1(\Omega)$ if and only if there exists a constant c > 0 such that $u = c\phi_1$ and f(x, u) = q(x)u a.e. in Ω .

For the case when $q(x) = +\infty$ a.e. in Ω , let

$$r^* = \begin{cases} \frac{2N}{N-2} & if \quad N > 2\\ +\infty & if \quad N = 2 \end{cases}$$

$$\tag{8}$$

be the critical Sobolev exponent. We prove the following result.

Theorem 1.4. Suppose that (F1), (F2) and (F3) hold, $q(x) = +\infty$ a.e. in Ω and f(x, t) is subcritical: $\lim_{t \to +\infty} \frac{f(x, t)}{t^{r-1}} = 0$ uniformly in $x \in \Omega$, for some real r with $r \in (2, r^*)$. Then the problem (1) has a non-trivial positive solution.

2. Preliminaries

Lemma 2.1. Let q(x) be a bounded non-negative function and a(x) be a positive function on Ω . The following eigenvalue-eigenfunction problem:

$$\begin{cases} -div(a(x)\nabla u) = \Lambda \quad q(x)u \quad in \quad \Omega, \\ u = 0 \quad on \quad \partial\Omega, \end{cases}$$
(9)

has a solution (Λ_1, ϕ_1) satisfying $\phi_1 > 0$ a.e. in $\Omega, \phi_1 \in H_0^1(\Omega), \Lambda_1 > 0$ and

$$\Lambda_1 = \inf\{\int_{\Omega} a(x) |\nabla u|^2 dx, \ u \in H^1_0(\Omega) \text{ and } \int_{\Omega} q(x) u^2 dx = 1\}.$$

Proof. Since the function *a* is continuous and satisfies the condition (*A*), By the same scheme of [Lemma 2.1, 26] we get $\Lambda_1 > 0$ and there exists ϕ_1 solution to the equation (9). If ϕ_1 is not non-negative, we can take $|\phi_1|$ and using maximum principle, we get a solution, still denoted ϕ_1 , satisfying $\phi_1 > 0$ a.e. in Ω .

In the proof of the mains results, we need that $(H_0^1(\Omega), \|.\|)$ as a Hilbert space. In fact, we have the following result.

Lemma 2.2. $(H_0^1(\Omega), \|.\|)$ is a Hilbert space and the norm $\|u\|$ is equivalent to the norm

 $\|u\|_{W^{1,2}(\Omega)}.$

Proof. $(H_0^1(\Omega), \|.\|_{W^{1,2}(\Omega)})$ is a Banach space and the equivalence between the two norms is due to the condition (*A*).

The next lemma assures the two geometric properties for the functional *I* induced by (3) when $\Lambda_1 < 1$.

Lemma 2.3. Suppose that the function f satisfies (F1) and (F2), then the following results hold.

(*i*) There exist $\rho, \beta > 0$ such that $I(u) \ge \beta$ for all $u \in H_0^1(\Omega)$ with $||u|| = \rho$.

(*ii*) If $\Lambda_1 < 1$, then $I(t\phi_1) \to -\infty$ as $t \to +\infty$.

Proof. (*i*) Let $\varepsilon > 0$, there exist $A = A(\varepsilon) \ge 0$ and $t_0 \ge 1$ such that for all $t \ge t_0$, $f(x, t) \le At$. For $r \ge 1$, we get $f(x, t) \le At^r$ and then

$$F(x,t) \le \frac{1}{2} (\|p(x)\|_{\infty} + \varepsilon)t^2 + \frac{A}{r+1} |t|^{r+1},$$
(10)

for all $(x, t) \in \Omega \times \mathbb{R}$.

