Filomat 36:1 (2022), 165–173 https://doi.org/10.2298/FIL2201165A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Note on Weakly 1-Absorbing Primary Ideals

Fuad ali Ahmed Almahdi^a, Mohammed Tamekkante^b, Ali N. A. Koam^c

^aDepartment of Mathematics, Faculty of Science, King Khalid University, P.O. Box. 9004, Abha, Saudi Arabia ^bDepartment of Mathematics, Faculty of Science, University Moulay Ismail Meknes, Box 11201, Zitoune, Morocco ^cDepartment of Mathematics, College of Science, Jazan University, New Campus, P.O. Box 2097, Jazan 45142, Saudi Arabia

Abstract. An ideal *I* of a commutative ring *R* is called a weakly primary ideal of *R* if whenever *a*, *b* \in *R* and $0 \neq ab \in I$, then $a \in I$ or $b \in \sqrt{I}$. An ideal *I* of *R* is called weakly 1-absorbing primary if whenever nonunit elements $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$ or $c \in \sqrt{I}$. In this paper, we characterize rings over which every ideal is weakly 1-absorbing primary (resp. weakly primary). We also prove that, over a non-local reduced ring, every weakly 1-absorbing primary ideals is weakly primary.

1. Introduction

Throughout this paper, *R* denotes a commutative ring with $1 \neq 0$. An ideal *I* of a ring *R* is said to be proper if $I \neq R$. Let *R* be a ring and *I* be an ideal of *R*. The radical of *I* is denoted by $\sqrt{I} := \{x \in R \mid x^n \in I \text{ for some integer } n \geq 1\}$ and the nilradical of *R* is denoted by $\sqrt{0} := \sqrt{(0)}$. Let Spec(*R*) denotes the set of all prime ideals of *R* and let *Z*(*R*) denotes the set of zero-divisors of *R*.

An ideal q of *R* is said to be primary if, whenever $a, b \in R$ with $ab \in q$, then $a \in q$ or $b \in \sqrt{q}$. In this case $\mathfrak{p} = \sqrt{q}$ is a prime ideal of *R* and q is said to be \mathfrak{p} -primary.

Since prime and primary ideals have key roles in commutative ring theory, many authors have studied generalizations of these ideals. In [2], Anderson and Smith introduced the notion of weakly prime ideals. A proper ideal *I* of *R* is called weakly prime if whenever $a, b \in R$ and $0 \neq ab \in I$, then $a \in I$ or $b \in I$. In [3], Atani and Farzalipour introduced the concept of weakly primary ideals. A proper ideal *I* of *R* is called a weakly primary ideals of *R* if whenever $a, b \in R$ and $0 \neq ab \in I$, then $a \in I$ or $b \in I$. In [3], Atani and Farzalipour introduced the concept of weakly primary ideals. A proper ideal *I* of *R* is called a weakly primary ideal of *R* if whenever $a, b \in R$ and $0 \neq ab \in I$, then $a \in I$ or $b \in \sqrt{I}$. Recent generalizations of primary ideals and weakly primary ideals are, respectively, the notions of 1-absorbing primary ideals and weakly 1-absorbing primary ideals introduced by Badawi and Yetkin in [4, 6]. A proper ideal *I* of *R* is called 1-absorbing primary if whenever nonunit elements $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $c \in \sqrt{I}$. A proper ideal *I* of *R* is called weakly 1-absorbing primary if whenever nonunit elements $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$ or $c \in \sqrt{I}$. A proper ideal *I* of *R* is called weakly 1-absorbing primary if whenever nonunit elements $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$ or $c \in \sqrt{I}$. It is proved that

primary \rightarrow weakly primary \rightarrow weakly 1-absorbing primary,

²⁰²⁰ Mathematics Subject Classification. Primary 13A15, 13F05

Keywords. Prime ideal, Primary ideal, 1-Absorbing primary ideal, Weakly primary ideal, Weakly 1-absorbing primary ideal. Received: 18 January 2021; Accepted: 23 August 2021

Communicated by Dijana Mosić

Email addresses: fuadalialmahdy@hotmail.com (Fuad ali Ahmed Almahdi), tamekkante@yahoo.fr (Mohammed Tamekkante), akoum@jazanu.edu.sa (Ali N. A. Koam)

and

primary \rightarrow 1-absorbing primary \rightarrow weakly 1-absorbing primary

and all arrows are irreversible. For other generalizations of prime and primary ideals please see for example [5, 10, 11].

In Section 2, we characterize (reduced) rings over which every ideal is weakly 1-absorbing primary (resp. weakly primary) (Theorem 2.5 and Corollaries 2.8 and 2.9). In Section 3, among other results, we give some details about weakly 1-absorbing primary ideals which are not weakly primary over a non-local ring (Theorem 3.1). Hence, we prove that, over a non-local reduced ring, every weakly 1-absorbing primary ideal is weakly primary (Theorem 3.2). We also characterize rings over which every nonzero weakly 1-absorbing primary ideal is prime and local Noetherian rings over which every (nonzero) weakly 1-absorbing primary ideal is (weakly) primary (Theorem 3.3, Corollary 3.4, and Theorem 3.7).

2. Rings over which all ideals are weakly 1-absorbing primary

The main goal of this section is to characterize rings over which every ideal is weakly 1-absorbing primary. To do so, we need the following lemmas.

