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Abstract. In this paper, we study the following nonlinear elliptic problem

−div(a(x)∇u) = f (x,u), x ∈ Ω u ∈ H1
0(Ω) (P)

where Ω is a regular bounded domain in RN, N ≥ 2, a(x) a bounded positive function and the nonlinear
reaction source is strongly asymptotically linear in the following sense

lim
t→+∞

f (x, t)
t

= q(x)

uniformly in x ∈ Ω.
We use a variant version of Mountain Pass Theorem to prove that the problem (P) has a positive solution for
a large class of f (x, t) and q(x). Here, the existence of solution is proved without use neither the Ambrosetti-
Rabionowitz condition nor one of its refinements. As a second result, we use the same techniques to prove
the existence of solutions when f (x, t) is superlinear and subcritical on t at infinity.

1. Introduction and Main Results

In this paper, let Ω be a regular bounded domain in RN, N ≥ 2 and consider the following quasi-linear
elliptic weighted problem:{

−div(a(x)∇u) = f (x,u) in Ω,
u = 0 on ∂Ω,

(1)

where a(x) is a continuous function on Ω and f (x, t) is strongly asymptotically linear function:

lim
t→+∞

f (x, t)
t

= q(x),
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where q(x) is a bounded function. When modeling morphogenesis phenomena in Biology and the popula-
tion dynamic, Turing (1952) induce this type of equations for the interaction of species or chemicals:

∂u
∂t
− div(a(x)∇u) = f (x,u),

u is the density and div(a(x)∇u) represents the substance of diffusion through the system and finally f
models the interaction of substances. In the stationary case and when f (x, t) = f (t) depends only on t
and f is asymptotically linear at +∞, that is q(x) ≡ l = const., the problem (1) was studied by Sâanouni
and Trabelsi in [21]. In fact the results in [21] was a generalisation of those founded by Mironescu and
Rădulescu in [10, 15, 16, 18] where a is constant with the same conditions on the nonlinearity f (t). Their
proof of the existence of positive solutions is based on the condition f (0) > 0, since they take a positive, C1,
convex increasing real values function f . Also, with this conditions on the reaction function f and when f
is super-linear (l = +∞) the problem was studied in [5, 13, 14]. After that, the same problem (1) (and the
same conditions on f ) with a(x) = const. was generated to the p-Laplace operator in [9, 20]. The problem
with the Bi-Laplacian operator was treated in [1, 2, 22, 25].
In order to study the problem for more large class of functions, Zhou in [26] consider the case when the
asymptotically nonlinear term f (x, s) depends on x and s and f (x, 0) = 0. More precisely, he considered the
following conditions:

(F1) f (x, t) ∈ C(Ω ×R), f (x, t) ≥ 0 for all t > 0 and x ∈ Ω and f (x, t) ≡ 0 for t ≤ 0 and x ∈ Ω.

(F2) lim
t→0

f (x, t)
t

= p(x), lim
t→+∞

f (x, t)
t

= q(x) uniformly in a.e.x ∈ Ω, where p(x) and q(x) are bounded functions

and ‖p(x)‖∞ < λ1, where λ1 > 0 is the first eigenvalue of (−div(a(x)∇.),H1
0(Ω)).

(F3) The function
f (x, t)

t
is nondecreasing with respect to t > 0, for a.e.x ∈ Ω.

In this paper, we will study the solvability of the problem (1) when the function a is not constant and
f (x, s) is strongly asymptotically linear.
We start by giving the definition of solution (weak solution) for the problem (1).

Definition 1.1. A function u ∈ H1
0(Ω) is called solution of the problem (1) if∫

Ω

a(x)∇u∇ϕdx =

∫
Ω

f (x,u)ϕdx, (2)

for all ϕ ∈ H1
0(Ω).

Our approach is variational and we consider the following functional I defined on H1
0(Ω) by

I(u) =
1
2

∫
Ω

a(x)|∇u|2dx −
∫

Ω

F(x,u)dx (3)

where

F(x, s) =

∫ s

0
f (x, t)dt.