By choosing *r* such that $2 < r + 1 < r^*$, r^* given by (8), we obtain $||u||_{r+1}^{r+1} \le C ||u||^{r+1}$ and then

$$\begin{split} I(u) &\geq \frac{1}{2} ||u||^2 - \int_{\Omega} F(x, u) \, dx \\ &\geq \frac{1}{2} ||u||^2 - \frac{1}{2} (||p(x)||_{\infty} + \varepsilon) ||u||_2^2 - \frac{A}{r+1} ||u||_{r+1}^{r+1} \\ &\geq \frac{1}{2} ||u||^2 - \frac{1}{2} (||p(x)||_{\infty} + \varepsilon) ||u||_2^2 - \frac{A}{r+1} C ||u||^{r+1}. \end{split}$$

By definition of λ_1 , we have

$$I(u) \geq \frac{1}{2} (1 - \frac{\|p(x)\|_{\infty} + \varepsilon}{\lambda_1}) \|u\|^2 - \frac{A}{r+1} C \|u\|^{r+1}.$$

From (*F*2), for $\varepsilon > 0$ small enough such that $||p(x)||_{\infty} + \varepsilon < \lambda_1$, we can choose $||u|| = \rho$ very small in order to get $I(u) \ge \beta$ for a given $\beta > 0$ sufficiently small.

(*ii*) Suppose that $\Lambda_1 < 1$. For t > 0, we have

$$I(t\phi_1) = \frac{t^2}{2} \int_{\Omega} a(x) |\nabla \phi_1|^2 dx - \int_{\Omega} F(x, t\phi_1) \, dx.$$
(11)

By the condition (F2) and the definition of the function F(x, t), we have

$$\lim_{t \to \infty} \frac{F(x,t)}{t^2} = \frac{q(x)}{2}$$

Then, using the Fatou's Lemma and the fact that ϕ_1 is a solution for the minimization problem (7), we get

$$\begin{split} \lim_{t \to \infty} \frac{I(t\phi_1)}{t^2} &= \frac{1}{2} \int_{\Omega} a(x) |\nabla \phi_1|^2 dx - \lim_{t \to \infty} \int_{\Omega} \frac{F(x, t\phi_1)}{t^2} dx \\ &\leq \frac{1}{2} \int_{\Omega} a(x) |\nabla \phi_1|^2 dx - \int_{\Omega} \lim_{t \to \infty} \frac{F(x, t\phi_1)}{(t\phi_1)^2} \phi_1^2 dx \\ &\leq \frac{1}{2} \int_{\Omega} a(x) |\nabla \phi_1|^2 dx - \frac{1}{2} \int_{\Omega} q(x) \phi_1^2 dx \\ &\leq \frac{1}{2} \int_{\Omega} a(x) |\nabla \phi_1|^2 dx - \frac{1}{2\Lambda_1} \int_{\Omega} a(x) |\nabla \phi_1|^2 dx \\ &\leq \frac{1}{2\Lambda_1} (\Lambda_1 - 1) \int_{\Omega} a(x) |\nabla \phi_1|^2 dx < 0, \end{split}$$

for $\Lambda_1 < 1$. So $I(t\phi_1) \rightarrow -\infty$ as $t \rightarrow +\infty$.

Remark 2.4. Assume the conditions (F1) – (F3) and suppose that the function f is subcritical with respect to t and $q(x) = +\infty$ a.e. in Ω . Then, the results of the Lemma 2.3 hold.

Lemma 2.5. If (u_n) is a convergent sequence to u in $L^p(\Omega)$, for some $1 \le p < +\infty$, then (u_n^+) converges to u^+ in $L^p(\Omega)$, where $u_n^+ = \max(0, u_n)$ and $u^+ = \max(0, u)$.

Proof.

$$\begin{aligned} ||u_{n}^{+} - u^{+}||_{p}^{p} &= \int_{\Omega} |u_{n}^{+} - u^{+}|^{p} dx \\ &= \frac{1}{2^{p}} \int_{\Omega} \left| (u_{n} - u) + (|u_{n}| - |u|) \right|^{p} dx \\ &\leq \frac{1}{2^{p}} \int_{\Omega} \left(|u_{n} - u| + ||u_{n}| - |u|| \right)^{p} dx \\ &\leq \frac{1}{2^{p}} \int_{\Omega} \left(|u_{n} - u| + |u_{n} - u| \right)^{p} dx \\ &\leq \frac{1}{2^{p}} \int_{\Omega} \left(2|u_{n} - u| \right)^{p} dx \\ &\leq ||u_{n} - u||_{n}^{p}. \end{aligned}$$

Then (u_n^+) converges to u^+ in $L^p(\Omega)$.

We end this section by the following elementary result that will be used in the proof of Theorem 1.4 (the superlinear linearities cases).