Lemma 2.1. *Let R be a domain. Then, the following are equivalent:*

1. Every ideal of R is weakly 1-absorbing primary.

- 2. Every ideal of R is 1-absorbing primary.
- 3. *R* is a field or *R* is a domain with a unique nonzero prime ideal.

Proof. The equivalence (1) \Leftrightarrow (2) follows from the fact that over a domain weakly 1-absorbing primary ideals coincide with 1-absorbing primary ideals. For the equivalence (2) \Leftrightarrow (3), it follows from [1, Corollary 2.14]. \Box

Lemma 2.2. If every ideal of R is weakly 1-absorbing primary, then every ideal of R/I is weakly 1-absorbing primary for each proper ideal I of R.

Proof. By [6, Theorem 16]. □

Lemma 2.3. Let R be a ring over which every ideal is weakly 1-absorbing primary. Then, the following hold:

- 1. Every prime ideal of R is either minimal or maximal.
- 2. Every non-maximal prime ideal is contained strictly in a unique prime ideal.

Proof. If every prime ideal of *R* is maximal (that is the krull dimension of *R* is zero), then the desired result follows trivially. Otherwise, let *P* be a prime non-maximal ideal of *R*. Let *P*₁ and *Q* be prime ideals of *R* such that $P_1 \subseteq P \subsetneq Q$. By Lemma 2.2, every ideal of *R*/*P*₁ is weakly 1-absorbing primary. Moreover, *R*/*P*₁ is not a field, otherwise *P*₁ is maximal and then *P*₁ = *P* is maximal, a contradiction. Hence, by Lemma 2.1, *R*/*P*₁ has a unique nonzero prime ideal. Thus, *P*/*P*₁ = (0) and *Q*/*P*₁ is the unique nonzero prime ideal of *R* and *Q* is the unique prime ideal which contains strictly *P*. Consequently, (1) and (2) hold.

Lemma 2.4. Let I be a radical ideal of R (that is $\sqrt{I} = I$). If I is weakly 1-absorbing primary, then I is prime or $x^3 = 0$ for all $x \in I$. In this last case, we get $I = \sqrt{0}$.

Proof. Suppose that there exists $x_0 \in I$ such that $x_0^3 \neq 0$.

Let $a, b \in R$ such that $ab \in I$. We have to prove that $a \in I$ or $b \in I$. We may assume that a and b are nonunit. If $a^2b \neq 0$, then $a^2 \in I$ or $b \in \sqrt{I} = I$. Hence, $a \in I$ or $b \in I$. Similarly, if $ab^2 \neq 0$ we get the same conclusion.

Now, suppose that $a^2b = ab^2 = 0$. If $a^2I \neq (0)$, then there exists $x \in I$ such that $a^2x \neq 0$, and so $0 \neq a^2x = a^2(b + x) \in I$. If b + x is a unit, then $a \in I$. Otherwise, $a^2 \in I$ or $b + x \in I$. Thus, $a \in I$ or $b \in I$. Similarly, if $b^2I \neq (0)$, then $a \in I$ or $b \in I$.

Suppose now that $a^2I = b^2I = (0)$. We have $(a^2 + x_0)^2(b^2 + x_0) = x_0^3 \in I$. If $a^2 + x_0$ (resp. $b^2 + x_0$) is a unit, then $b \in I$ (resp. $a \in I$). Otherwise, $(a^2 + x_0)^2 \in I$ or $b^2 + x_0 \in I$. Thus, $a \in I$ or $b \in I$.

We conclude so that *I* is a prime ideal of *R*. \Box

Recall from [7], that a ring *R* is said to be an *UN*-ring if every nonunit element *a* of *R* is a product a unit and a nilpotent elements, or equivalently every element of *R* is either nilpotent or unit ([12, Proposition 2.25]). That is *R* is local with maximal ideal $\sqrt{0}$. A simple example of *UN*-rings is $\mathbb{Z}/9\mathbb{Z}$.

The main result of this section is stated as follows:

Theorem 2.5. *Let R be a ring. Then, every ideal of R is weakly* 1*-absorbing primary if and only if one of the following holds:*

- 1. $R \cong k_1 \times k_2$ where k_1 and k_2 are fields, or
- 2. R is an UN-ring, or
- 3. *R* is local with maximal ideal *M* and Spec(*R*) = { $\sqrt{0}$, *M*} such that $\sqrt{0}M(M \setminus \sqrt{0}) = \{0\}$.

Proof. (\Rightarrow) Suppose that *R* is non-local. Let M_1 and M_2 be two distinct maximal ideals of *R*. The ideal $M_1 \cap M_2$ is a non-prime weakly 1-absorbing primary radical ideal. By Lemma 2.4, $M_1 \cap M_2 = \sqrt{0}$.

Let $m_1 \in M_1$ and $m_2 \in M_2$ such that $m_1 + m_2 = 1$. Clearly, $m_1 \notin \sqrt{0}$, otherwise $m_2 = 1 - m_1$ is a unit, a contradiction. Similarly, $m_2 \notin \sqrt{0}$. We claim that m_1^2 is an idempotent element of R. We have $m_1^2m_2 + m_1^3 = m_1^2$. Suppose that $m_1^2m_2 \neq 0$. We have $m_1^2m_2 \in M_1 \cap M_2 = \sqrt{0}$. Thus, $\sqrt{(m_1^2m_2)} = \sqrt{0}$. Now, since $(m_1^2m_2)$ is weakly 1-absorbing primary and $0 \neq m_1^2m_2 \in (m_1^2m_2)$ and $m_2 \notin \sqrt{0}$, we get $m_1^2 \in (m_1^2m_2) \subseteq \sqrt{0}$. Thus, $m_1 \in \sqrt{0}$, a contradiction. Consequently, $m_1^2m_2 = 0$, and so $m_1^2 = m_1^3 = m_1^4$. Thus, m_1^2 is an idempotent element. Set $m_1^2 = e \in M_1$.