To prove the existence of nonzero critical point of I, we use a different version of the Mountain Pass Theorem
given in [7].

Theorem 1.2. [7] Let H be a real Banach space and suppose that I ∈ C1(H,R) satisfies the condition

max{I(0), I(e)} ≤ α < β ≤ inf
‖u‖=ρ

I(u)
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for some α < β, ρ > 0, and e ∈ H with ‖e‖ ≥ ρ. Let c ≥ β be characterized by

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ := {γ ∈ C([0, 1],H); γ(0) = 0 and γ(1) = e} the set of continuous paths joining 0 and e. Then, there exists
a sequence (un) in H satisfying the Cerami conditions:

I(un)→ c as n→ +∞ (4)

and

(1 + ‖un‖)‖I′(un)‖∗ → 0 as n→ +∞. (5)

In order to prove that the Cerami sequence given by Theorem 1.2 has a convergent subsequence and so the
functional I has a nontrivial critical point, it is often assumed that the nonlinearity satisfies the following
Ambrosetti-Rabionovitz condition introduced in [3, 17]:
there exist some constants θ > 2 and M > 0 such that

(AR) 0 < θF(x, t) ≤ f (x, t)t,

for all |t| ≥M and x ∈ Ω.
But here, for the asymptotically nonlinearities, we can not suppose such condition since the condition (AR)

implies that lim
t→+∞

F(x, t)
t2 = +∞ and as consequence

lim
t→+∞

f (x, t)
t

= +∞ which contradicts (F2). There are many other conditions imposed to solve the compact-

ness problem, we can refer to [6, 7, 11, 20, 23, 24, 26] and the references therein. In this paper we will prove
the compactness property for the Cerami sequence without any additive assumption or hypothesis on the
function f .
Before introducing our results, we remark that the asymptotically nonlinearities attract more and more
attention: In [12] Li and Huang consider a generalized quasilinear Schrödinger equations with asymptoti-
cally linear nonlinearities. They supposed that the nonlinearities f depend only on t and they proved the
existence of positive solutions using variational methods.
In this paper, we suppose that a(x) is positive and bounded:

(A) 0 < a1 ≤ a(x) ≤ a2,

for some positive constants a1 and a2 a.e. x ∈ Ω.

Let ‖u‖p =
( ∫

Ω
|u|p

)1/p
denotes the Lp(Ω)-norm. Consider the inner product in H1

0(Ω) given by

< u, v >=

∫
Ω

a(x)∇u.∇v dx,

and the induced norm will be denoted

‖u‖ =
( ∫

Ω

a(x)|∇u|2 dx
) 1

2
.

Set ϕ1 a normalised positive eigenfunction associated to λ1 the first eigenvalue of the operator −div(a(x)∇u)
with Dirichlet boundary condition on the open domain Ω.

−div(a(x)∇ϕ1) = λ1ϕ1 in Ω
ϕ1 = 0 on ∂Ω∫

Ω
ϕ2

1dx = 1.
(6)
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In this paper, we define

Λ1 = inf
u∈H1

0(Ω),u,0

∫
Ω

a(x)|∇u|2dx∫
Ω

q(x)u2dx
(7)

and we will see in Lemma 2.1, in the next section, that Λ1 > 0 and it is achieved by some positive function
φ1 in H1

0(Ω).
Before stating our main results, let us recall the assumptions on the nonlinearity.

(F1) f (x, t) ∈ C(Ω ×R), f (x, t) ≥ 0 for all t > 0 and x ∈ Ω and f (x, t) ≡ 0 for t ≤ 0 and x ∈ Ω.

(F2) lim
t→0

f (x, t)
t

= p(x), lim
t→+∞

f (x, t)
t

= q(x) uniformly in a.e.x ∈ Ω, where p(x) and q(x) are bounded functions

and ‖p(x)‖∞ < λ1, where λ1 > 0 is the first eigenvalue of (−div(a(x)∇.),H1
0(Ω)).

