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Abstract. An ideal I of a commutative ring R is called a weakly primary ideal of R if whenever a, b ∈ R and
0 , ab ∈ I, then a ∈ I or b ∈

√
I. An ideal I of R is called weakly 1-absorbing primary if whenever nonunit

elements a, b, c ∈ R and 0 , abc ∈ I, then ab ∈ I or c ∈
√

I. In this paper, we characterize rings over which
every ideal is weakly 1-absorbing primary (resp. weakly primary). We also prove that, over a non-local
reduced ring, every weakly 1-absorbing primary ideals is weakly primary.

1. Introduction

Throughout this paper, R denotes a commutative ring with 1 , 0. An ideal I of a ring R is said to be
proper if I , R. Let R be a ring and I be an ideal of R. The radical of I is denoted by

√
I := {x ∈ R | xn

∈

I for some integer n ≥ 1} and the nilradical of R is denoted by
√

0 :=
√

(0). Let Spec(R) denotes the set of all
prime ideals of R and let Z(R) denotes the set of zero-divisors of R.
An ideal q of R is said to be primary if, whenever a, b ∈ R with ab ∈ q, then a ∈ q or b ∈

√
q. In this case

p =
√
q is a prime ideal of R and q is said to be p-primary.

Since prime and primary ideals have key roles in commutative ring theory, many authors have studied
generalizations of these ideals. In [2], Anderson and Smith introduced the notion of weakly prime ideals.
A proper ideal I of R is called weakly prime if whenever a, b ∈ R and 0 , ab ∈ I, then a ∈ I or b ∈ I. In [3],
Atani and Farzalipour introduced the concept of weakly primary ideals. A proper ideal I of R is called a
weakly primary ideal of R if whenever a, b ∈ R and 0 , ab ∈ I, then a ∈ I or b ∈

√
I. Recent generalizations of

primary ideals and weakly primary ideals are, respectively, the notions of 1-absorbing primary ideals and
weakly 1-absorbing primary ideals introduced by Badawi and Yetkin in [4, 6]. A proper ideal I of R is called
1-absorbing primary if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈

√
I. A proper

ideal I of R is called weakly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and 0 , abc ∈ I,
then ab ∈ I or c ∈

√
I. It is proved that

primary −→ weakly primary −→ weakly 1-absorbing primary,
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and
primary −→ 1-absorbing primary −→ weakly 1-absorbing primary

and all arrows are irreversible. For other generalizations of prime and primary ideals please see for example
[5, 10, 11].
In Section 2, we characterize (reduced) rings over which every ideal is weakly 1-absorbing primary (resp.
weakly primary) (Theorem 2.5 and Corollaries 2.8 and 2.9). In Section 3, among other results, we give
some details about weakly 1-absorbing primary ideals which are not weakly primary over a non-local ring
(Theorem 3.1). Hence, we prove that, over a non-local reduced ring, every weakly 1-absorbing primary ideal
is weakly primary (Theorem 3.2). We also characterize rings over which every nonzero weakly 1-absorbing
primary ideal is prime and local Noetherian rings over which every (nonzero) weakly 1-absorbing primary
ideal is (weakly) primary (Theorem 3.3, Corollary 3.4, and Theorem 3.7).

2. Rings over which all ideals are weakly 1-absorbing primary

The main goal of this section is to characterize rings over which every ideal is weakly 1-absorbing
primary. To do so, we need the following lemmas.

Lemma 2.1. Let R be a domain. Then, the following are equivalent:
1. Every ideal of R is weakly 1-absorbing primary.
2. Every ideal of R is 1-absorbing primary.
3. R is a field or R is a domain with a unique nonzero prime ideal.

Proof. The equivalence (1) ⇔ (2) follows from the fact that over a domain weakly 1-absorbing primary
ideals coincide with 1-absorbing primary ideals. For the equivalence (2)⇔ (3), it follows from [1, Corollary
2.14].

Lemma 2.2. If every ideal of R is weakly 1-absorbing primary, then every ideal of R/I is weakly 1-absorbing primary
for each proper ideal I of R.

Proof. By [6, Theorem 16].