Let $0 \neq x \in \sqrt{0}$. We have either $ex \neq 0$ or $(1 - e)x \neq 0$. Suppose for example that $ex \neq 0$. Assume that a = ex + 1 - e is a unit. Then, 1 - e = a - ex is unit since $ex \in \sqrt{0}$, and so since 1 - e is an idempotent element we get 1 - e = 1, which means that $e = m_1^2 = 0$, a contradiction since $m_1 \notin \sqrt{0}$. Hence, a is nonunit. Now, $e^2a = e^2(ex + 1 - e) = ex \neq 0$. Clearly, $e = e^2 \notin (ex) \subseteq \sqrt{0}$ and $a = ex + 1 - e \notin \sqrt{0} = \sqrt{(ex)}$, otherwise $1 - e \in \sqrt{0}$, and then $m_1^2 = e = 1$, a contradiction. Hence, the ideal (ex) is not weakly 1-absorbing primary, a contradiction. Accordingly, $\sqrt{0} = (0)$. Hence, $R \cong R/M_1 \times R/M_2$. Thus, R is isomorphic to a product of two fields.

Suppose that *R* is local with maximal ideal *M*. Suppose that *R* is not an *UN*-ring. So, *R* admits non-maximal prime ideals. Let *P* and *Q* be two non-maximal prime ideals of *R*.

Let $\{I_{\alpha}\}_{\alpha}$ be the set of all *M*-primary ideals of *R* and set $J := \bigcap_{\alpha} I_{\alpha}$. Consider $x \in J$. Suppose that $x \notin P$. Then, $P \subsetneq P + (x^2) \subseteq M$. By Lemma 2.3, *M* is the unique prime ideal wich contains $P + (x^2)$. Thus, $\sqrt{P + (x^2)} = M$. Hence, $x \in P + (x^2)$ since $P + (x^2) \in \{I_{\alpha}\}_{\alpha}$. Thus, there exist $r \in R$ such that $x(1 - rx) \in P$. Thus, $1 - rx \in P \subseteq M$, a contradiction. Consequently, $J \subseteq P$, and similarly $J \subseteq Q$.

Let $x \in P$ and $y \in M \setminus Q$. If $xy(M \setminus P) \neq 0$, then there exists $z \in M \setminus P$ such that $xyz \neq 0$. For each α , we have $\sqrt{I_{\alpha}P} = \sqrt{I_{\alpha}P + (xyz)} = P$. Thus, since $I_{\alpha}P + (xyz)$ is weakly 1-absorbing primary, $0 \neq xyz \in I_{\alpha}P + (xyz)$, and $z \notin P$, we get $xy \in I_{\alpha}P + (xyz)$. Thus, for some $r \in R$, we have $xy(1 - zr) \in I_{\alpha}P \subseteq I_{\alpha}$. Thus, $xy \in I_{\alpha}$ since 1 - zr is a unit. Thus, $xy \in \cap_{\alpha} I_{\alpha} = J \subseteq Q$. Hence, $x \in Q$.

Now, assume that $xy(M \setminus P) = 0$. If $M = P \cup Q$, then *P* or *Q* is maximal, a contradiction. Thus, $M \neq P \cup Q$, and so there exists $z \in M \setminus P \cup Q$. By assumption, we have $xyz = 0 \in Q$. Thus, since *y* and *z* are not elements of *Q*, we get that $x \in Q$.

From the both cases, we conclude that $P \subseteq Q$. Similarly, $Q \subseteq P$, and so P = Q.

Consequently, *R* admits a unique non-maximal prime ideal which is necessarily $\sqrt{0}$, and then $\sqrt{0}$ and *M* are the only prime ideals of *R*.

Let $x \in \sqrt{0}$, $y \in M$, and $z \in M \setminus \sqrt{0}$. Suppose that $xyz \neq 0$. Then, since the principal ideal (*xyz*) is weakly 1-absorbing primary and $z \notin \sqrt{(xyz)} = \sqrt{0}$, we obtain that $xy \in (xyz)$, and then xy(1 - rz) = 0 for some $r \in R$. Thus, xy = 0, a contradiction with the assumption $xyz \neq 0$. Hence, we conclude that $\sqrt{0}M(M \setminus \sqrt{0}) = 0$.

 (\Leftarrow) If R is a product of two field, then the result follows from [6, Theorem 14] and if R is a UN-ring, then

the result follows from [6, Theorem 1(6)].

Now, suppose that *R* satisfies (3). Let *I* be an ideal of *R*. If $\sqrt{I} = M$, then *I* is primary, and so weakly 1-absorbing primary. Hence, suppose that $\sqrt{I} = \sqrt{0}$. Let $a, b, c \in R$ nonunit elements such that $abc \in I$ and $c \notin \sqrt{0}$. Thus, $a \in \sqrt{0}$ or $b \in \sqrt{0}$. In the both cases abc = 0. Hence, *I* is weakly 1-absorbing primary. \Box

Next, we give an example of a local ring which is not an *UN*-ring over which every ideal of *R* is weakly 1-absorbing primary. The same ring contains an ideal which is not 1-absorbing primary.