(F3) The function
f (x, t)

t
is nondecreasing with respect to t > 0, for a.e.x ∈ Ω.

Theorem 1.3. Suppose that (F1) and (F2) hold, then we have.

(i) If Λ1 > 1 and (F3) holds, then the problem (1) does not have a positive solution.
(ii) If Λ1 < 1, then the problem (1) has a non-trivial positive solution.

(iii) If Λ1 = 1 and (F3) holds, then (1) has a non-trivial positive solution
u ∈ H1

0(Ω) if and only if there exists a constant c > 0 such that u = cφ1 and f (x,u) = q(x)u a.e. in Ω.

For the case when q(x) = +∞ a.e. in Ω, let

r∗ =

{
2N

N−2 i f N > 2
+∞ i f N = 2 (8)

be the critical Sobolev exponent. We prove the following result.

Theorem 1.4. Suppose that (F1), (F2) and (F3) hold, q(x) = +∞ a.e. in Ω and f (x, t) is subcritical: lim
t→+∞

f (x, t)
tr−1 = 0

uniformly in x ∈ Ω, for some real r with r ∈ (2, r∗). Then the problem (1) has a non-trivial positive solution.

2. Preliminaries

Lemma 2.1. Let q(x) be a bounded non-negative function and a(x) be a positive function on Ω. The following
eigenvalue-eigenfunction problem:{

−div(a(x)∇u) = Λ q(x)u in Ω,
u = 0 on ∂Ω,

(9)

has a solution (Λ1, φ1) satisfying φ1 > 0 a.e. in Ω, φ1 ∈ H1
0(Ω), Λ1 > 0 and

Λ1 = inf{
∫

Ω

a(x)|∇u|2dx, u ∈ H1
0(Ω) and

∫
Ω

q(x)u2dx = 1}.

Proof. Since the function a is continuous and satisfies the condition (A), By the same scheme of [Lemma 2.1,
26] we get Λ1 > 0 and there exists φ1 solution to the equation (9). If φ1 is not non-negative, we can take |φ1|

and using maximum principle, we get a solution, still denoted φ1, satisfying φ1 > 0 a.e. in Ω. �

In the proof of the mains results, we need that (H1
0(Ω), ‖.‖) as a Hilbert space. In fact, we have the fol-

lowing result.
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Lemma 2.2. (H1
0(Ω), ‖.‖) is a Hilbert space and the norm ‖u‖ is equivalent to the norm

‖u‖W1,2(Ω).

Proof. (H1
0(Ω), ‖.‖W1,2(Ω)) is a Banach space and the equivalence between the two norms is due to the condition

(A). �

The next lemma assures the two geometric properties for the functional I induced by (3 ) when Λ1 < 1.

Lemma 2.3. Suppose that the function f satisfies (F1) and (F2), then the following results hold.
(i) There exist ρ, β > 0 such that I(u) ≥ β for all u ∈ H1

0(Ω) with ‖u‖ = ρ.
(ii) If Λ1 < 1, then I(tφ1)→ −∞ as t→ +∞.

Proof. (i) Let ε > 0, there exist A = A(ε) ≥ 0 and t0 ≥ 1 such that for all t ≥ t0,
f (x, t) ≤ At. For r ≥ 1, we get f (x, t) ≤ Atr and then

F(x, t) ≤
1
2

(‖p(x)‖∞ + ε)t2 +
A

r + 1
|t|r+1, (10)

for all (x, t) ∈ Ω ×R.
By choosing r such that 2 < r + 1 < r∗, r∗ given by (8), we obtain
‖u‖r+1

r+1 ≤ C‖u‖r+1 and then

I(u) ≥
1
2‖u‖

2
−

∫
Ω

F(x,u) dx
≥

1
2‖u‖

2
−

1
2 (‖p(x)‖∞ + ε)‖u‖22 −

A
r+1‖u‖

r+1
r+1

≥
1
2‖u‖

2
−

1
2 (‖p(x)‖∞ + ε)‖u‖22 −

A
r+1 C‖u‖r+1.

