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Abstract. This paper develops the defect-deferred correction method to solve the non-stationary coupled
Stokes/Darcy model. This method is a combination of defect correction method and deferred correction
method. And it can not only achieve the second order accuracy in time, but also be applied to the problem
with small viscosity and hydraulic conductivity coefficients. The theoretical proof of the stability and
the second order accuracy in time are shown. Some numerical experiments are given to verify the error
convergence order in time. In addition, compared with the standard Galerkin finite element method, the
advantages of the presented method in calculating small viscosity and hydraulic conductivity coefficients
will also be reflected in the numerical experiments.

1. Introduction

In recent years, the coupling between incompressible flow and porous media flow has received more
and more attention in many current industries, such as soil pollution problem, oil drilling simulation and
filtering surface water and so on. Therefore, it is practical and necessary to develop some effective numerical
methods to investigate the Stokes/Darcy model.

In fact, the Stokes/Darcy model has different governing equations in different regions and possesses mul-
tiple physical quantities. These characteristics have caused various difficulties and problems in the numer-
ical simulation of the model. Nevertheless, many numerical calculation methods for solving Stokes/Darcy
model have been proposed [1, 7, 11, 17–19, 25]. Qin and Hou have added time filter to the backward Euler
scheme of the Stokes/Darcy model to improve the accuracy of the time from the first order to the second
order. Also, They achieved that the addition of the time filter can increase the BDF2 scheme from the
second order to the third order [21]. Further, Li, Zheng and Layton have analyzed a multi-rate decoupling
algorithm that allows different time steps to be used in different sub-domains and improves the calculation
accuracy and efficiency [26]. There are also the discontinuous Galerkin methods [23], interface relaxation
methods [4] and decoupled methods based on two-grid or multi-grid finite element [5, 9, 16, 20] and so on.

The defect-deferred correction method was first proposed by Aggul, Connors, Erkmen, and Labovsky
when solving the problem of fluid-fluid interaction [2]. For this method, it is a combination of defect
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correction method and deferred correction method. The defect correction method starts from a stable, low-
order, and inexpensive method, and proceeds by calculating a series of approximate solutions on the same
grid, gradually improving the accuracy. It uses a simple and effective artificial viscosity approximation
to increase the viscosity coefficient of the flow. After that, a deferred correction method was established
on this basis and applied to the data-passing scheme [8, 10] to create an unconditionally stable second-
order precision partition time method. The combination of the defect correction and deferred correction
was successfully tested in application to the one-domain Navier-Stokes equations [3] and the two-domain
convection dominated convection diffusion problem [10].

In this paper, the defect-deferred correction method is mainly used to solve the numerical solutions
of the Stokes/Darcy model with small viscosity and hydraulic conductivity coefficients. As the viscosity
coefficient and hydraulic conductivity coefficient become smaller, the error of the standard Galerkin finite
element method will increase rapidly. The defect-deferred correction method proposed not only achieves
the second order accuracy in time, but also keeps the calculation results stable when the viscosity and
hydraulic conductivity coefficients in the Stokes/Darcy model are small.

The rest of the paper is arranged as follows: The second section of this article mainly describes
Stokes/Darcy model and preliminary work. The third section is devoted to the proof of stability and
the error estimates of the fully discrete scheme. Finally, two numerical experiments verify the second order
accuracy in time and the superiority of the algorithm for small viscosity/hydraulic conductivity coefficients
in the Stokes/Darcy model.

2. Coupled Stokes/Darcy model

Let us take into account the model for coupling fluid and porous media flows in a bound smooth domain
Ω ⊂ R2, which consists of two sub-domains Ω f and Ωp simply. Interface Γ divides Ω into Ωp and Ω f , i.e.
Ω = Ωp∪Ω f . Next, the boundary Γ f = ∂Ω f ∩∂Ω, Γp = ∂Ωp∩∂Ω and interface Γ = ∂Ω f ∩∂Ωp are introduced.
In the rest of this paper, we always use boldface characters to denote vectors or vector valued spaces. np
and n f represent the unit outward normal vectors of ∂Ωp and ∂Ω f , respectively. The motion in fluid region
Ω f is governed by the Stokes equations [21, 22]:

∂u f

∂t
− ∇ · (Tν(u f , p f )) = g f , in Ω f ,

∇ · u f = 0, in Ω f ,

u f (x, 0) = u0
f (x), in Ω f ,

(1)

where Tν(u f , p f ) = −p f I + 2νD(u f ) is the stress tensor and D(u f ) = 1
2 (∇u f + ∇Tu f ) is the deformation rate

tensor. I is the identity tensor and is expressed as

I =

[
1 0
0 1

]
,

ν is the kinetic viscosity and g f (x, t) is the external force. The motion in porous medium region Ωp is
governed by

S0∂φp

∂t
− ∇ ·K∇φp = 1p, in Ωp,

φp(x, 0) = φ0
p(x), in Ωp,

(2)

where S0 is the water storage coefficient. K represents the hydraulic conductivity in Ωp, which is the
positive symmetric tensor, and is allowed to change in space. The 1p(x, t) is a source term with a solvability
condition