Example 2.6. Consider the ring $A = \frac{k[x, y]}{(x^3, xy)}$ with k is a field. The ideal $P = \frac{(x, y)}{(x^3, xy)}$ is a prime ideal of A. So, set

 $R = A_P$. Then, R is a local ring with the maximal ideal $M = \left(\frac{\overline{x}}{\overline{1}}, \frac{\overline{y}}{\overline{1}}\right)$ and exactly one non-maximal prime ideal which

is $P = \sqrt{0_R} = \left(\frac{\overline{x}}{\overline{1}}\right)$. We have $PM^2 = \{0_R\}$. Hence, using the Theorem 2.5, every ideal of R is weakly 1-absorbing primary.

Now, $\frac{\overline{x^2}}{\overline{1}} \cdot \frac{\overline{y}}{\overline{1}} = 0_R$ but neither $\frac{\overline{x^2}}{\overline{1}} = 0_R$ nor $\frac{\overline{y}}{\overline{1}} \in \sqrt{0_R}$. Thus, $\{0_R\}$ is not a 1-absorbing primary ideal of R.

Corollary 2.7 ([6, Theorem 14]). Let R_1, \dots, R_n be commutative rings with $n \ge 2$ and set $R = R_1 \times \dots \times R_n$. Then the following are equivalent:

- 1. Every ideal of R is a weakly 1-absorbing primary ideal of R.
- 2. n = 2 and R_1 and R_2 are fields.

Then next result characterizes rings over which every ideal is weakly primary.

Corollary 2.8. Let R be a ring. Then, every ideal of R is weakly primary if and only if one of the following holds:

- 1. $R \cong k_1 \times k_2$ where k_1 and k_2 are fields, or
- 2. R is an UN-ring, or
- 3. *R* is local with maximal ideal *M* and Spec(*R*) = { $\sqrt{0}$, *M*} such that $\sqrt{0}(M \setminus \sqrt{0}) = \{0\}$.

Proof. (\Rightarrow) Since every ideal of *R* is weakly primary, we get that every ideal of *R* is weakly 1-absorbing primary. By Theorem 2.5, if *R* is non-local, $R \cong k_1 \times k_2$ where k_1 and k_2 are fields.

Now, assume that *R* is local but not an *UN*-ring. Then, following Theorem 2.5, $\sqrt{0}$ and *M* (the maximal ideal) are the only prime ideals of *R*. Let $a \in \sqrt{0}$ and $b \in M \setminus \sqrt{0}$. Suppose that $ab \neq 0$. Then, since (ab) is a weakly primary ideal and $b \notin \sqrt{(ab)} = \sqrt{0}$, we deduce that $a \in (ab)$. Hence, a(1 - bc) = 0 for some $c \in R$. But 1 - bc is a unit, and so a = 0, a contradiction with the assumption $ab \neq 0$. Consequently, $\sqrt{0}(M \setminus \sqrt{0}) = \{0\}$. (\Leftarrow) The ring $k_1 \times k_2$ admits three ideals $\{(0,0)\}, 0 \times k_2$ and $k_1 \times 0$, and all these ideals are weakly primary. Moreover, all ideals of an *UN*-ring are primary and so weakly primary.

Suppose that (3) holds. Let *I* be an ideal of *R*. If $\sqrt{I} = M$, then *I* is primary, and then weakly primary. Hence, assume that $\sqrt{I} = \sqrt{0}$ and let $0 \neq ab \in I$ with $a \notin I$. Suppose that $b \notin \sqrt{I}$. Then, $a \in \sqrt{0}$ since $ab \in I \subseteq \sqrt{I} = \sqrt{0}$. Thus, ab = 0, a contradiction. Then, $b \in \sqrt{I}$. \Box

The following result follows easily from Theorem 2.5 and Corollary 2.8.

Corollary 2.9. *Let R be a reduced ring. Then, the following are equivalent:*

- 1. Every ideal of R is weakly 1-absorbing primary
- 2. Every ideal of R is weakly primary
- 3. *R* satisfies one of the following statement:
 - (a) $R \cong k_1 \times k_2$ where k_1 and k_2 are fields, or
 - (b) *R* is a field, or
 - (c) *R* is a domain with a unique nonzero prime ideal.

3. Local Noetherian rings over which every (weakly) 1-absorbing primary ideal is (weakly) primary

We begin this section with a brief discussion on the following question posed by Badawi and Yetkin in [6].

Question. Does, over a non-local ring, every weakly 1-absorbing primary ideal is weakly primary?

A partial answer is given in [6, Theorem 5] as follows: Let *R* be a non-local ring and *I* be an ideal of *R* such that ann(i) is not a maximal ideal of *R* for every element $i \in I$. Then *I* is a weakly 1-absorbing primary ideal of *R* if and only if *I* is a weakly primary ideal of *R*.

In this paper, we are not able to give an affirmative or a negative answer to this Question in the general case. However, we prove that this is true over non-local reduced rings. To do so, we need the next result which gives some details about weakly 1-absorbing primary ideals that are not weakly primary (if any) over non-local rings.