By definition of λ1, we have

I(u) ≥
1
2

(1 −
‖p(x)‖∞ + ε

λ1
)‖u‖2 −

A
r + 1

C‖u‖r+1.

From (F2), for ε > 0 small enough such that ‖p(x)‖∞ + ε < λ1, we can choose ‖u‖ = ρ very small in order to
get I(u) ≥ β for a given β > 0 sufficiently small.
(ii) Suppose that Λ1 < 1. For t > 0, we have

I(tφ1) =
t2

2

∫
Ω

a(x)|∇φ1|
2dx −

∫
Ω

F(x, tφ1) dx. (11)

By the condition (F2) and the definition of the function F(x, t) , we have

lim
t→∞

F(x, t)
t2 =

q(x)
2
·

Then, using the Fatou’s Lemma and the fact that φ1 is a solution for the minimization problem (7), we get

lim
t→∞

I(tφ1)
t2 =

1
2

∫
Ω

a(x)|∇φ1|
2dx − lim

t→∞

∫
Ω

F(x, tφ1)
t2 dx

≤
1
2

∫
Ω

a(x)|∇φ1|
2dx −

∫
Ω

lim
t→∞

F(x, tφ1)
(tφ1)2 φ2

1 dx

≤
1
2

∫
Ω

a(x)|∇φ1|
2dx −

1
2

∫
Ω

q(x)φ2
1dx

≤
1
2

∫
Ω

a(x)|∇φ1|
2dx −

1
2Λ1

∫
Ω

a(x)|∇φ1|
2dx

≤
1

2Λ1
(Λ1 − 1)

∫
Ω

a(x)|∇φ1|
2dx < 0,

for Λ1 < 1. So I(tφ1)→ −∞ as t→ +∞. �



M. Dammak et al. / Filomat 36:1 (2022), 195–206 200

Remark 2.4. Assume the conditions (F1) − (F3) and suppose that the function f is subcritical with respect to t and
q(x) = +∞ a.e. in Ω. Then, the results of the Lemma 2.3 hold.

Lemma 2.5. If (un) is a convergent sequence to u in Lp(Ω), for some 1 ≤ p < +∞, then (u+
n ) converges to u+ in

Lp(Ω), where u+
n = max(0,un) and u+ = max(0,u).

Proof.

‖u+
n − u+

‖
p
p =

∫
Ω

|u+
n − u+

|
pdx

=
1
2p

∫
Ω

∣∣∣∣(un − u) + (|un| − |u|)
∣∣∣∣pdx

≤
1
2p

∫
Ω

(
|un − u| + ||un| − |u||

)p
dx

≤
1
2p

∫
Ω

(
|un − u| + |un − u|

)p
dx

≤
1
2p

∫
Ω

(
2|un − u|

)p
dx

≤ ‖un − u‖pp.

Then (u+
n ) converges to u+ in Lp(Ω). �

We end this section by the following elementary result that will be used in the proof of Theorem 1.4
(the superlinear linearities cases).

Lemma 2.6. Suppose that (F3) holds and (un) a sequence in H1
0(Ω) such that

‖I′(un)‖? → 0.

Then, up to a subsequence, for all t > 0 we have

I(tun) ≤
1 + t2

2n
+ I(un). (12)

Proof. ‖I′(un)‖? → 0. So for all ϕ ∈ H1
0(Ω), 〈I′(un), ϕ〉 → 0, in particular

〈I′(un),un〉 → 0.