∫
Ωp
1p(x, t) = 0. The above equations (1) and (2) are coupled together by the following boundary

conditions,

u f = 0, on Γ f , φp = 0, on Γp, (3)
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and the interface conditions on Γ,

u f · n f −K∇φp · np = 0,
− [Tν(u f , p f ) · n f ] · n f = 1φp,

− [Tν(u f , p f ) · n f ] · τ =

√
2αν

√
traceΠ

u f · τ,

(4)

where τ is the orthonormal tangential unit vectors along Γ. α is an experimentally validated parameter
and Π represents the permeability. Here 1 represents the gravitational constant. The interface condition is
called the Beavers-Joseph-Saffman interface condition [6, 13, 15, 24].

Then, let us introduce some function spaces:

X f = {v f ∈ H1(Ω f ) : v f |Γ f = 0}, Xp = {ψp ∈ H1(Ωp) : ψp|Γp = 0},

Q f = L2(Ω f ), U = X f × Xp.

We equip the domain D (D = Ωp or Ω f ) with the usual L2-scalar product (·, ·)D and L2-norm ‖ · ‖D, which is
expressed as ‖ · ‖L2 . On the interface Γ, the L2 inner product is defined as (·, ·)Γ. Besides, the space X f and Xp
are equipped with the following norms

‖v f ‖ f = ‖∇v f ‖L2 =
√

(∇v f ,∇v f )Ω f , ∀v f ∈ X f ,

‖ψp‖p = ‖∇ψp‖L2 =
√

(∇ψp,∇ψp)Ωp , ∀ψp ∈ Xp.

And the space U equipped with the norms: ∀u = (u f , φp)T
∈ U,

‖u‖0 =
√

(u f ,u f )Ω f +
√
1S0(φp, φp)Ωp ,

‖u‖U =
√
ν(∇u f ,∇u f )Ω f +

√
1K(∇φp,∇φp)Ωp .

For functions v(x, t), we define the norms,

‖v‖L2(0,T;L2(Ω)) =

(∫ T

0
‖v(·, t)‖2L2 dt

) 1
2

, ‖v‖L∞(0,T;L2(Ω)) = ess sup
(0<t<T)

‖v(·, t)‖L2 .

Then the variational formulation for the time-dependent Stokes/Darcy model as follows: For g f ∈

L2(0,T; L2(Ω f )) and 1p ∈ L2(0,T; L2(Ωp)), find u = (u f , φp)T
∈ L2(0,T; X f ) ∩ L∞(0,T; L2(Ω f )) × L2(0,T; Xp) ∩

L∞(0,T; L2(Ωp)) and p f ∈ L2(0,T; Q f ) such that ∀(v, q f ) ∈ U ×Q f satisfying

(ut,v) + a(u,v) − b(v, p f ) + b(u, q f ) = 〈F,v〉U′ ,

u(x, 0) = u0,
(5)

where

(ut,v) = (u f ,t,v f )Ω f + (S0φp,t, ψp)Ωp , a(u,v) = υaΩ(u,v) + aΓ(u,v),

υaΩ(u,v) = νaΩ f (u f ,v f ) +KaΩp (φp, ψp), aΩp (φp, ψp) = 1(∇φp,∇ψp)Ωp ,

aΩ f (u f ,v f ) = (∇u f ,∇v f )Ω f +

 α
√

d
√

traceΠ
((u f ,v f ) − ((u f ,v f ) · n f )n f )


Γ

,

〈F,v〉U′ = (g f ,v f )Ω f + 1(1p, ψp)Ωp , aΓ(u,v) = 1(φp,v f · n f )Γ − 1(ψp,u f · n f )Γ,

b(v, p f ) = (p f ,∇ · v f )Ω f ,

where U′ is the dual space of U. The bilinear forms are continuous and coercive (refer to [7]). ∀u,v ∈ U,

a(u,v) ≤ Ccon‖u‖U‖v‖U, a(u,u) ≥ Ccoe‖u‖2U,
aΓ(u,v) ≤ CΓ‖u‖U‖v‖U, ∀u,v ∈ U,

(6)
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where Ccon, Ccoe and CΓ are positive constants and not dependent on the data of the problem. Additionally,

aΓ(u,v) = −aΓ(v,u) and aΓ(u,u) = 0, ∀u,v ∈ U. (7)

For the theoretical analysis, we introduce the trace and Poincaré inequalities. There exist positive
constants Cp and C̃p that depend on the domain Ω f and Ωp respectively, such that for all v f ∈ X f and
ψp ∈ Xp,

‖v f ‖L2 ≤ Cp‖v f ‖ f , ‖ψp‖L2 ≤ C̃p‖ψp‖p. (8)

3. Two step defect-deferred correction

Firstly, let {tn = n∆t}Nn=0 be the mean of the time interval [0,T], and the time step ∆t = T
N . Secondly,