Lemma 2.3. Let R be a ring over which every ideal is weakly 1-absorbing primary. Then, the following hold:
1. Every prime ideal of R is either minimal or maximal.
2. Every non-maximal prime ideal is contained strictly in a unique prime ideal.

Proof. If every prime ideal of R is maximal (that is the krull dimension of R is zero), then the desired result
follows trivially. Otherwise, let P be a prime non-maximal ideal of R. Let P1 and Q be prime ideals of R
such that P1 ⊆ P  Q. By Lemma 2.2, every ideal of R/P1 is weakly 1-absorbing primary. Moreover, R/P1
is not a field, otherwise P1 is maximal and then P1 = P is maximal, a contradiction. Hence, by Lemma 2.1,
R/P1 has a unique nonzero prime ideal. Thus, P/P1 = (0) and Q/P1 is the unique nonzero prime ideal of
R/P1. Thus, P = P1 is a minimal prime ideal of R and Q is the unique prime ideal which contains strictly P.
Consequently, (1) and (2) hold.

Lemma 2.4. Let I be a radical ideal of R (that is
√

I = I). If I is weakly 1-absorbing primary, then I is prime or x3 = 0
for all x ∈ I. In this last case, we get I =

√
0.

Proof. Suppose that there exists x0 ∈ I such that x3
0 , 0.

Let a, b ∈ R such that ab ∈ I. We have to prove that a ∈ I or b ∈ I. We may assume that a and b are nonunit.
If a2b , 0, then a2

∈ I or b ∈
√

I = I. Hence, a ∈ I or b ∈ I. Similarly, if ab2 , 0 we get the same conclusion.
Now, suppose that a2b = ab2 = 0. If a2I , (0), then there exists x ∈ I such that a2x , 0, and so 0 , a2x =
a2(b + x) ∈ I. If b + x is a unit, then a ∈ I. Otherwise, a2

∈ I or b + x ∈ I. Thus, a ∈ I or b ∈ I. Similarly, if
b2I , (0), then a ∈ I or b ∈ I.
Suppose now that a2I = b2I = (0). We have (a2 + x0)2(b2 + x0) = x3

0 ∈ I. If a2 + x0 (resp. b2 + x0) is a unit, then
b ∈ I (resp. a ∈ I). Otherwise, (a2 + x0)2

∈ I or b2 + x0 ∈ I. Thus, a ∈ I or b ∈ I.
We conclude so that I is a prime ideal of R.
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Recall from [7], that a ring R is said to be an UN-ring if every nonunit element a of R is a product a unit and
a nilpotent elements, or equivalently every element of R is either nilpotent or unit ([12, Proposition 2.25]).
That is R is local with maximal ideal

√
0. A simple example of UN-rings is Z/9Z.

The main result of this section is stated as follows:

Theorem 2.5. Let R be a ring. Then, every ideal of R is weakly 1-absorbing primary if and only if one of the following
holds:

1. R � k1 × k2 where k1 and k2 are fields, or
2. R is an UN-ring, or

3. R is local with maximal ideal M and Spec(R) = {
√

0,M} such that
√

0M
(
M \
√

0
)

= {0}.

Proof. (⇒) Suppose that R is non-local. Let M1 and M2 be two distinct maximal ideals of R. The ideal
M1 ∩M2 is a non-prime weakly 1-absorbing primary radical ideal. By Lemma 2.4, M1 ∩M2 =

√
0.

Let m1 ∈ M1 and m2 ∈ M2 such that m1 + m2 = 1. Clearly, m1 <
√

0, otherwise m2 = 1 − m1 is a unit, a
contradiction. Similarly, m2 <

√
0. We claim that m2

1 is an idempotent element of R. We have m2
1m2+m3

1 = m2
1.