Lemma 2.6. Suppose that (F3) holds and (u_n) a sequence in $H_0^1(\Omega)$ such that

 $\|I'(u_n)\|_{\star} \to 0.$

Then, up to a subsequence, for all t > 0 *we have*

$$I(tu_n) \le \frac{1+t^2}{2n} + I(u_n).$$
(12)

Proof. $||I'(u_n)||_{\star} \to 0$. So for all $\varphi \in H_0^1(\Omega), \langle I'(u_n), \varphi \rangle \to 0$, in particular

 $\langle I'(u_n), u_n \rangle \to 0.$

Up to subsequence, for all $n \ge 1$,

$$|\langle I'(u_n), u_n \rangle| \le \frac{1}{n} \tag{13}$$

and then

$$-\frac{1}{n} \le ||u_n|| - \int_{\Omega} f(x, u_n) u_n dx \le \frac{1}{n}, \quad \forall n \ge 1.$$

$$\tag{14}$$

We have

 $I(tu_n) = \frac{1}{2}t^2||u_n|| - \int_{\Omega} F(x, tu_n)dx$

and from (14) we get

$$I(tu_n) \le \frac{1}{2} \frac{t^2}{n} + \int_{\Omega} \left[\frac{1}{2} t^2 f(x, u_n) u_n - F(x, tu_n) \right] dx.$$
(15)

If we study the write hand site in (15) as a real function on *t*, we find that

$$I(tu_n) \le \frac{1}{2} \frac{t^2}{n} + \int_{\Omega} \left[\frac{1}{2} f(x, u_n) u_n - F(x, u_n) \right] dx.$$
(16)

From (14), we have

$$I(u_n) \ge -\frac{1}{2n} + \int_{\Omega} \left[\frac{1}{2} f(x, u_n) u_n - F(x, u_n) \right] dx.$$
(17)

By combining (15) and (17), we deduce that

$$I(tu_n) \le \frac{1+t^2}{2n} + I(u_n),$$

for all $n \ge 1$ and t > 0.

3. Proof of the Main Results

Proof of the Theorem 1.3 (*i*) By contradiction. Suppose that $\Lambda_1 > 1$ and $u \in H_0^1(\Omega)$ is a positive solution of the problem (1). Then u satisfies the equation (3) for all $\varphi \in H_0^1(\Omega)$. If we take $\varphi = u$, we obtain by using (F2) and (F3) that

$$\int_{\Omega} a(x) |\nabla u|^2 dx = \int_{\Omega} f(x, u) u dx \le \int_{\Omega} q(x) u^2 dx.$$
(18)

So $\Lambda_1 \leq 1$. Theorem 1.3 (*i*) follows.

(*ii*) Suppose that $\Lambda_1 < 1$ and the conditions (*F*1) – (*F*'2) hold. By lemma 2.2, there exists t_0 such that the function $e = t_0 \phi_{\Lambda_1} \in H_0^1(\Omega)$, $||e|| > \rho$ and I(e) < 0 for some $\beta, \rho > 0$, where $I(u) \ge \beta$ for all $u \in \partial B(O, \rho)$ in $H_0^1(\Omega)$. Since the space $(H_0^1(\Omega), ||.||)$ is a Banach space and the functional *I* is C^1 , we have a Cerami sequence $(u_n) \subset H_0^1(\Omega)$ satisfying

$$I(u_n) = \frac{1}{2} ||u_n||^2 - \int_{\Omega} F(x, u_n) \, dx \to c \quad \text{as} \ n \to +\infty$$
⁽¹⁹⁾

and

$$(1 + ||u_n||)||I'(u_n)||_* \to 0 \text{ as } n \to +\infty.$$
 (20)

The idea is to prove that (u_n) has a convergent subsequence in $H_0^1(\Omega)$ and to prove that the limit will be a positive solution to the equation (1).