τ f h is constructed as regular triangles of Ω f in 2D domain with max diameter h f . Further, for Ωp, we also
define τph with max diameter hp. Then h = max{h f , hp} is set as the maximum diameter of Ω. For simplicity,
we assume that Ω f and Ωp are smooth domains. Let X f h ⊂ X f , Q f h ⊂ Q f and Xph ⊂ Xp are finite element
spaces. Furthermore, the finite element space pair (X f h,Q f h) is assumed to satisfy the usual discrete inf-sup
condition or LBB condition for stability of the discrete pressure:

inf
q f h∈Q f h

sup
vh∈X f h

b(vh, q f h)
‖vh‖X f ‖q f h‖Q f

≥ β > 0,

where β is a constant and is independent of h. In fact, many finite element space pairs satisfy the discrete
inf-sup condition, such as Taylor-Hood elements (P2-P1, P3-P2) and Scott-Vogelius element. In this paper,
the theoretical analysis and numerical experiments are based on Taylor-Hood element (P2-P1). Then, we
define Uh = (X f h ×Xph) ⊂ (X f ×Xp). Throughout the remainder of this paper we will use tu = (tu f , tφp) and
tp f , ûh = (û f , φ̂p) and p̂ f , cuh = (cu f , cφp) and cp f to denote the true solution, the defect step approximation
and the defect-deferred correction step approximation respectively.

For t ∈ [0,T], ûn
h and cun

h will denote the discrete approximation to tun (n = 0, 1, . . . ,N). The artificial
viscosity H is positive and chosen as a stabilization item. In order to facilitate the theoretical analysis below,
we set (υ + H)aΩ(u,v) = (ν + H)aΩ f (u f ,v f ) + (K + HI)aΩp (φp, ψp). Discretely, divergence-free velocities will
be sought in the test space

Vh =

{
vh ∈ Uh :

∫
Ω

q f h∇ · vhdΩ = 0, ∀q f h ∈ Q f h

}
.

In addition, there always exists the mesh-independent constant C and the finite elements (uh, p f ) ∈ (Uh,Q f h),
that satisfy the following optimal approximation property [27]:

‖tu − uh‖0 ≤ Ch3
‖tu‖H3(Ω), ‖tu − uh‖U ≤ Ch2

‖tu‖H2(Ω). (9)

After that, we will introduce the defect-deferred correction algorithm: Given ûn
h ∈ Uh, cun

h ∈ Uh, find
(ûn+1

h , p̂n+1
f ) ∈ (Uh,Q f h), (cun+1

h , cpn+1
f ) ∈ (Uh,Q f h) with n = 0, 1, 2 · · ·N − 1, ∀(vh, q f h) ∈ (Uh,Q f h), satisfying ûn+1

h − ûn
h

∆t
,vh

 + (υ + H)aΩ(ûn+1
h ,vh) + aΓ(ûn+1

h ,vh) − b(vh, p̂
n+1
f ) = 〈Fn+1,vh〉U

′ , (10)

and cun+1
h − cun

h

∆t
,vh

 + (υ + H)aΩ(cun+1
h ,vh) + aΓ(cun+1

h ,vh) − b(vh, cpn+1
f ) =

HaΩ

 ûn+1
h + ûn

h

2
,vh

 +

〈
Fn+1 + Fn

2
,vh

〉
U′

+ (υ + H)aΩ

 ûn+1
h − ûn

h

2
,vh


+ aΓ

 ûn+1
h − ûn

h

2
,vh

 − ∆t
2

b

vh,
p̂n+1

f − p̂n
f

∆t

 .
(11)
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(10) is the defect step and (11) is the defect-deferred correction step. The terms on the right hand side of
(11) are written in a form that hints at the reason for the increased accuracy of the defect-deferred correction
step solution. Note also that the matrix of the system is identical for (10) and (11) because of the similar
structure on the left. Thus, a simple artificial viscosity data-passing approximation is computed twice to
achieve higher accuracy while also having unconditional stability.

4. Stability and convergence

In this section, we prove the unconditional stability of both the defect step and the defect-deferred
correction step approximations. Also the accuracy of defect step and defect-deferred correction step and
time derivative step are shown.

Theorem 4.1. (Stability of defect approximation) Let ûn+1
h with initial data û0

h satisfy (10) for each n ∈ {0, 1, 2, · ·
·,N − 1}. Then we get

‖ûn+1
h ‖

2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖ûn+1
h ‖

2
U ≤

∆t(C2
p + C̃2

p)

Ccoe(υ + H)

N−1∑
n=0

‖Fn+1
‖

2
L2 + ‖û0

h‖
2
0.