Suppose that m2
1m2 , 0. We have m2

1m2 ∈ M1 ∩M2 =
√

0. Thus,
√

(m2
1m2) =

√
0. Now, since (m2

1m2) is

weakly 1-absorbing primary and 0 , m2
1m2 ∈ (m2

1m2) and m2 <
√

0, we get m2
1 ∈ (m2

1m2) ⊆
√

0. Thus,
m1 ∈

√
0, a contradiction. Consequently, m2

1m2 = 0, and so m2
1 = m3

1 = m4
1. Thus, m2

1 is an idempotent
element. Set m2

1 = e ∈M1.
Let 0 , x ∈

√
0. We have either ex , 0 or (1 − e)x , 0. Suppose for example that ex , 0. Assume that

a = ex + 1 − e is a unit. Then, 1 − e = a − ex is unit since ex ∈
√

0, and so since 1 − e is an idempotent
element we get 1 − e = 1, which means that e = m2

1 = 0, a contradiction since m1 <
√

0. Hence, a is nonunit.
Now, e2a = e2(ex + 1 − e) = ex , 0. Clearly, e = e2 < (ex) ⊆

√
0 and a = ex + 1 − e <

√
0 =

√
(ex), otherwise

1 − e ∈
√

0, and then m2
1 = e = 1, a contradiction. Hence, the ideal (ex) is not weakly 1-absorbing primary, a

contradiction. Accordingly,
√

0 = (0). Hence, R � R/M1 × R/M2. Thus, R is isomorphic to a product of two
fields.
Suppose that R is local with maximal ideal M. Suppose that R is not an UN-ring. So, R admits non-maximal
prime ideals. Let P and Q be two non-maximal prime ideals of R.
Let {Iα}α be the set of all M-primary ideals of R and set J :=

⋂
α Iα. Consider x ∈ J. Suppose that x < P. Then,

P ( P + (x2) ⊆M. By Lemma 2.3, M is the unique prime ideal wich contains P + (x2). Thus,
√

P + (x2) = M.
Hence, x ∈ P + (x2) since P + (x2) ∈ {Iα}α. Thus, there exist r ∈ R such that x(1− rx) ∈ P. Thus, 1− rx ∈ P ⊆M,
a contradiction. Consequently, J ⊆ P, and similarly J ⊆ Q.
Let x ∈ P and y ∈M \Q. If xy

(
M \ P

)
, 0, then there exists z ∈M \ P such that xyz , 0. For each α, we have

√
IαP =

√
IαP + (xyz) = P. Thus, since IαP + (xyz) is weakly 1-absorbing primary, 0 , xyz ∈ IαP + (xyz), and

z < P, we get xy ∈ IαP + (xyz). Thus, for some r ∈ R, we have xy(1 − zr) ∈ IαP ⊆ Iα. Thus, xy ∈ Iα since 1 − zr
is a unit. Thus, xy ∈

⋂
α Iα = J ⊆ Q. Hence, x ∈ Q.

Now, assume that xy
(
M \ P

)
= 0. If M = P ∪Q, then P or Q is maximal, a contradiction. Thus, M , P ∪Q,

and so there exists z ∈M \P∪Q. By assumption, we have xyz = 0 ∈ Q. Thus, since y and z are not elements
of Q, we get that x ∈ Q.
From the both cases, we conclude that P ⊆ Q. Similarly, Q ⊆ P, and so P = Q.
Consequently, R admits a unique non-maximal prime ideal which is necessarily

√
0, and then

√
0 and M

are the only prime ideals of R.
Let x ∈

√
0, y ∈ M, and z ∈ M \

√
0. Suppose that xyz , 0. Then, since the principal ideal (xyz) is weakly

1-absorbing primary and z <
√

(xyz) =
√

0, we obtain that xy ∈ (xyz), and then xy(1− rz) = 0 for some r ∈ R.

Thus, xy = 0, a contradiction with the assumption xyz , 0. Hence, we conclude that
√

0M
(
M \
√

0
)

= 0.
(⇐) If R is a product of two field, then the result follows from [6, Theorem 14] and if R is a UN-ring, then
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the result follows from [6, Theorem 1(6)].
Now, suppose that R satisfies (3). Let I be an ideal of R. If

√
I = M, then I is primary, and so weakly

1-absorbing primary. Hence, suppose that
√

I =
√

0. Let a, b, c ∈ R nonunit elements such that abc ∈ I and
c <
√

0. Thus, a ∈
√

0 or b ∈
√

0. In the both cases abc = 0. Hence, I is weakly 1-absorbing primary.

Next, we give an example of a local ring which is not an UN-ring over which every ideal of R is weakly
1-absorbing primary. The same ring contains an ideal which is not 1-absorbing primary.