Step1 ((u_n) is bounded in $H_0^1(\Omega)$, up to subsequence)

We argue by contradiction and we suppose that the Cerami sequence (u_n) is not bounded in $H_0^1(\Omega)$. So, up to subsequence, $||u_n|| \to +\infty$. Consider

$$w_n = \frac{1}{\|u_n\|} u_n = k_n u_n; \quad k_n = \frac{1}{\|u_n\|}$$
(21)

The sequence (w_n) is bounded in $H_0^1(\Omega)$. By using the compactness of Sobelev embedding Theorem, there exists w in $H_0^1(\Omega)$, such that

 $w_n \rightarrow w$ weakly in $H_0^1(\Omega)$,

M. Dammak et al. / Filomat 36:1 (2022), 195–206 202

$$w_n \to w$$
 strongly in $L^2(\Omega)$,
 $w_n(x) \to w(x)$ a.e. in Ω .

Claim 1: $w \neq 0$. Indeed, the second Cerami condition (20) gives

$$\langle I'(u_n), u_n \rangle \to 0 \quad \text{as} \ n \to +\infty,$$
 (22)

then

$$||u_n|| - \int_{\Omega} f(x, u_n) u_n dx \to 0 \quad \text{as } n \to +\infty.$$
(23)

So,

$$||u_n|| - \int_{\Omega} f(x, u_n) u_n dx \to 0 \quad \text{as } n \to +\infty.$$
(24)

We obtain

$$1 = \lim_{n \to +\infty} \int_{\Omega} \frac{f(x, u_n(x))}{u_n(x)} w_n^2 dx.$$
(25)

From (*F*1) and (*F*2) there exists M > 0 such that for all t > 0 and $x \in \Omega$, we have

$$\frac{f(x,t)}{t} \le M.$$
(26)

Then,

$$\int_{\Omega} \frac{f(x, u_n(x))}{u_n(x)} w_n^2 dx \le M \int_{\Omega} w_n^2 dx.$$
(27)

If we suppose that $w \equiv 0$, from (25) and (27), we get $1 \le 0$ and this is impossible. The claim 1 is proved. Claim 2: *w* satisfies the following equation

$$\int_{\Omega} a(x)\nabla w \nabla \varphi dx = \int_{\Omega} q(x)w \ \varphi dx,$$
(28)

for all $\varphi \in H_0^1(\Omega)$. For the proof of this claim, We use the condition (*F*1) to define the function $g_n(x)$ on Ω as $g_n(x) = \frac{f(x,u_n(x))}{u_n(x)}$ if $u_n(x) > 0$ and $g_n(x) = 0$ if $u_n(x) < 0$. By (26), we get

$$0 \leq g_n(x) \leq M$$

Since the sequence g_n is bounded in $L^2(\Omega)$, there exists a function g in $L^2(\Omega)$ such that, up to subsequence

$$g_n \rightarrow g$$
 weakly in $L^2(\Omega)$,
 $g_n(x) \rightarrow g(x)$ a.e. in Ω ,
 $0 \le g(x) \le M$ for all $x \in \Omega$.

Consider $\Omega_+ = \{x \in \Omega; w(x) > 0\}$. We have $u_n(x) = ||u_n||w_n(x) \to +\infty$ for all $x \in \Omega_+$ and so

$$g(x) = q(x), \text{ for all } x \in \Omega_+.$$
(29)

Also, we have $w_n \to w$ in $L^2(\Omega)$. By Lemma 2.5, we have $w_n^+ \to w^+$ in $L^2(\Omega)$ and so, we get for all $\varphi \in L^2(\Omega)$:

$$\int_{\Omega} g_n(x)w_n(x)\varphi(x)dx = \int_{\Omega} g_n(x)w_n^+(x)\varphi(x)dx \to \int_{\Omega} g(x)w^+(x)\varphi(x)dx.$$
(30)

203

Since $H_0^1(\Omega)$ is a subspace of $L^2(\Omega)$, (30) is true for all $\varphi \in H_0^1(\Omega)$. From (20) we have $||I'(u_n)||_* \to 0$ and then

$$\lim_{n \to +\infty} \int_{\Omega} a(x) \,\nabla u_n \cdot \nabla \varphi \, dx - \int_{\Omega} f(x, u_n) \varphi \, dx = 0, \text{ for all } \varphi \in H^1_0(\Omega)$$
(31)