Theorem 3.1. *Let R be a non-local ring, and let I be a weakly* 1*-absorbing primary ideal that is not weakly primary. Then*

1. *either* $I^3 = (0)$, *or*

2. $I^2 = (e)$ with e is an idempotent such that (1 - e) is a maximal ideal of R.

Proof. Suppose that (2) is not satisfied. Since *I* is not weakly primary, there exists $x, y \in R$ such that $0 \neq xy \in I$, $x \notin I$, and $y \notin \sqrt{I}$. Clearly, *x* and *y* are nonunit.

Suppose that $wx \in I$ for all nonunit element $w \in R$. Let u be a unit element of R. If w + u is nonunit, then $(w + u)x \in I$, and so $ux \in I$, a contradiction since $x \notin I$. Hence, for each nonunit element $w \in R$ and each unit element $u \in R$, w + u is a unit. Thus, by [4, Lemma 1], R is local, a contradiction. Consequently, there exists a nonunit element $w \in R$ such that $wx \notin I$.

If $wxy \neq 0$, then $wx \in I$ since $y \notin \sqrt{I}$ and I weakly 1-absorbing primary, a contradiction. Hence, wxy = 0. Suppose that there exists $p \in I$ such that $wxp \neq 0$. Then, $0 \neq wxp = wx(y + p) \in I$. If y + p is a unit, then $wx \in I$, a contradiction. Hence, since $wx \notin I$, we get $y + p \in \sqrt{I}$. Thus, $y \in \sqrt{I}$, a contradiction. Consequently, wxI = (0).

Suppose that there exists $p \in I$ such that $wyp \neq 0$. Then, $0 \neq wyp = w(x + p)y \in I$. If x + p = u is a unit, then $uy = xy + py \in I$, and so $y \in I$, a contradiction. Hence, x + p is nonunit and $w(x + p) \in I$. So, $wx \in I$, a contradiction. Consequently, wyI = (0).

Suppose that there exists $p, q \in I$ such that $wpq \neq 0$. Then, $0 \neq wpq = w(x + p)(y + q) \in I$. As above, x + p and y + q are nonunit. Hence, $w(x + p) \in I$. So, $wx \in I$, a contradiction. Consequently, $wI^2 = (0)$.

Suppose that there exists $p \in I$ such that $xyp \neq 0$. Then, $0 \neq xyp = (w + p)xy \in I$. Suppose that u = w + p is a unit. Then, $up^2 = p^3$. Hence, $(pu^{-1})^2 = (pu^{-1})^3$. Thus, $e = (pu^{-1})^2$ is an idempotent element. For each $q, r \in I$, we have qru = qrp and $qpu = qp^2$. Thus, $qru^2 = r(qpu) = rqp^2$. Hence, qr = qre. Then, $I^2 \subseteq (e) \subseteq I^2$. Therefore, $I^2 = (e)$.

By assumption (1 - e) is non-maximal. If (*e*) is a maximal ideal, then $I = I^2 = (e)$, a contradiction since *I* is not a weakly primary ideal. Thus, neither (1 - e) nor (*e*) is maximal. Hence, $R \cong R/(e) \times R/(1 - e)$ is a product of two rings that are not fields. By [6, Theorem 13], *I* is primary, a contradiction. Accordingly, w + p is nonunit, and so $(w + p)x \in I$. Then, $wx \in I$, a contradiction. Consequently, xyI = (0).

Suppose that there exists $p, q \in I$ such that $xpq \neq 0$. Then, $0 \neq xpq = x(w + p)(y + q) \in I$. As above, w + p and y + q are nonunit. Hence, $x(w + p) \in I$. So, $wx \in I$, a contradiction. Consequently, $xI^2 = (0)$.

Suppose that there exists $p, q \in I$ such that $ypq \neq 0$. Then, $0 \neq ypq = (w + p)(x + q)y \in I$. As above, w + p and x + q are nonunit. Hence, $(w + p)(x + q) \in I$. So, $wx \in I$, a contradiction. Consequently, $yI^2 = (0)$.

Let $p, q, r \in I$ such that $pqr \neq 0$. Then, $(w + p)(x + q)(y + r) = pqr \neq 0$. As above, w + p, x + q and y + r are nonunit. Then, $(w + p)(x + q) \in I$ or $y + r \in \sqrt{I}$. That is $wx \in I$ or $y \in \sqrt{I}$, a contradiction. Hence, $I^3 = (0)$. \Box

Theorem 3.2. Let *R* be a non-local reduced ring. Then, every weakly 1-absorbing primary ideal is weakly primary.

Proof. Let *I* be a weakly 1-absorbing primary of *R*. Suppose that *I* is not weakly primary. If $I^3 = (0)$, then I = (0) which is weakly primary, a contradiction. Then, following Theorem 3.1, $I^2 = (e)$ with *e* is an idempotent such that (1 - e) is a maximal ideal of *R*. We have that $R \cong R/(e) \times R/(1 - e)$ following the isomorphism *f* defined by $r \mapsto (\bar{r}, \bar{r})$. Set $R_1 = R/(e)$ and k = R/(1 - e) which is clearly a field. We have also $f(I^2) = (0) \times k$. Without loss of generality, set $R = R_1 \times k$ and $I = I_1 \times I_2$ such that I_1 and I_2 are ideals of R_1 and *k*, respectively. Hence, since $I^2 = (0_{R_1}) \times k$ and R_1 is reduced, we conclude that $I = (0_{R_1}) \times k$. Moreover, $\sqrt{I} = \sqrt{(0_{R_1})} \times k = (0_{R_1}) \times k = I$ since R_1 is reduced. Hence, *I* is a radical ideal. Hence, by Lemma 2.4, *I* is prime, a contradiction since *I* is not weakly primary. Consequently, every weakly 1-absorbing primary ideal is weakly primary. \Box

The next result characterizes local Noetherian rings over which every weakly 1-absorbing primary ideal is weakly primary.