Example 2.6. Consider the ring A =
k[x, y]
(x3, xy)

with k is a field. The ideal P =
(x, y)

(x3, xy)
is a prime ideal of A. So, set

R = AP. Then, R is a local ring with the maximal ideal M =

(
x

1
,

y

1

)
and exactly one non-maximal prime ideal which

is P =
√

0R =

(
x

1

)
. We have PM2 = {0R}. Hence, using the Theorem 2.5, every ideal of R is weakly 1-absorbing

primary.

Now,
x2

1
.
y

1
= 0R but neither

x2

1
= 0R nor

y

1
∈

√
0R. Thus, {0R} is not a 1-absorbing primary ideal of R.

Corollary 2.7 ([6, Theorem 14]). Let R1, · · · ,Rn be commutative rings with n ≥ 2 and set R = R1× · · ·×Rn. Then
the following are equivalent:

1. Every ideal of R is a weakly 1-absorbing primary ideal of R.
2. n = 2 and R1 and R2 are fields.

Then next result characterizes rings over which every ideal is weakly primary.

Corollary 2.8. Let R be a ring. Then, every ideal of R is weakly primary if and only if one of the following holds:

1. R � k1 × k2 where k1 and k2 are fields, or
2. R is an UN-ring, or
3. R is local with maximal ideal M and Spec(R) = {

√
0,M} such that

√
0
(
M \
√

0
)

= {0}.

Proof. (⇒) Since every ideal of R is weakly primary, we get that every ideal of R is weakly 1-absorbing
primary. By Theorem 2.5, if R is non-local, R � k1 × k2 where k1 and k2 are fields.
Now, assume that R is local but not an UN-ring. Then, following Theorem 2.5,

√
0 and M (the maximal

ideal) are the only prime ideals of R. Let a ∈
√

0 and b ∈ M \
√

0. Suppose that ab , 0. Then, since (ab) is a
weakly primary ideal and b <

√
(ab) =

√
0, we deduce that a ∈ (ab). Hence, a(1− bc) = 0 for some c ∈ R. But

1 − bc is a unit, and so a = 0, a contradiction with the assumption ab , 0. Consequently,
√

0
(
M \
√

0
)

= {0}.
(⇐) The ring k1 × k2 admits three ideals {(0, 0)}, 0 × k2 and k1 × 0, and all these ideals are weakly primary.
Moreover, all ideals of an UN-ring are primary and so weakly primary.
Suppose that (3) holds. Let I be an ideal of R. If

√
I = M, then I is primary, and then weakly primary.

Hence, assume that
√

I =
√

0 and let 0 , ab ∈ I with a < I. Suppose that b <
√

I. Then, a ∈
√

0 since
ab ∈ I ⊆

√
I =
√

0. Thus, ab = 0, a contradiction. Then, b ∈
√

I.

The following result follows easily from Theorem 2.5 and Corollary 2.8.

Corollary 2.9. Let R be a reduced ring. Then, the following are equivalent:

1. Every ideal of R is weakly 1-absorbing primary
2. Every ideal of R is weakly primary
3. R satisfies one of the following statement:

(a) R � k1 × k2 where k1 and k2 are fields, or
(b) R is a field, or
(c) R is a domain with a unique nonzero prime ideal.
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3. Local Noetherian rings over which every (weakly) 1-absorbing primary ideal is (weakly) primary

We begin this section with a brief discussion on the following question posed by Badawi and Yetkin in [6].

Question. Does, over a non-local ring, every weakly 1-absorbing primary ideal is weakly primary?

A partial answer is given in [6, Theorem 5] as follows: Let R be a non-local ring and I be an ideal of R
such that ann(i) is not a maximal ideal of R for every element i ∈ I. Then I is a weakly 1-absorbing primary
ideal of R if and only if I is a weakly primary ideal of R.
In this paper, we are not able to give an affirmative or a negative answer to this Question in the general
case. However, we prove that this is true over non-local reduced rings. To do so, we need the next result
which gives some details about weakly 1-absorbing primary ideals that are not weakly primary (if any)
over non-local rings.