Since $\frac{1}{\|u_n\|} \to 0$, we obtain

$$\lim_{n \to +\infty} \int_{\Omega} a(x) \, \nabla w_n \cdot \nabla \varphi \, dx - \int_{\Omega} g_n(x) w_n(x) \varphi(x) \, dx = 0, \text{ for all } \varphi \in H^1_0(\Omega). \tag{32}$$

From (32) and (30), we get

$$\int_{\Omega} a(x) \,\nabla w \cdot \nabla \varphi dx = \int_{\Omega} g(x) w^{+}(x) \varphi(x) dx, \text{ for all } \varphi \in H^{1}_{0}(\Omega).$$
(33)

If we take $\varphi = w^-$ as a test function in (33), we get $||w^-|| = 0$ and so $w^- \equiv 0$ a.e. in Ω .

We get $w \ge 0$ and the maximum principle yields to w > 0. By using (33) and (29), we finish the proof of the claim 2.

Since the function $w \in H_0^1(\Omega)$ is positive and satisfies (28), we get a contradiction with the fact that $\Lambda_1 < 1$. As a conclusion of this step, the sequence $(u_n \text{ is bounded in } (H_0^1(\Omega), \|.\|)$.

Step2. ((u_n) converge to a function u in $H_0^1(\Omega)$, up to subsequence) Indeed, the sequence (u_n) is bounded so by compactness Sobolev embedding Theorem, there exists $u \in H_0^1(\Omega)$ such that, up to a subsequence

$$u_n \rightarrow u$$
 weakly in $H_0^1(\Omega)$
 $u_n \rightarrow u$ stongly in $L^2(\Omega)$
 $u_n \rightarrow u$ a.e in Ω .

From (20) we have $||I'(u_n)||_* \rightarrow 0$ and so

$$\lim_{n \to +\infty} \int_{\Omega} a(x) \,\nabla u_n \cdot \nabla \varphi - \int_{\Omega} f(x, u_n) \varphi = 0, \text{ for all } \varphi \in H^1_0(\Omega).$$
(34)

That is

$$\lim_{n \to +\infty} -\operatorname{div}(a(x)\nabla u_n) - f(x, u_n) = 0 \quad \text{in} \quad \mathcal{D}'(\Omega).$$
(35)

Also

$$\lim_{n \to +\infty} \langle I'(u_n), u_n \rangle = \lim_{n \to +\infty} ||u_n||^2 - \int_{\Omega} f(x, u_n) u_n = 0.$$
(36)

By using (*F*2), we prove that $f(x, u_n) \rightarrow f(x, u)$ in $L^2(\Omega)$ and also

$$\int_{\Omega} f(x, u_n) u_n dx \to \int_{\Omega} f(x, u) u dx.$$

So,

$$-\operatorname{div}(a(x)\nabla u) = f(x, u) \quad \text{in} \quad \Omega, \tag{37}$$

and then by taking u as a test function in (37), we get

$$||u||^2 - \int_{\Omega} f(x, u)u = 0.$$
(38)

with (23) in mind, we deduce that $||u_n||^2 \rightarrow ||u||^2$. Up to subsequence, (u_n) converge to u in $H_0^1(\Omega)$.

Step 3. (*u* is a positive solution of the equation (1))

By step 2, the sequence (u_n) converges to an element u in $H_0^1(\Omega)$. By (19) we deduce that I(u) = c. From (20) and (31), we get I'(u) = 0 and so, u is a solution of the problem (1). From the condition (*F*1) and the maximum principle, the solution u is positive on Ω .

(*iii*) Suppose that $\Lambda_1 = 1$ and the conditions (*F*1) – (*F*3) hold. First, if *u* is a positive solution for the problem (1) by taking ϕ_1 as test function in (2), we get

$$\int_{\Omega} a(x)\nabla u \cdot \nabla \phi_1 \, dx = \int_{\Omega} f(x, u)\phi_1 dx. \tag{39}$$

By taking u as a test function in (9), we obtain

$$\int_{\Omega} a(x)\nabla u \cdot \nabla \phi_1 \, dx = \int_{\Omega} q(x)u\phi_1 dx \tag{40}$$

and so $\int_{\Omega} (f(x, u) - q(x)u)\phi_1 dx = 0$. Since ϕ_1 is a positive function and the function f(x, t) satisfies (*F*2) and (*F*3), we conclude that f(x, u) = q(x)u a.e. in Ω . By a classical way introduced in the proof of Theorem 2, section 6.5 of [8], we know that there exists a positive constant c > 0 such that $u = c\phi_1$. Conversely, suppose that $u = c\phi_1$, for some constant c > 0, and f(x, u) = q(x)u. We have

$$-\operatorname{div}(a(x)\nabla u) = -c \operatorname{div}(a(x)\nabla \phi_1)$$
$$= cq(x)\phi_1$$
$$= q(x)u$$
$$= f(x, u).$$

Then u is a positive solution for the problem (1).