Theorem 3.3. *Let* (*R*, *M*) *be a local Noetherian ring. The following are equivalent:*

- 1. Every weakly 1-absorbing primary ideal is weakly primary.
- 2. Every 1-absorbing primary ideal is weakly primary.
- 3. *R* is:
 - (a) either UN-ring, or

(b) Spec(*R*) = { $\sqrt{0}$, *M*} such that $\sqrt{0}(M \setminus \sqrt{0}) = \{0\}$.

4. Every ideal of R is weakly primary.

Proof. (1) \Rightarrow (2) and (4) \Rightarrow (1) are clear.

(2) \Rightarrow (3) Assume that *R* is not an *UN*-ring.

Suppose that *R* is a domain. Let $0 \neq P$ be a non-maximal prime ideal of *R*. Then, *PM* is a 1-absorbing primary ideal of *R* and $\sqrt{PM} = P$ (by [4, Theorem 7]). Then *PM* is a weakly primary ideal of *R*. Let $0 \neq x \in P$ and $y \in M \setminus P$. We have $0 \neq xy \in PM$ and $y \notin P = \sqrt{PM}$. Thus, $x \in PM$. Hence, P = PM. Since *R* is Noetherian, by the Nakayama's lemma, we get P = (0), a contradiction. Thus, *M* is the unique nonzero prime ideal of *R*, and so (b) holds.

Suppose that *R* is not a domain. Let *P*, *Q* be two non-maximal prime ideals of *R*.

Assume that $P(M \setminus P) \neq \{0\}$. As above, *PM* is a weakly primary ideal of *R* and $\sqrt{PM} = P$. Let $x \in P$ and $y \in M \setminus P$ such that $xy \neq 0$. Then $xy \in PM$ and $y \notin P = \sqrt{PM}$. Thus, $x \in PM$. Now, let $p \in P$ arbitrary. If $py \neq 0$, then as above $p \in PM$. If py = 0, then $(p + x)y = xy \neq 0$, and so we obtain that $p + x \in PM$. Thus, $p \in PM$. Hence, we conclude that $P \subseteq PM$. Thus, P = PM. As above, we get P = (0), a contradiction. Consequently, $P(M \setminus P) = \{0\}$.

Similarly, $Q(M \setminus Q) = \{0\}$. If $M = P \cup Q$, then M = P or M = Q, a contradiction. Thus, there exists $\alpha \in M \setminus (P \cup Q)$. We have $\alpha P = (0) = \alpha Q$. Thus, $\alpha P \subseteq Q$, and so $P \subseteq Q$ since $\alpha \notin Q$. Similarly, we get $Q \subseteq P$. Thus, P = Q. Hence, the only nonzero prime non-maximal ideal of R is $\sqrt{0}$ and $\sqrt{0}(M \setminus \sqrt{0}) = \{0\}$. (3) \Rightarrow (4) Follows from Corollary 2.8. \Box

Corollary 3.4. *Let* (*R*, *M*) *be a local Noetherian ring. The following are equivalent:*

- 1. Every nonzero weakly 1-absorbing primary ideal is primary.
- 2. Every nonzero 1-absorbing primary ideal is primary.
- 3. *R* is:

(a) either UN-ring, or

- (b) Spec(*R*) = { $\sqrt{0}$, *M*} such that $\sqrt{0}$ is a minimal ideal.
- 4. Every nonzero ideal of R is primary.

Proof. (1) \Rightarrow (2) and (4) \Rightarrow (1) are clear.

(2) \Rightarrow (3) We have that every nonzero 1-absorbing primary ideal is primary, and so weakly primary. Moreover, the zero ideal is always weakly primary. Thus, by Theorem 3.3, if *R* is not an *UN*-ring, then

Spec(*R*) = { $\sqrt{0}$, *M*} such that $\sqrt{0}(M \setminus \sqrt{0}) = \{0\}$. Let $0 \neq I \subseteq \sqrt{0}$. Let $a, b, c \in R$ nonunit such that $abc \in I \subseteq \sqrt{0}$ and $c \notin \sqrt{I} = \sqrt{0}$. Hence, $a \in \sqrt{0}$ or $b \in \sqrt{0}$. In the both cases, abc = 0 since $\sqrt{0}(M \setminus \sqrt{0}) = \{0\}$. Thus, *I* is weakly 1-aborbing primary, and so primary. Let $x \in \sqrt{0}$ and $y \in M \setminus \sqrt{0}$. We have $xy = 0 \in I$ and $y \notin \sqrt{0} = \sqrt{I}$. Thus, $x \in I$. Hence, $\sqrt{0} \subseteq I$, and so $\sqrt{0} = I$. Consequently, $\sqrt{0}$ is a minimal ideal of *R*. (3) \Rightarrow (4) If *R* is an *UN*-ring or *R* is a domain with unique nonzero prime ideal, then every nonzero ideal *I* is primary since \sqrt{I} is always the maximal ideal of *R*.