Theorem 3.1. Let R be a non-local ring, and let I be a weakly 1-absorbing primary ideal that is not weakly primary.
Then

1. either I3 = (0), or
2. I2 = (e) with e is an idempotent such that (1 − e) is a maximal ideal of R.

Proof. Suppose that (2) is not satisfied. Since I is not weakly primary, there exists x, y ∈ R such that 0 , xy ∈ I,
x < I, and y <

√
I. Clearly, x and y are nonunit.

Suppose that wx ∈ I for all nonunit element w ∈ R. Let u be a unit element of R. If w + u is nonunit, then
(w + u)x ∈ I, and so ux ∈ I, a contradiction since x < I. Hence, for each nonunit element w ∈ R and each unit
element u ∈ R, w + u is a unit. Thus, by [4, Lemma 1], R is local, a contradiction. Consequently, there exists
a nonunit element w ∈ R such that wx < I.
If wxy , 0, then wx ∈ I since y <

√
I and I weakly 1-absorbing primary, a contradiction. Hence, wxy = 0.

Suppose that there exists p ∈ I such that wxp , 0. Then, 0 , wxp = wx(y + p) ∈ I. If y + p is a unit, then
wx ∈ I, a contradiction. Hence, since wx < I, we get y+p ∈

√
I. Thus, y ∈

√
I, a contradiction. Consequently,

wxI = (0).
Suppose that there exists p ∈ I such that wyp , 0. Then, 0 , wyp = w(x + p)y ∈ I. If x + p = u is a unit,
then uy = xy + py ∈ I, and so y ∈ I, a contradiction. Hence, x + p is nonunit and w(x + p) ∈ I. So, wx ∈ I, a
contradiction. Consequently, wyI = (0).
Suppose that there exists p, q ∈ I such that wpq , 0. Then, 0 , wpq = w(x + p)(y + q) ∈ I. As above, x + p and
y + q are nonunit. Hence, w(x + p) ∈ I. So, wx ∈ I, a contradiction. Consequently, wI2 = (0).
Suppose that there exists p ∈ I such that xyp , 0. Then, 0 , xyp = (w + p)xy ∈ I. Suppose that u = w + p is a

unit. Then, up2 = p3. Hence,
(
pu−1

)2
=

(
pu−1

)3
. Thus, e =

(
pu−1

)2
is an idempotent element. For each q, r ∈ I,

we have qru = qrp and qpu = qp2. Thus, qru2 = r(qpu) = rqp2. Hence, qr = qre. Then, I2
⊆ (e) ⊆ I2. Therefore,

I2 = (e).
By assumption (1 − e) is non-maximal. If (e) is a maximal ideal, then I = I2 = (e), a contradiction since I
is not a weakly primary ideal. Thus, neither (1 − e) nor (e) is maximal. Hence, R � R/(e) × R/(1 − e) is a
product of two rings that are not fields. By [6, Theorem 13], I is primary, a contradiction. Accordingly, w + p
is nonunit, and so (w + p)x ∈ I. Then, wx ∈ I, a contradiction. Consequently, xyI = (0).
Suppose that there exists p, q ∈ I such that xpq , 0. Then, 0 , xpq = x(w + p)(y + q) ∈ I. As above, w + p and
y + q are nonunit. Hence, x(w + p) ∈ I. So, wx ∈ I, a contradiction. Consequently, xI2 = (0).
Suppose that there exists p, q ∈ I such that ypq , 0. Then, 0 , ypq = (w + p)(x + q)y ∈ I. As above, w + p and
x + q are nonunit. Hence, (w + p)(x + q) ∈ I. So, wx ∈ I, a contradiction. Consequently, yI2 = (0).
Let p, q, r ∈ I such that pqr , 0. Then, (w + p)(x + q)(y + r) = pqr , 0. As above, w + p, x + q and y + r are
nonunit. Then, (w + p)(x + q) ∈ I or y + r ∈

√
I. That is wx ∈ I or y ∈

√
I, a contradiction. Hence, I3 = (0).