Proof of the Theorem 1.4 Suppose that $q(x) = +\infty$ and $\lim_{t\to+\infty} \frac{f(x,t)}{t^{r-1}} = 0$, for some real r with $r \in (2, r^*)$, uniformly in $x \in \Omega$. By Lemma 2.3, the Remark 2.4 and Theorem 1.2, there exists a Cerami sequence (u_n) (i.e. satisfying (4) and (5)).

Following the same steps as in the proof of Theorem 1.3 (*ii*), we only need here to prove that the sequence (u_n) is bounded in $H_0^1(\Omega)$.

By contradiction, suppose that (u_n) is unbounded in $H_0^1(\Omega)$, then up to subsequence $||u_n|| \to +\infty$. Let d > 0 and consider the sequence

$$w_n = \frac{u_n}{d||u_n||} = k_n u_n, \text{ where } k_n = \frac{1}{d||u_n||}.$$
 (41)

Because w_n is bounded in $H_0^1(\Omega)$, there exists $w \in H_0^1(\Omega)$ such that, up to subsequence,

 $w_n \to w$ weakly in $H_0^1(\Omega)$, $w_n \to w$ strongly in $L^2(\Omega)$, $w_n \to w$ a.e in Ω . 204

By Lemma 2.5, we have

$$w_n^+ \to w^+$$
 strongly in $L^2(\Omega)$,

and

$$w_n^+(x) \to w^+(x)$$
 a.e. in Ω .

We claim that

$$w^+(x) = 0 \quad \text{a.e. in } \Omega. \tag{42}$$

Indeed, let $\Omega_1 = \{x \in \Omega; w^+(x) = 0\}$ and $\Omega_2 = \{x \in \Omega; w^+(x) > 0\}$. By (41) and (*F*2), we have $u_n^+(x) \to +\infty$ and for a given K > 0 and *n* large enough we have

$$\frac{f(x, u_n^+(x))}{u_n^+(x)} (w_n^+(x))^2 \ge K(w^+(x))^2.$$
(43)

From (5) we have $||I'(u_n)||_{\star} \to 0$ and so,

$$\langle I'(u_n), u_n \rangle \to 0. \tag{44}$$

We get

$$\lim_{n \to +\infty} \left[\|u_n\|^2 - \int_{\Omega} \frac{f(x, u_n)}{u_n} (u_n)^2 dx \right] = 0,$$
(45)

then

$$\begin{split} \frac{1}{d^2} &= \lim_{n \to +\infty} \int_{\Omega} \frac{f(x,u_n)}{u_n} (w_n)^2 dx \\ &\geq \lim_{n \to +\infty} \int_{\Omega_2} \frac{f(x,u_n^+)}{u_n^+} (w_n^+)^2 dx \\ &\geq \int_{\Omega_2} \lim_{n \to +\infty} \frac{f(x,u_n^+)}{u_n^+} (w_n^+)^2 dx \\ &\geq K \int_{\Omega_2} (w^+)^2 dx \end{split}$$

for all K > 0. So necessary, $|\Omega_2| = 0$ and then $w^+ \equiv 0$ in Ω . We get

$$\lim_{n \to +\infty} \int_{\Omega} F(x, w_n^+(x)) dx = 0$$

and hence

$$\lim_{n \to +\infty} I(w_n) = \frac{1}{2d^2}.$$
(46)

By using Lemma 2.6, we get, up to subsequence

$$I(w_n) = I(k_n u_n) \le \frac{1}{2n} (1 + k_n^2) + I(u_n).$$
(47)

 $k_n = \frac{1}{d||u_n||}$, then from (46) and (47) we obtain

$$\frac{1}{2d^2} \le c \tag{48}$$

this is for any d > 0 which is impossible and so the sequence (u_n) is bounded in $H_0^1(\Omega)$.