Up to subsequence, for all n ≥ 1,

|〈I′(un),un〉| ≤
1
n

(13)

and then

−
1
n
≤ ‖un‖ −

∫
Ω

f (x,un)undx ≤
1
n
, ∀n ≥ 1. (14)

We have

I(tun) =
1
2

t2
‖un‖ −

∫
Ω

F(x, tun)dx

and from (14) we get

I(tun) ≤
1
2

t2

n
+

∫
Ω

[1
2

t2 f (x,un)un − F(x, tun)
]
dx. (15)
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If we study the write hand site in (15) as a real function on t, we find that

I(tun) ≤
1
2

t2

n
+

∫
Ω

[1
2

f (x,un)un − F(x,un)
]
dx. (16)

From (14), we have

I(un) ≥ −
1

2n
+

∫
Ω

[1
2

f (x,un)un − F(x,un)
]
dx. (17)

By combining (15) and (17), we deduce that

I(tun) ≤
1 + t2

2n
+ I(un),

for all n ≥ 1 and t > 0. �

3. Proof of the Main Results

Proof of the Theorem 1.3 (i) By contradiction. Suppose that Λ1 > 1 and u ∈ H1
0(Ω) is a positive solution of

the problem (1). Then u satisfies the equation (3) for all ϕ ∈ H1
0(Ω). If we take ϕ = u, we obtain by using

(F2) and (F3) that∫
Ω

a(x)|∇u|2dx =

∫
Ω

f (x,u)udx ≤
∫

Ω

q(x)u2dx. (18)

So Λ1 ≤ 1. Theorem 1.3 (i) follows.

(ii) Suppose that Λ1 < 1 and the conditions (F1) − (F′2) hold. By lemma 2.2, there exists t0 such that
the function e = t0φΛ1 ∈ H1

0(Ω), ‖e‖ > ρ and I(e) < 0 for some β, ρ > 0, where I(u) ≥ β for all u ∈ ∂B(O, ρ) in
H1

0(Ω). Since the space (H1
0(Ω), ‖.‖) is a Banach space and the functional I is C1, we have a Cerami sequence

(un) ⊂ H1
0(Ω) satisfying

I(un) =
1
2
‖un‖

2
−

∫
Ω

F(x,un) dx→ c as n→ +∞ (19)

and

(1 + ‖un‖)‖I′(un)‖∗ → 0 as n→ +∞. (20)

The idea is to prove that (un) has a convergent subsequence in H1
0(Ω) and to prove that the limit will be a

positive solution to the equation (1).

Step1 ( (un) is bounded in H1
0(Ω), up to subsequence)

We argue by contradiction and we suppose that the Cerami sequence (un) is not bounded in H1
0(Ω). So , up

to subsequence, ‖un‖ → +∞. Consider

wn =
1
‖un‖

un = knun; kn =
1
‖un‖

(21)

The sequence (wn) is bounded in H1
0(Ω). By using the compactness of Sobelev embedding Theorem, there

exists w in H1
0(Ω), such that

wn ⇀ w weakly in H1
0(Ω),
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wn → w strongly in L2(Ω),

wn(x)→ w(x) a.e. in Ω.

Claim 1: w . 0. Indeed, the second Cerami condition (20) gives

〈I′(un),un〉 → 0 as n→ +∞, (22)

then

‖un‖ −

∫
Ω

f (x,un)undx → 0 as n→ +∞. (23)

So,

‖un‖ −

∫
Ω

f (x,un)undx → 0 as n→ +∞. (24)

We obtain

1 = lim
n→+∞

∫
Ω

f (x,un(x))
un(x)

w2
ndx. (25)

From (F1) and (F2) there exists M > 0 such that for all t > 0 and x ∈ Ω, we have

f (x, t)
t
≤M. (26)

Then,∫
Ω

f (x,un(x))
un(x)

w2
ndx ≤M

∫
Ω

w2
ndx. (27)

If we suppose that w ≡ 0, from (25) and (27), we get 1 ≤ 0 and this is impossible. The claim 1 is proved.
Claim 2: w satisfies the following equation∫

Ω

a(x)∇w∇ϕdx =

∫
Ω

q(x)w ϕdx, (28)

for all ϕ ∈ H1
0(Ω). For the proof of this claim, We use the condition (F1) to define the function 1n(x) on Ω as

1n(x) =
f (x,un(x))

un(x) if un(x) > 0 and 1n(x) = 0 if un(x) < 0. By (26), we get

0 ≤ 1n(x) ≤M.