Theorem 3.2. Let R be a non-local reduced ring. Then, every weakly 1-absorbing primary ideal is weakly primary.
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Proof. Let I be a weakly 1-absorbing primary of R. Suppose that I is not weakly primary. If I3 = (0),
then I = (0) which is weakly primary, a contradiction. Then, following Theorem 3.1, I2 = (e) with e is an
idempotent such that (1 − e) is a maximal ideal of R. We have that R � R/(e) × R/(1 − e) following the
isomorphism f defined by r 7→ (r, r̂). Set R1 = R/(e) and k = R/(1 − e) which is clearly a field. We have also
f (I2) = (0) × k. Without loss of generality, set R = R1 × k and I = I1 × I2 such that I1 and I2 are ideals of R1
and k, respectively. Hence, since I2 = (0R1 ) × k and R1 is reduced, we conclude that I = (0R1 ) × k. Moreover,
√

I =
√

(0R1 ) × k = (0R1 ) × k = I since R1 is reduced. Hence, I is a radical ideal. Hence, by Lemma 2.4, I
is prime, a contradiction since I is not weakly primary. Consequently, every weakly 1-absorbing primary
ideal is weakly primary.

The next result characterizes local Noetherian rings over which every weakly 1-absorbing primary ideal is
weakly primary.

Theorem 3.3. Let (R,M) be a local Noetherian ring. The following are equivalent:

1. Every weakly 1-absorbing primary ideal is weakly primary.
2. Every 1-absorbing primary ideal is weakly primary.
3. R is:

(a) either UN-ring, or
(b) Spec(R) = {

√
0,M} such that

√
0
(
M \
√

0
)

= {0}.
4. Every ideal of R is weakly primary.

Proof. (1)⇒ (2) and (4)⇒ (1) are clear.
(2)⇒ (3) Assume that R is not an UN-ring.
Suppose that R is a domain. Let 0 , P be a non-maximal prime ideal of R. Then, PM is a 1-absorbing
primary ideal of R and

√
PM = P (by [4, Theorem 7]). Then PM is a weakly primary ideal of R. Let 0 , x ∈ P

and y ∈ M \ P. We have 0 , xy ∈ PM and y < P =
√

PM. Thus, x ∈ PM. Hence, P = PM. Since R is
Noetherian, by the Nakayama’s lemma, we get P = (0), a contradiction. Thus, M is the unique nonzero
prime ideal of R, and so (b) holds.
Suppose that R is not a domain. Let P,Q be two non-maximal prime ideals of R.
Assume that P(M \ P) , {0}. As above, PM is a weakly primary ideal of R and

√
PM = P. Let x ∈ P and

y ∈ M \ P such that xy , 0. Then xy ∈ PM and y < P =
√

PM. Thus, x ∈ PM. Now, let p ∈ P arbitrary. If
py , 0, then as above p ∈ PM. If py = 0, then (p + x)y = xy , 0, and so we obtain that p + x ∈ PM. Thus,
p ∈ PM. Hence, we conclude that P ⊆ PM. Thus, P = PM. As above, we get P = (0), a contradiction.
Consequently, P(M \ P) = {0}.
Similarly, Q(M \ Q) = {0}. If M = P ∪ Q, then M = P or M = Q, a contradiction. Thus, there exists
α ∈ M \ (P ∪Q). We have αP = (0) = αQ. Thus, αP ⊆ Q, and so P ⊆ Q since α < Q. Similarly, we get Q ⊆ P.
Thus, P = Q. Hence, the only nonzero prime non-maximal ideal of R is

√
0 and

√
0(M \

√
0) = {0}.

(3)⇒ (4) Follows from Corollary 2.8.

Corollary 3.4. Let (R,M) be a local Noetherian ring. The following are equivalent:

1. Every nonzero weakly 1-absorbing primary ideal is primary.
2. Every nonzero 1-absorbing primary ideal is primary.
3. R is:

(a) either UN-ring, or
(b) Spec(R) = {

√
0,M} such that

√
0 is a minimal ideal.