205

References

- I. Abid, M. Jleli and N. Trabelsi, Weak solutions of quasilinear biharmonic problems with positive increasing and convex nonlinearities, Analysis and applications vol. 06 No. 03 (2008) 213-227.
- [2] G. Arioli, F. Gazzola, H. C. Grunau and E. Mitidieri, A semilinear fourth order elliptic problem with exponential nonlinearity, SIAM J. Math. Anal. 36 (4) (2005) 1226-1258.
- [3] A. Ambrosetti and P. H. Rabionowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973) 349-381.
- [4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer New York (2010).
- [5] H. Brezis, T. Cazenave and Y. Martel, Ramiandrisoa A. Blow up for $u_t \Delta u = g(u)$ revisited, Adv. Diff. Eq. Vol. 1 (1996) 73-90.
- [6] D. G. Costa and C. A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, Nonli. Anal. TMA 23 (1994) 1401-1412.
- [7] D.G. Costa and O.H. Miyagaki, Nontrivial solutions for perturbations of the P-Laplacian on unbounded domains, J. Math. Anal. Applications 193(7) (1995) 737-755.
- [8] L.C. Evans, Partial Differential Equations, Graguate Studies in Math., AMS, Providence, Rhode Island (1997).
- [9] M. Filippakis and N. Papageorgiou, Multiple solutions for nonlinear elliptic problems with a discontinuous nonlinearity, Anal Appl. 4 (2006) 1-18.
- [10] M. Ghergu and V. Rădulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, Vol. 37 Oxford University Press (2008).
- [11] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \mathbb{R}^N , Proc. Royal. Soc. Edinburgh, Section A, 129A (1999) pp. 787-809.
- [12] G. Li and Y. Huang, Positive solutions for generalized quasilinear Schrödinger equations with asymptotically linear nonlinearities, Applicable Analysis (2019), DOI: 10.1080/00036811.2019.1634256
- [13] G. Li, Y. Huang and Z. Liu, Positive solutions for quasilinear Schrödinger equations with superlinear term, Complex Variables and Elliptic Equations 65 (6) (2020) 936-955.
- [14] Y. Martel, Uniqueness of weak solution for nonlinear elliptic problems, Houston J Math 23 (1997) 161-168.
- [15] P. Mironescu, V. Rădulescu, A bifurcation problem associated to a convex, asymtotically linear function, C R Acad Sci Paris Ser I (1993) 316 667-672.
- [16] P. Mironescu, V. Rădulescu, The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Anal. 26 (1996) 857-875.
- [17] P. H. Rabionowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. in Math. N. 65, Amer. Math. Soc., Providence, R.I. (1986).
- [18] V. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations, Contemporary Mathematics and Applications, Vol. 6 Hindawi Publ. Corp. (2008).
- [19] M. Sanchón, Boundedness of the extremal solution of some p-Laplacian problems, Nonlinear Anal. 67(1) (2007) 281-294.
- [20] M. Schechter, Superlinear elliptic boundary value problems, Manuscripta Math. 86 (1995) 253-265.
- [21] S. Sâanouni and N. Trabelsi, A bifurcation problem associated to an asymptotically linear function, Acta Mathematica Scientia 2016, 36 B(6) 1-16.
- [22] S. Sâanouni and N. Trabelsi, Bifurcation for elliptic forth-order problems with quasilinear source term, Electronic Journal of Differential Equations, Vol. 92 (2016) 1-16.
- [23] C.A. Stuart and H.S. Zhou, A variational problem related to self-trapping of an electromagnetic field, Math. Methods in Applied Sci. 19 (1996) 1397-1407.
- [24] C.A. Stuart and H.S. Zhou, Applying the mountain pass theorem to asymptotically linear elliptic equation on \mathbb{R}^N , Comm. in P. D. E. 24 (1999) 1731-1758.
- [25] J. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm Partial Differ Equ. 21(9/10) (1996) 1451-1467.
- [26] H. Zhou, An application of a Mountain Pass Theorem, Acta Mathematica Scientia (18) (2002) 27-36.