Proof. Taking vh = ûn+1
h ∈ Vh in (10), it follows that ûn+1

h − ûn
h

∆t
, ûn+1

h

 + (υ + H)aΩ(ûn+1
h , ûn+1

h ) + aΓ(ûn+1
h , ûn+1

h ) = 〈Fn+1, ûn+1
h 〉U

′ . (12)

Using the Cauchy-Swcharz and Young’s inequalities gives

‖ûn+1
h ‖

2
0 − ‖û

n
h‖

2
0

2∆t
+ (υ + H)Ccoe‖ûn+1

h ‖
2
U ≤

Ccoe(υ + H)
2

‖ûn+1
h ‖

2
U +

(C2
p + C̃2

p)

2Ccoe(υ + H)
‖Fn+1

‖
2
L2 .

Multiplying by 2∆t and summing over the time levels, there holds

‖ûn+1
h ‖

2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖ûn+1
h ‖

2
U ≤

∆t(C2
p + C̃2

p)

Ccoe(υ + H)

N−1∑
n=0

‖Fn+1
‖

2
L2 + ‖û0

h‖
2
0. (13)

Theorem 4.2. (Stability of defect-deferred correction approximation) Let cun+1
h with initial data cu0

h satisfy (11) for
each n ∈ {0, 1, 2, · · ·,N − 1}. Then ∃C > 0 is independent of h and ∆t such that cun+1

h satisfies

‖cun+1
h ‖

2
0 + (υ + H)∆t

N−1∑
n=0

Ccoe‖cun+1
h ‖

2
U ≤ C

‖cu0
h‖

2
0 + ∆t

N−1∑
n=0

‖
Fn+1 + Fn

2
‖

2
L2 + ‖û0

h‖
2
0

 .
Proof. Taking vh = cun+1

h ∈ Vh in (11) obtainscun+1
h − cun

h

∆t
, cun+1

h

 + (υ + H)aΩ(cun+1
h , cun+1

h ) + aΓ(cun+1
h , cun+1

h ) =

〈
Fn+1 + Fn

2
, cun+1

h

〉
U′

+ HaΩ

 ûn+1
h + ûn

h

2
, cun+1

h

 + (υ + H)aΩ

 ûn+1
h − ûn

h

2
, cun+1

h

 + aΓ

 ûn+1
h − ûn

h

2
, cun+1

h

 .
(14)

Using the Cauchy-Swcharz and Young’s inequalities, the right-hand sides of (14) are bounded as follows〈
Fn+1 + Fn

2
, cun+1

h

〉
U′
≤ εCcoe(υ + H)‖cun+1

h ‖
2
U +

(C2
p + C̃2

p)

4εCcoe(υ + H)
‖

Fn+1 + Fn

2
‖

2
L2 ,
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HaΩ

 ûn+1
h + ûn

h

2
, cun+1

h

 ≤ 2ε(υ + H)Ccoe‖cun+1
h ‖

2
U +

H2C2
con

16εCcoe(υ + H)
(‖ûn+1

h ‖
2
U + ‖ûn

h‖
2
U),

and

(υ + H)aΩ

 ûn+1
h − ûn

h

2
, cun+1

h

 ≤ 2ε(υ + H)Ccoe‖cun+1
h ‖

2
U +

(υ + H)C2
con

16εCcoe
(‖ûn+1

h ‖
2
U + ‖ûn

h‖
2
U),

aΓ

 ûn+1
h − ûn

h

2
, cun+1

h

 ≤ 2ε(υ + H)Ccoe‖cun+1
h ‖

2
U +

C2
Γ

16ε(υ + H)Ccoe
(‖ûn+1

h ‖
2
U + ‖ûn

h‖
2
U).

Choosing ε = 1
14 and multiplying by 2∆t, we obtain

‖cun+1
h ‖

2
0 − ‖cun

h‖
2
0 + ∆t(υ + H)Ccoe‖cun+1

h ‖
2
U ≤

7(C2
p + C̃2

p)∆t

Ccoe(υ + H)
‖

Fn+1 + Fn

2
‖

2
L2

+
7H2C2

con∆t
4(υ + H)Ccoe

(‖ûn+1
h ‖

2
U + ‖ûn

h‖
2
U) +

7C2
Γ
∆t

4(υ + H)Ccoe
(‖ûn+1

h ‖
2
U + ‖ûn

h‖
2
U)

+
7(υ + H)C2

con∆t
4Ccoe

(‖ûn+1
h ‖

2
U + ‖ûn

h‖
2
U).

(15)

Next, we start by proving the accuracy estimate of the defect solution.

Theorem 4.3. (Accuracy of defect step) Let tu be smooth enough and φ0
h = 0. Then ∃C > 0 is independent of h and

∆t such that for any n ∈ {0, 1, 2, · · ·,N − 1}, the solution ûn+1
h of (11) satisfies

‖tun+1
− ûn+1

h ‖
2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖tun+1
− ûn+1

h ‖
2
U ≤ C(h4 + ∆t2 + H2).

Proof. Write (5) at time tn+1 as(
tun+1

− tun

∆t
,vh

)
+ (υ + H)aΩ(tun+1,vh) + aΓ(tun+1,vh) − b(vh, tp

n+1
f )

= 〈Fn+1,vh〉U
′ +

(
tun+1

− tun

∆t
− tun+1

t ,vh

)
+ HaΩ(tun+1,vh).