Now, suppose that *R* is not a domain such that $\text{Spec}(R) = \{\sqrt{0}, M\}$ and $\sqrt{0}$ is a minimal ideal. Let *I* be a nonzero prime ideal of *R*. If $\sqrt{I} = M$, then *M* is primary. Now, if $\sqrt{I} = \sqrt{0}$, then $I = \sqrt{0}$ since $\sqrt{0}$ is minimal and $(0) \neq I \subseteq \sqrt{I} = \sqrt{0}$. Hence, *I* is prime. \Box

Recall that a ring *R* is called divided if for every prime ideal *P* of *R* and for every $x \in R$ we have either $(x) \subseteq P$ or $P \subseteq (x)$.

Proposition 3.5. Let (*R*, *M*) be a local Noetherian ring. The following are equivalent:

- 1. Every weakly 1-absorbing primary ideal is primary.
- 2. Every 1-absorbing primary ideal is primary.
- 3. *R* is an UN-ring or *R* is a domain with unique nonzero prime ideal.
- 4. Every ideal of R is primary.
- 5. *R* is a divided ring.

Proof. (1) \Rightarrow (2) and (4) \Rightarrow (1) are clear, and the equivalence between (2), (3), (4), and (5) is exactly [1, Theorem 3.4]. \Box

We need the following well-known lemma.

Lemma 3.6. Let R be a ring. Then, (0) is a primary ideal of R if and only if $Z(R) = \sqrt{0}$.

Recall that a ring *R* is called Von Neumann regular (or absolutely flat ring) if, for every $x \in R$, there exists $y \in R$ such that $x^2y = x$. The following characterizations of Von Neumann regular rings can be found in [8, 9]. Let *R* be a ring. The following conditions are equivalent:

- 1. *R* is Von Neumann regular.
- 2. *R* has Krull dimension 0 and is reduced.
- 3. Every localization of *R* at a maximal ideal is a field

The following result characterizes rings over which every nonzero weakly 1-absorbing primary ideal is prime.

Theorem 3.7. *Let R be a ring. The following are equivalent:*

- 1. Every nonzero weakly 1-absorbing primary ideal is prime.
- 2. Every nonzero 1-absorbing primary ideal is prime.
- 3. Every nonzero primary ideal is prime.
- 4. *R* is either a
 - (a) Von Neumann regular ring, or
 - (b) $(R, \sqrt{0})$ is local non-domain and the only nonzero proper ideal of R is $\sqrt{0}$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) Clear.

(3) ⇒ (4) Let *P* be a prime ideal of *R*. Then, *R*/*P* is a domain. Let *P* ⊆ *J* be an ideal of *R* such that *J*/*P* be a nonzero primary ideal of *R*/*P*. Then, *J* is a nonzero primary ideal of *R*. Thus, *J* is prime and so *J*/*P* is prime. Thus, over *R*/*P*, every primary ideal is prime. Hence, by [1, Theorem 3.1], *R*/*P* is Von Neumann regular and so a field since *R*/*P* is a domain. Hence, *P* is maximal. Thus, every prime ideal of *R* is maximal, and so the Krull dimension of *R* is 0. It is known that over such rings, every regular element is unit.

If (0) is non-primary, then (3) is equivalent to that every primary ideal is prime. Hence, by [1, Theorem 3.1], *R* is a Von Neumann regular ring.

Now, assume that (0) is primary. Thus, $Z(R) = \sqrt{0}$, and so Z(R) is an ideal of R. Since every regular element is unit, Z(R) is the unique maximal ideal of R, and so R is local with maximal ideal $\sqrt{0}$ (an *UN*-ring).

If *R* is a domain, then it is a field, and so a Von Neumann regular ring. Suppose now that *R* is not a domain and let $I \neq 0$ be a proper ideal of *R*. We have $\sqrt{0} \subseteq \sqrt{I}$. Thus, $\sqrt{I} = \sqrt{0}$ is maximal, and so *I* is primary. Thus, *I* is prime. So, $I = \sqrt{0}$. Thus, $\sqrt{0}$ is the unique nonzero proper ideal of *R*.

(4) \Rightarrow (1) If $(R, \sqrt{0})$ is local non-domain and the only nonzero ideal of *R* is $\sqrt{0}$, then the result follows trivially. Hence, suppose that *R* is Von Neuman regular. By [1, Theorem 3.1], every 1-absorbing primary ideal is prime. Let *I* be a nonzero weakly 1-absorbing primary ideal of *R*. By [6, Theorem 4], *I* is 1-absorbing primary, and so prime. \Box

An ideal *I* of *R* is said to be semi-primary if \sqrt{I} is prime. It is proved in [4, Theorem 2] that every 1-absorbing primary ideal of *R* is semi-primary. However, this is not the case for weakly 1-absorbing primary ideals. The next results characterizes rings over which every weakly 1-absorbing primary ideal of *R* is semi-primary.

Proposition 3.8. Let *R* be a ring. Then, every weakly 1-absorbing primary ideal of *R* is semi-primary if and only if $\sqrt{0}$ is prime

Proof. (\Rightarrow) Trivial since (0) is weakly 1-absorbing primary.