Since the sequence 1n is bounded in L2(Ω), there exists a function 1 in L2(Ω) such that,up to subsequence

1n ⇀ 1 weakly in L2(Ω),

1n(x)→ 1(x) a.e. in Ω,

0 ≤ 1(x) ≤M for all x ∈ Ω.

Consider Ω+ = {x ∈ Ω; w(x) > 0}. We have un(x) = ‖un‖wn(x)→ +∞ for all x ∈ Ω+ and so

1(x) = q(x), for all x ∈ Ω+. (29)

Also,we have wn → w in L2(Ω). By Lemma 2.5, we have w+
n → w+ in L2(Ω) and so, we get for all

ϕ ∈ L2(Ω):∫
Ω

1n(x)wn(x)ϕ(x)dx =

∫
Ω

1n(x)w+
n (x)ϕ(x)dx→

∫
Ω

1(x)w+(x)ϕ(x)dx. (30)
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Since H1
0(Ω) is a subspace of L2(Ω), (30) is true for all ϕ ∈ H1

0(Ω).
From (20) we have ‖I′(un)‖∗ → 0 and then

lim
n→+∞

∫
Ω

a(x) ∇un.∇ϕdx −
∫

Ω

f (x,un)ϕdx = 0, for all ϕ ∈ H1
0(Ω) (31)

Since
1
‖un‖

→ 0, we obtain

lim
n→+∞

∫
Ω

a(x) ∇wn.∇ϕdx −
∫

Ω

1n(x)wn(x)ϕ(x)dx = 0, for all ϕ ∈ H1
0(Ω). (32)

From (32) and (30), we get∫
Ω

a(x) ∇w.∇ϕdx =

∫
Ω

1(x)w+(x)ϕ(x)dx, for all ϕ ∈ H1
0(Ω). (33)

If we take ϕ = w− as a test function in (33), we get ‖w−‖ = 0 and so w− ≡ 0 a.e. in Ω.
We get w ≥ 0 and the maximum principle yields to w > 0. By using (33) and (29), we finish the proof of the
claim 2.
Since the function w ∈ H1

0(Ω) is positive and satisfies (28), we get a contradiction with the fact that Λ1 < 1.
As a conclusion of this step, the sequence (un is bounded in (H1

0(Ω), ‖.‖).

Step2. ( (un) converge to a function u in H1
0(Ω), up to subsequence)

Indeed, the sequence (un) is bounded so by compactness Sobolev embedding Theorem, there exists
u ∈ H1

0(Ω) such that, up to a subsequence

un ⇀ u weakly in H1
0(Ω)

un → u stongly in L2(Ω)
un → u a.e in Ω.

From (20) we have ‖I′(un)‖∗ → 0 and so

lim
n→+∞

∫
Ω

a(x) ∇un.∇ϕ −

∫
Ω

f (x,un)ϕ = 0, for all ϕ ∈ H1
0(Ω). (34)

That is

lim
n→+∞

−div(a(x)∇un) − f (x,un) = 0 in D
′(Ω). (35)

Also

lim
n→+∞

< I′(un),un >= lim
n→+∞

‖un‖
2
−

∫
Ω

f (x,un)un = 0. (36)

By using (F2), we prove that f (x,un)→ f (x,u) in L2(Ω) and also∫
Ω

f (x,un)undx→
∫

Ω

f (x,u)udx.

So,

−div(a(x)∇u) = f (x,u) in Ω, (37)
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and then by taking u as a test function in (37), we get

‖u‖2 −
∫

Ω

f (x,u)u = 0. (38)

with (23) in mind, we deduce that ‖un‖
2
→ ‖u‖2. Up to subsequence, (un) converge to u in H1

0(Ω).

Step 3. ( u is a positive solution of the equation (1) )
By step 2, the sequence (un) converges to an element u in H1

0(Ω). By (19) we deduce that I(u) = c. From
(20) and (31), we get I′(u) = 0 and so, u is a solution of the problem (1). From the condition (F1) and the
maximum principle, the solution u is positive on Ω.