(16)

The errors are decomposed as en+1
h = (ūn+1

h −ûn+1
h )−(ūn+1

h −tun+1) = φn+1
h −ηn+1

h . Denote ρn+1 =
tun+1

−tun

∆t −tun+1
t ,

subtract (10) from (16) to obtain the equation for the error.en+1
h − en

h

∆t
,vh

 + (υ + H)aΩ(en+1
h ,vh) + aΓ(en+1

h ,vh) − b(vh, tp
n+1
f − p̂n+1

f ) = (ρn+1,vh)

+ HaΩ(tun+1,vh).

(17)

Taking vh = φn+1
h ∈ Vh, we haveφn+1

h − φn
h

∆t
, φn+1

h

 + (υ + H)aΩ(φn+1
h , φn+1

h ) + aΓ(φn+1
h , φn+1

h ) = (ρn+1, φn+1
h )

+ HaΩ(tun+1, φn+1
h ) +

ηn+1
h − ηn

h

∆t
, φn+1

h

 + aΓ(ηn+1
h , φn+1

h ) + (υ + H)aΩ(ηn+1
h , φn+1

h ).

(18)



Y. Yang, P. Huang / Filomat 36:1 (2022), 15–29 21

On the one hand, the left-hand sides of (18) are shown as follows:

‖φn+1
h ‖

2
0 − ‖φ

n
h‖

2
0

2∆t
+ (υ + H)Ccoe‖φ

n+1
h ‖

2
U ≤ (ρn+1, φn+1

h ) + HaΩ(tun+1, φn+1
h )

+

ηn+1
h − ηn

h

∆t
, φn+1

h

 + aΓ(ηn+1
h , φn+1

h ) + (υ + H)aΩ(ηn+1
h , φn+1

h ).
(19)

On the other hand, we find a bound on the right term with the Cauchy-Swcharz inequalities and Young
inequalities,

(ρn+1, φn+1
h ) ≤ ε(υ + H)Ccoe‖φ

n+1
h ‖

2
U +

(C2
p + C̃2

p)

4ε(υ + H)Ccoe
‖ρn+1

‖
2
0,

HaΩ(tun+1, φn+1
h ) ≤ ε(υ + H)Ccoe‖φ

n+1
h ‖

2
U +

H2C2
con

4ε(υ + H)Ccoe
‖tun+1

‖
2
U,

ηn+1
h − ηn

h

∆t
, φn+1

h

 ≤ ε(υ + H)Ccoe‖φ
n+1
h ‖

2
U +

(C2
p + C̃2

p)

4ε(υ + H)Ccoe
‖
ηn+1

h − ηn
h

∆t
‖

2
0.

Similarly,

aΓ(ηn+1
h , φn+1

h ) ≤ ε(υ + H)Ccoe‖φ
n+1
h ‖

2
U +

C2
Γ

4ε(υ + H)Ccoe
‖ηn+1

h ‖
2
U,

(υ + H)aΩ(ηn+1
h , φn+1

h ) ≤ ε(υ + H)Ccoe‖φ
n+1
h ‖

2
U +

(υ + H)C2
con

4εCcoe
‖ηn+1

h ‖
2
U.

Choosing ε = 1
10 and multiplying by 2∆t, we have

‖φn+1
h ‖

2
0 − ‖φ

n
h‖

2
0 + ∆t(υ + H)Ccoe‖φ

n+1
h ‖

2
U ≤

5∆t(C2
p + C̃2

p)

(υ + H)Ccoe
‖ρn+1

‖
2
0

+
5∆tH2C2

con

(υ + H)Ccoe
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‖
2
U +

5∆t(C2
p + C̃2

p)

(υ + H)Ccoe
‖
ηn+1

h − ηn
h

∆t
‖

2
0

+
5∆t(υ + H)C2

con

Ccoe
‖ηn+1

h ‖
2
U +

5∆tC2
Γ

(υ + H)Ccoe
‖ηn+1

h ‖
2
U +

5∆t(υ + H)C2
con

Ccoe
‖ηn+1

h ‖
2
U.

(20)

Summing over the time levels allow us to obtain

‖φn+1
h ‖

2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖φn+1
h ‖

2
U ≤

5∆t2(C2
p + C̃2

p)

(υ + H)Ccoe
‖tutt‖

2
L2(0,T;U)

+
5∆tH2C2

con

(υ + H)Ccoe

N−1∑
n=0

‖tun+1
‖

2
U +

5∆t(C2
p + C̃2

p)

(υ + H)Ccoe

N−1∑
n=0

‖
ηn+1

h − ηn
h

∆t
‖

2
0

+
5∆t(υ + H)C2

con

Ccoe

N−1∑
n=0

‖ηn+1
h ‖

2
U +

5∆tC2
Γ

(υ + H)Ccoe

N−1∑
n=0

‖ηn+1
h ‖

2
U +

5∆t(υ + H)C2
con

Ccoe

N−1∑
n=0

‖ηn+1
h ‖

2
U.

Finally, combine 1
υ+H < 1

υ and the triangle inequality to obtain

‖tun+1
− ûn+1

h ‖
2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖tun+1
− ûn+1

h ‖
2
U ≤ C(h4 + ∆t2 + H2).
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Before providing the accuracy estimate for the defect-deferred correction approximation, we need to
give