4. Every nonzero ideal of R is primary.

Proof. (1)⇒ (2) and (4)⇒ (1) are clear.
(2) ⇒ (3) We have that every nonzero 1-absorbing primary ideal is primary, and so weakly primary.
Moreover, the zero ideal is always weakly primary. Thus, by Theorem 3.3, if R is not an UN-ring, then
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Spec(R) = {
√

0,M} such that
√

0
(
M \
√

0) = {0}. Let 0 , I ⊆
√

0. Let a, b, c ∈ R nonunit such that abc ∈ I ⊆
√

0

and c <
√

I =
√

0. Hence, a ∈
√

0 or b ∈
√

0. In the both cases, abc = 0 since
√

0
(
M \

√
0) = {0}. Thus,

I is weakly 1-aborbing primary, and so primary. Let x ∈
√

0 and y ∈ M \
√

0. We have xy = 0 ∈ I and
y <
√

0 =
√

I. Thus, x ∈ I. Hence,
√

0 ⊆ I, and so
√

0 = I. Consequently,
√

0 is a minimal ideal of R.
(3)⇒ (4) If R is an UN-ring or R is a domain with unique nonzero prime ideal, then every nonzero ideal I
is primary since

√
I is always the maximal ideal of R.

Now, suppose that R is not a domain such that Spec(R) = {
√

0,M} and
√

0 is a minimal ideal. Let I be a
nonzero prime ideal of R. If

√
I = M, then M is primary. Now, if

√
I =
√

0, then I =
√

0 since
√

0 is minimal
and (0) , I ⊆

√
I =
√

0. Hence, I is prime.

Recall that a ring R is called divided if for every prime ideal P of R and for every x ∈ R we have either
(x) ⊆ P or P ⊆ (x).

Proposition 3.5. Let (R,M) be a local Noetherian ring. The following are equivalent:

1. Every weakly 1-absorbing primary ideal is primary.
2. Every 1-absorbing primary ideal is primary.
3. R is an UN-ring or R is a domain with unique nonzero prime ideal.
4. Every ideal of R is primary.
5. R is a divided ring.

Proof. (1) ⇒ (2) and (4) ⇒ (1) are clear, and the equivalence between (2), (3), (4), and (5) is exactly [1,
Theorem 3.4].

We need the following well-known lemma.

Lemma 3.6. Let R be a ring. Then, (0) is a primary ideal of R if and only if Z(R) =
√

0.

Recall that a ring R is called Von Neumann regular (or absolutely flat ring) if, for every x ∈ R, there exists
y ∈ R such that x2y = x. The following characterizations of Von Neumann regular rings can be found in
[8, 9]. Let R be a ring. The following conditions are equivalent:

1. R is Von Neumann regular.
2. R has Krull dimension 0 and is reduced.
3. Every localization of R at a maximal ideal is a field

The following result characterizes rings over which every nonzero weakly 1-absorbing primary ideal is
prime.

Theorem 3.7. Let R be a ring. The following are equivalent:

1. Every nonzero weakly 1-absorbing primary ideal is prime.
2. Every nonzero 1-absorbing primary ideal is prime.
3. Every nonzero primary ideal is prime.
4. R is either a

(a) Von Neumann regular ring, or
(b) (R,

√
0) is local non-domain and the only nonzero proper ideal of R is

√
0.

Proof. (1)⇒ (2)⇒ (3) Clear.
(3) ⇒ (4) Let P be a prime ideal of R. Then, R/P is a domain. Let P ⊆ J be an ideal of R such that J/P be a
nonzero primary ideal of R/P. Then, J is a nonzero primary ideal of R. Thus, J is prime and so J/P is prime.
Thus, over R/P, every primary ideal is prime. Hence, by [1, Theorem 3.1], R/P is Von Neumann regular
and so a field since R/P is a domain. Hence, P is maximal. Thus, every prime ideal of R is maximal, and so
the Krull dimension of R is 0. It is known that over such rings, every regular element is unit.
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If (0) is non-primary, then (3) is equivalent to that every primary ideal is prime. Hence, by [1, Theorem 3.1],
R is a Von Neumann regular ring.
Now, assume that (0) is primary. Thus, Z(R) =

√
0, and so Z(R) is an ideal of R. Since every regular element

is unit, Z(R) is the unique maximal ideal of R, and so R is local with maximal ideal
√

0 (an UN-ring).
If R is a domain, then it is a field, and so a Von Neumann regular ring. Suppose now that R is not a domain
and let I , 0 be a proper ideal of R. We have

√
0 ⊆

√
I. Thus,

√
I =
√

0 is maximal, and so I is primary.
Thus, I is prime. So, I =

√
0. Thus,

√
0 is the unique nonzero proper ideal of R.