(iii) Suppose that Λ1 = 1 and the conditions (F1) − (F3) hold. First, if u is a positive solution for the
problem (1) by taking φ1 as test function in (2), we get∫

Ω

a(x)∇u.∇φ1 dx =

∫
Ω

f (x,u)φ1dx. (39)

By taking u as a test function in (9), we obtain∫
Ω

a(x)∇u.∇φ1 dx =

∫
Ω

q(x)uφ1dx (40)

and so
∫

Ω
( f (x,u) − q(x)u)φ1dx = 0. Since φ1 is a positive function and the function f (x, t) satisfies (F2) and

(F3), we conclude that f (x,u) = q(x)u a.e. in Ω. By a classical way introduced in the proof of Theorem 2,
section 6.5 of [8], we know that there exists a positive constant c > 0 such that u = cφ1.
Conversely, suppose that u = cφ1, for some constant c > 0, and f (x,u) = q(x)u. We have

−div(a(x)∇u) = −c div(a(x)∇φ1)
= cq(x)φ1

= q(x)u
= f (x,u).

Then u is a positive solution for the problem (1). �

Proof of the Theorem 1.4 Suppose that q(x) = +∞ and lim
t→+∞

f (x, t)
tr−1 = 0, for some real r with r ∈ (2, r∗),

uniformly in x ∈ Ω. By Lemma 2.3, the Remark 2.4 and Theorem 1.2, there exists a Cerami sequence (un)
(i.e. satisfying (4) and (5)).
Following the same steps as in the proof of Theorem 1.3 (ii), we only need here to prove that the sequence
(un) is bounded in H1

0(Ω).
By contradiction, suppose that (un) is unbounded in H1

0(Ω), then up to subsequence
‖un‖ → +∞. Let d > 0 and consider the sequence

wn =
un

d‖un‖
= knun, where kn =

1
d‖un‖

· (41)

Because wn is bounded in H1
0(Ω), there exists w ∈ H1

0(Ω) such that, up to subsequence,

wn ⇀ w weakly in H1
0(Ω),

wn → w strongly in L2(Ω),

wn → w a.e in Ω.
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By Lemma 2.5, we have
w+

n → w+ strongly in L2(Ω),

and
w+

n (x)→ w+(x) a.e. in Ω.

We claim that

w+(x) = 0 a.e. in Ω. (42)

Indeed, let Ω1 = {x ∈ Ω; w+(x) = 0} and Ω2 = {x ∈ Ω; w+(x) > 0}.
By (41) and (F2), we have u+

n (x)→ +∞ and for a given K > 0 and n large enough we have

f (x,u+
n (x))

u+
n (x)

(w+
n (x))2

≥ K(w+(x))2. (43)

From (5) we have ‖I′(un)‖? → 0 and so,

〈I′(un),un〉 → 0. (44)

We get

lim
n→+∞

[
‖un‖

2
−

∫
Ω

f (x,un)
un

(un)2dx
]

= 0, (45)

then
1
d2 = limn→+∞

∫
Ω

f (x,un)
un

(wn)2dx
≥ limn→+∞

∫
Ω2

f (x,u+
n )

u+
n

(w+
n )2dx

≥

∫
Ω2

limn→+∞
f (x,u+

n )
u+

n
(w+

n )2dx
≥ K

∫
Ω2

(w+)2dx

for all K > 0. So necessary, |Ω2| = 0 and then w+
≡ 0 in Ω. We get

lim
n→+∞

∫
Ω

F(x,w+
n (x))dx = 0

and hence

lim
n→+∞

I(wn) =
1

2d2 . (46)

By using Lemma 2.6, we get, up to subsequence

I(wn) = I(knun) ≤
1

2n
(1 + k2

n) + I(un). (47)

kn = 1
d‖un‖

, then from (46) and (47) we obtain

1
2d2 ≤ c (48)

this is for any d > 0 which is impossible and so the sequence (un) is bounded in
H1

0(Ω). �
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