Theorem 4.4. (Accuracy of time derivative of the error in the defect step) Let the assumption of Theorem 4.3 holds.
Then ∃C ≥ 0 is independent of h and ∆t such that for any n ∈ {0, 1, 2 · ··,N − 1}. The discrete time derivative of the

error
en+1

h −en
h

∆t satisfies

‖
en+1

h − en
h

∆t
‖

2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖
en+1

h − en
h

∆t
‖

2
U ≤ C(h4 + ∆t2 + H2).

Proof. Taking vh =
φn+1

h −φ
n
h

∆t ∈ Vh in (17) leads toen+1
h − en

h

∆t
,
φn+1

h − φn
h

∆t

 + (υ + H)aΩ

en+1
h ,

φn+1
h − φn

h

∆t

 + aΓ

en+1
h ,

φn+1
h − φn

h

∆t


=

ρn+1,
φn+1

h − φn
h

∆t

 + HaΩ

tun+1,
φn+1

h − φn
h

∆t

 . (21)

Also, take vh =
φn+1

h −φ
n
h

∆t in (17) at the previous time level, and subtract the resulting equation from (21).

Denoting Sn+1
h ≡

φn+1
h −φ

n
h

∆t to get

(Sn+1
h − Sn

h ,S
n+1
h ) + ∆t(υ + H)aΩ(Sn+1

h ,Sn+1
h ) + ∆taΓ(Sn+1

h ,Sn+1
h )

≤ ∆t

ηn+1
h − 2ηn

h + ηn−1
h

∆t2 ,Sn+1
h

 + ∆t
(
ρn+1

− ρn

∆t
,Sn+1

h

)
+ ∆taΓ

ηn+1
h − ηn

h

∆t
,Sn+1

h


+ ∆tHaΓ

(
tun+1

− tun

∆t
,Sn+1

h

)
+ ∆t(υ + H)aΩ

(
ηn+1
− ηn

∆t
,Sn+1

h

)
.

(22)

Followed by the Cauchy-Swcharz and Young’s inequalities, and combine the conclusion of (9) to obain

∆t

ηn+1
h − 2ηn

h + ηn−1
h

∆t2 ,Sn+1
h

 ≤ ∆tε(υ + H)Ccoe‖Sn+1
h ‖

2
U +

(C2
p + C̃2

p)

4ε(υ + H)Ccoe
‖ηn+1

h,tt ‖
2
0,

∆t
(
ρn+1

− ρn

∆t
,Sn+1

h

)
≤ ∆tε(υ + H)Ccoe‖Sn+1

h ‖
2
U +

∆t(C2
p + C̃2

p)

4ε(υ + H)Ccoe
‖
ρn+1

− ρn

∆t
‖

2
0.

Similarly,

∆taΓ

ηn+1
h − ηn

h

∆t
,Sn+1

h

 ≤ ∆tε(υ + H)Ccoe‖Sn+1
h ‖

2
U +

C2
Γ

4ε(υ + H)Ccoe
‖ηn+1

h,t ‖
2
U,

∆tHaΓ

(
tun+1

− tun

∆t
,Sn+1

h

)
≤ ∆tε(υ + H)Ccoe‖Sn+1

h ‖
2
U +

∆tH2C2
con

4ε(υ + H)Ccoe
‖

tun+1
− tun

∆t
‖

2
U,

∆t(υ + H)aΩ

(
ηn+1
− ηn

∆t
,Sn+1

h

)
≤ ∆tε(υ + H)Ccoe‖Sn+1

h ‖
2
U +

(υ + H)C2
con

4εCcoe
‖ηn+1

h,t ‖
2
U.

Choosing ε = 1
10 leads to

‖Sn+1
h ‖

2
0 − ‖S

n
h‖

2
0 + ∆t(υ + H)Ccoe‖Sn+1

h ‖
2
U

≤

5(C2
p + C̃2

p)

(υ + H)Ccoe
‖ηn+1

h,tt ‖
2
0 +

5∆t(C2
p + C̃2

p)

(υ + H)Ccoe
‖
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− ρn

∆t
‖

2
0 +

5C2
Γ

(υ + H)Ccoe
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h,t ‖
2
U

+
5H2C2

con

(υ + H)Ccoe
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t ‖
2
L2(tn,tn+1;U) +

5(υ + H)C2
con

Ccoe
‖ηn+1

h,t ‖
2
U.
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Summing over the time levels obtain

‖Sn+1
h ‖

2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖Sn+1
h ‖

2
U ≤

5(C2
p + C̃2

p)

(υ + H)Ccoe

N−1∑
n=0

‖ηn+1
h,tt ‖

2
0 +

5∆t2(C2
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p)

(υ + H)Ccoe
‖tutt‖

2
L∞(0,T,L2(Ω))

+
5C2

Γ

(υ + H)Ccoe
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2
U +
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con

(υ + H)Ccoe
‖tut‖

2
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5(υ + H)C2
con

Ccoe

N−1∑
n=0

‖ηn+1
h,t ‖

2
U + ‖S1

h‖
2
0.