(⇐) Let *I* be a weakly 1-absorbing primary ideal of *R*. Let $a, b \in R$ with $ab \in \sqrt{I}$ and $a \notin \sqrt{I}$. We have to show that $b \in \sqrt{I}$. We may assume that *a* is nonunit. There exists an integer $n \ge 1$ such that $a^n b^n \in I$. Hence, $a^{n+1}b^n \in I$ and $n + 1 \ge 2$. If $a^{n+1}b^n \neq 0$, then $a^{n+1} \in I$ or $b^n \in I$. Thus, $b \in \sqrt{I}$ since $a \notin \sqrt{I}$. So, we suppose that $a^{n+1}b^n = 0$. If $a^{n+1}I = (0) \subseteq \sqrt{0}$, then $I \subseteq \sqrt{0}$ since $\sqrt{0}$ is prime and $a \notin \sqrt{0}$. Thus, $\sqrt{I} = \sqrt{0}$ is prime. If $a^{n+1}I \neq 0$, then there exists $x \in I$ such that $a^{n+1}x \neq 0$, and so $0 \neq a^{n+1}(x+b^n) \in I$. If $x+b^n$ is a unit, then $a^{n+1} \in I$, a contradiction. Thus, $x + b^n$ is nonunit. Since $a^{n+1} \notin I$, we get $x + b^n \in \sqrt{I}$. Thus, $b \in \sqrt{I}$. Consequently, \sqrt{I} is prime. \Box

Proposition 3.9. *Let R be a ring. Then, every weakly* 1*-absorbing primary ideal of R is* 1*-absorbing primary if and only if* (0) *is* 1*-absorbing primary.*

In this case, we have either $Z(R) = \sqrt{0}$ or R is local with maximal ideal $Z(R) = \operatorname{ann}(x)$ for some $x \in R$.

Proof. (\Rightarrow) Trivial since (0) is weakly 1-absorbing primary.

(⇐) Let *I* be a weakly 1-absorbing primary ideal of *R*. Let *a*, *b*, *c* ∈ *R* nonunit such that $abc \in I$ and $c \notin \sqrt{I}$. If $abc \neq 0$, then $ab \in I$. Now, suppose that abc = 0. Hence, ab = 0 or $c \in \sqrt{0}$ since (0) is 1-absorbing primary. But the second case is impossible since $c \notin \sqrt{I}$. Hence, $ab = 0 \in I$, as desired.

Now, suppose that (0) is 1-absorbing primary and $Z(R) \neq \sqrt{0}$. Let $a \in Z(R) \setminus \sqrt{0}$. There exists $0 \neq x \in R$ such that ax = 0. Assume that R contains a nonunit regular element r. We have rxa = 0 and $a \notin \sqrt{0}$. Then, rx = 0, and so x = 0 which is impossible. Thus, nonunit elements of R are zero divisors. Let $y \in Z(R)$. We have yxa = 0 and $a \notin \sqrt{0}$, and so yx = 0. Thus, Z(R) = ann(x). Consequently, R is local with maximal ideal Z(R). \Box

Corollary 3.10. *Let R be a reduced ring. Then, every weakly* 1*-absorbing primary ideal of R is* 1*-absorbing primary if and only if R is a domain.*

Proof. (\Rightarrow) If every weakly 1-absorbing primary ideal of *R* is 1-absorbing primary, then (0) = $\sqrt{0}$ is prime, as desired. (\Leftarrow) Clear.

4. Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant number R.G.P.1/178/41. The authors would like also to thank the referees for careful reading of the manuscript.

References

- F. Almahdi, M. Tamekante, A. Mamouni, Rings over which every semi-primary ideal is 1-absorbing primary, Communications in Algebra 48 (2020) 3838–3845.
- [2] D.D. Anderson, E. Smith, Weakly prime ideals, Houston Journal of Mathematics 29 (2003) 831–840.
- [3] S. E. Atani, F. Farzalipour, On weakly primary ideals, Georgian Mathematical Journal 12 (2005) 423–429.
 [4] A. Badawi, E. Yetkin, On 1-Absorbing primary ideals of commutative rings, Journal of Algebra and its Applications 19 (2020)
- [4] A. Badawi, E. Yetkin, On 1-Absorbing primary ideals of commutative rings, Journal of Algebra and its Applications 19 (2020) 2050111.
- [5] A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bulletin of the Korean Mathematical Society 51 (2014) 1163–1173.
- [6] A. Badawi, E. Yetkin, On weakly 1-absorbing primary ideals of commutative rings (arXiv:2002.12608).
- [7] G. Calugareanu, UN-rings, Journal of Algebra and its Applications 15 (2016) 1650182.
- [8] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics 1371, Springer-Verlag, Berlin, 1989.
- [9] T.Y. Lam, Exercises in Classical Ring Theory, (1st edition), Problem Books in Mathematics, Springer-Verlag, New York, 1995.
- [10] H. F. Moghimi, S. R. Naghani, On n-absorbing ideals and the n-Krull dimension of a commutative ring, Journal of the Korean Mathematical Society 53 (2016) 1225–1236.
- [11] H. Mostafanasab, A. Y. Darani, On φ-n-absorbing primary ideals of commutative rings, Journal of the Korean Mathematical Society 53 (2016) 549–582.
- [12] U. Tekir, S. Koc, K. H. Oral, n-Ideals of commutative rings, Filomat 31 (2017) 2933–2941.