(4) ⇒ (1) If (R,
√

0) is local non-domain and the only nonzero ideal of R is
√

0, then the result follows
trivially. Hence, suppose that R is Von Neuman regular. By [1, Theorem 3.1], every 1-absorbing primary
ideal is prime. Let I be a nonzero weakly 1-absorbing primary ideal of R. By [6, Theorem 4], I is 1-absorbing
primary, and so prime.

An ideal I of R is said to be semi-primary if
√

I is prime. It is proved in [4, Theorem 2] that every
1-absorbing primary ideal of R is semi-primary. However, this is not the case for weakly 1-absorbing
primary ideals. The next results characterizes rings over which every weakly 1-absorbing primary ideal of
R is semi-primary.

Proposition 3.8. Let R be a ring. Then, every weakly 1-absorbing primary ideal of R is semi-primary if and only if
√

0 is prime

Proof. (⇒) Trivial since (0) is weakly 1-absorbing primary.
(⇐) Let I be a weakly 1-absorbing primary ideal of R. Let a, b ∈ R with ab ∈

√
I and a <

√
I. We have to

show that b ∈
√

I. We may assume that a is nonunit. There exists an integer n ≥ 1 such that anbn
∈ I. Hence,

an+1bn
∈ I and n + 1 ≥ 2. If an+1bn , 0, then an+1

∈ I or bn
∈ I. Thus, b ∈

√
I since a <

√
I. So, we suppose

that an+1bn = 0. If an+1I = (0) ⊆
√

0, then I ⊆
√

0 since
√

0 is prime and a <
√

0. Thus,
√

I =
√

0 is prime. If
an+1I , 0, then there exists x ∈ I such that an+1x , 0, and so 0 , an+1(x+bn) ∈ I. If x+bn is a unit, then an+1

∈ I,
a contradiction. Thus, x + bn is nonunit. Since an+1 < I, we get x + bn

∈
√

I. Thus, b ∈
√

I. Consequently,
√

I
is prime.

Proposition 3.9. Let R be a ring. Then, every weakly 1-absorbing primary ideal of R is 1-absorbing primary if and
only if (0) is 1-absorbing primary.
In this case, we have either Z(R) =

√
0 or R is local with maximal ideal Z(R) = ann(x) for some x ∈ R.

Proof. (⇒) Trivial since (0) is weakly 1-absorbing primary.
(⇐) Let I be a weakly 1-absorbing primary ideal of R. Let a, b, c ∈ R nonunit such that abc ∈ I and c <

√
I. If

abc , 0, then ab ∈ I. Now, suppose that abc = 0. Hence, ab = 0 or c ∈
√

0 since (0) is 1-absorbing primary.
But the second case is impossible since c <

√
I. Hence, ab = 0 ∈ I, as desired.

Now, suppose that (0) is 1-absorbing primary and Z(R) ,
√

0. Let a ∈ Z(R) \
√

0. There exists 0 , x ∈ R
such that ax = 0. Assume that R contains a nonunit regular element r. We have rxa = 0 and a <

√
0. Then,

rx = 0, and so x = 0 which is impossible. Thus, nonunit elements of R are zero divisors. Let y ∈ Z(R). We
have yxa = 0 and a <

√
0, and so yx = 0. Thus, Z(R) = ann(x). Consequently, R is local with maximal ideal

Z(R).

Corollary 3.10. Let R be a reduced ring. Then, every weakly 1-absorbing primary ideal of R is 1-absorbing primary
if and only if R is a domain.

Proof. (⇒) If every weakly 1-absorbing primary ideal of R is 1-absorbing primary, then (0) =
√

0 is prime,
as desired.
(⇐) Clear.
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