(23)

In order to get a bound on ‖S1
h‖

2
0, consider (22) at n = 0. We choose û0

h so that (tu0
− û0

h,vh) = 0. Thus,

e0 = −η0, S0
h = 0 and φ0

h = 0. We take vh = S1
h =

φ1
h−φ

0
h

∆t =
φ1

h
∆t ∈ Vh to obtain

‖S1
h‖

2
0 + ∆t(υ + H)aΩ(S1

h,S
1
h) + ∆taΓ(S1

h,S
1
h)

≤ (ρ1,S1
h) + HaΓ(tu1,S1

h) +

η1
h − η

0
h

∆t
,S1

h

 + (υ + H)aΩ(η1
h,S

1
h) + aΓ(η1

h,S
1
h).

(24)

The application of the Cauchy-Schwarz and Young inequalities gives the bounds

‖S1
h‖

2
0 + ∆t(υ + H)Ccoe‖S1

h‖
2
U ≤ C

[
‖
η1

h − η
0
h

∆t
‖

2
0 + H2

‖tu1
‖

2
L2(t0,t1,U)

+ ∆t2
‖tu1

tt‖
2
L∞(t0,t1,U) + (υ + H)‖η1

h‖
2
U + ‖η1

h‖
2
U + ‖S0

h‖
2
0

]
.

(25)

Combine (23), triangle inequality and 1
υ+H < 1

υ to complete the proof

‖
en+1

h − en
h

∆t
‖

2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖
en+1

h − en
h

∆t
‖

2
U ≤ C(h4 + ∆t2 + H2). (26)

We finally give the proof of accuracy of the defect-deferred correction step solution.

Theorem 4.5. (Accuracy of defect-deferred correction step) Let the assumption of Theorem 4.3 and Theorem 4.4 hold
and cφ0

h = 0. Then C ≥ 0 is independent of h and ∆t such that for any n ∈ {0, 1, 2 · ··,N − 1}, the solution cun+1
h of

(11) satisfies

‖tun+1
− cun+1

h ‖
2
0 + ∆t(υ + H)Ccoe

N−1∑
n=0

‖tun+1
− cun+1

h ‖
2
U ≤ C

[
∆t4 + h4 + H4 + h2H2 + ∆t2H2 + ∆t2h2

]
. (27)

Proof. Summing (5) at time levels tn and tn+1 and dividing by 2, we obtain(
tun+1

− tun

∆t
,vh

)
+ (υ + H)aΩ(tun+1,vh) + aΓ(tun+1,vh) − b(vh, tp

n+1
f )

=

〈
Fn+1 + Fn

2
,vh

〉
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+

(
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∆t
−
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2
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)
+ (υ + H)aΩ
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2
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)
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(
tun+1
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2
,vh

)
−

∆t
2

b
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f
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 .
(28)
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Denote γn+1 =
tun+1

−tun

∆t −
tun+1

t +tun
t

2 , subtract (11) from (28) to obtain the equation for the error. Decompose
the error cen+1

h = (ün+1
h − cun+1

h ) − (ün+1
h − tun+1) = cφn+1

h − cηn+1
h . For vh = cφn+1

h ∈ Vh, we have
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Using the Cauchy-Swcharz and Young’s inequalities, the right-hand sides of (29) are bounded as follows
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Choosing ε = 1
16 and multiplying by 2∆t, we have
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Take 1
υ+H < 1

υ and sum over the time levels to obtain
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Then, combine the conclusions of Theorem 4.3, Theorem 4.4 and triangle inequality to complete the
proof.

5. Numerical experiments

In this section, some numerical tests are presented to verify the theoretical results obtained in the previous
sections for the defect-deferred correction method. We use the well-known Taylor-Hood elements (P2-P1)
for the fluid equation and the piecewise quadratic polynomials (P2) for the porous equation. Furthermore,
we implemented the code using the software package FreeFEM++ [12].

5.1. Computational testing

All the physical parameters ρ, 1, ν, α, S are simply set to 1, and K is simply set to I. The final time is
chosen as T = 1. The initial conditions, boundary conditions and the source terms follow from the exact
solutions. We assume the area as Ω f = [0, 1] × [1, 2], Ωp = [0, 1] × [0, 1], Γ = (0, 1) × {1} and give the exact
solution:

u f =
(
(x2(y − 1)2 + y)cos(t),−

2
3

x(y − 1)3cos(t) + (2 − πsin(πx))cos(t)
)
,

p f = (2 − πsin(πx))sin(0.5πy)cos(t),
φp = (2 − πsin(πx))(1 − y − cos(πy))cos(t).

To confirm the accuracy, we set h = ∆t = H = 1
4 , 1

8 , 1
16 , 1

32 , 1
64 and calculate the errors and convergence

rates for the variables u f , p f and φp. Table 1 and Table 2 show the error and the convergence rates of the
defect step û f and defect-deferred correction step cu f , respectively. Table 3 and Table 4 provide the error
and convergence rates of the defect step φp and the defect-deferred correction step cφp.

Table 1: Errors for defect step û f approximations

1/∆t ‖u f − û f ‖L2 Rate ‖u f − û f ‖U Rate
4 1.48E−2 — 1.84E−1 —
8 8.16E−3 0.86 8.49E−2 1.12

16 4.40E−3 0.89 4.31E−2 0.98
32 2.29E−3 0.94 2.21E−2 0.96
64 1.17E−3 0.97 1.13E−2 0.97
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Table 2: Errors for defect-deferred correction step cu f approximations

1/∆t ‖u f − cu f ‖L2 Rate ‖u f − cu f ‖U Rate
4 7.02E−3 — 1.37E−1 —
8 1.91E−3 1.88 3.77E−2 1.86

16 5.71E−4 1.74 1.02E−2 1.89
32 1.64E−4 1.80 2.69E−3 1.91
64 4.50E−5 1.86 7.05E−4 1.93

Table 3: Errors for defect step φp approximations

1/∆t ‖φp − φ̂p‖L2 Rate ‖φp − φ̂p‖U Rate
4 1.81E−1 — 6.92E−1 —
8 1.03E−1 0.81 3.76E−1 0.88

16 5.53E−2 0.89 2.00E−1 0.91
32 2.88E−2 0.94 1.04E−1 0.95
64 1.47E−2 0.97 5.30E−2 0.97

Table 4: Errors for defect-deferred correction step cφp approximations

1/∆t ‖φp − cφp‖L2 Rate ‖φp − cφp‖U Rate
4 5.90E−2 — 3.26E−1 —
8 1.79E−2 1.72 9.39E−2 1.79

16 5.08E−3 1.82 2.55E−2 1.88
32 1.37E−3 1.89 6.72E−3 1.92
64 3.62E−4 1.92 1.74E−3 1.94

From the four tables above, we can see that the error of defect-deferred correction steps is smaller than
that of defect steps. In addition, the rates of the defect steps of Stokes velocity u f and Darcy hydraulic
head φp are all close to the first order. And the rates of the defect-deferred correction steps are all close to
the second order. The numerical simulation calculation results are consistent with the theoretical analysis
results.

5.2. Small parameters problem

In order to illustrate the advantage of the defect-deferred correction method in calculating small viscos-
ity/hydraulic coefficients, we compare the discrete errors of the standard Galerkin finite element method
and the defect-deferred correction method with the example mentioned in [14]. Specifically we consider
the model problem on Γ = (0, π) × {0}, where Ω f = [0, π] × [0, 1] and Ωp = [0, π] × [−1, 0]. We take α = 1,
1 = 1, S0 = 1, varying ν, and

K =

[
K11 0
0 K22

]
.

The boundary condition functions and the source terms are chosen to follow the exact solutions,

u f =
(K11

π
sin(2πy)cos(x)et, (−2K22 +

K22

π2 sin2(πy))sin(x)et
)
,

p = 0,

φ = (ey
− e−y)sin(x)et.
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All the numerical results below are for the final time T = 1. We consider four groups of simulated
numerical calculations (Figure 1−4) on K11 and K22 taking 10−2, 10−3, 10−4 and 10−5 separately. The results
of each set of numerical simulations are shown in two graphs, which are the respective absolute errors of
velocity and hydraulic head changes of the standard Galerkin finite element method and the defect-deferred
correction method when the ν is 10−2, 10−3, 10−4 and 10−5. The errors shown below are all calculated when
h = ∆t = 1/32. The stabilization item H in Figure 1 is 1/32, and in Figure 2−4 is 1/270. Before the numerical
tests, ek

u,h and ek
φ,h represent the discrete errors of velocity and hydraulic head, respectively. The results are

as follows:
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Figure 1: ek
u,h(a) and ek

φ,h(b) when K11 = K22 = 10−2.
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Figure 2: ek
u,h(a) and ek

φ,h(b) when K11 = K22 = 10−3.
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Figure 3: ek
u,h(a) and ek

φ,h(b) when K11 = K22 = 10−4.
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Figure 4: ek
u,h(a) and ek

φ,h(b) when K11 = K22 = 10−5.

From the above four sets of results, we can see that when K11 = K22 = 10−2 and ν = 10−3 /10−4, the
L2-norm error and H1-norm error of velocity and hydraulic head in the defect-deferred correction method
has a slight advantage over the standard Galerkin finite element method. However, as ν becomes smaller,
the calculation results of the standard Galerkin finite element method became divergent. But the calculation
results of the defect-deferred correction method are convergent. This situation is more obvious in the other
three sets of experiments where K11 = K22 = 10−3/10−4/10−5.
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