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Abstract. We characterized the distances from Bloch functions to some Möbius invariant spaces by
high order derivatives. Moreover, the boundedness and compactness of the products of composition
and differentiation operators from the Bloch space to the closure of some Möbius invariant spaces are
characterized.

1. Introduction

LetD = {z : |z| < 1} be the unit disk of a complex plane and ∂D be its boundary. LetH(D) be the space
consisting of all analytic functions onD. Recall that the Bloch spaceB is the space of all functions f ∈ H(D)
satisfying

‖ f ‖B = | f (0)| + sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

It is well known [20] that for each n ∈Nwe have

‖ f ‖B ≈ sup
z∈D

(1 − |z|2)n
| f (n)(z)| +

n−1∑
j=0

| f ( j)(0)| = ‖ f ‖B,n, f ∈ H(D).

The closure of the polynomials in the Bloch norm is the little Bloch space, denoted by B0, which consists of
those f ∈ H(D) with the property that

lim
|z|→1−

| f ′(z)|(1 − |z|2) = 0.

For a ∈ D, the Green’s function with pole at a is defined by

1(z, a) = log(1/|ϕa(z)|),
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Corresponding author: Yu Sun
Research supported by National Natural Science Foundation of China(Grant No.11571299).
Email addresses: yusun15185105160@163.com (Yu Sun), binl@uef.fi (Bin Liu), jlliu@yzu.edu.cn (Jinlin Liu)



Y. Sun et al. / Filomat 36:1 (2022), 141–150 142

where ϕa(z) = (z − a)/(1 − āz) is a Möbius transformation ofD. By the simple calculation, we have

|ϕ′a(z)| =
1 − |ϕa(z)|2

1 − |z|2
.

For 0 < p < ∞, 2 < q < ∞, −1 < q + s < ∞, the space F(p, q, s) consists of those f ∈ H(D) such that

‖ f ‖pF(p,q,s) = sup
a∈D

∫
D

| f ′(z)|p(1 − |z|2)q1s(z, a)dm(z) < ∞,

where dm(z) = dxdy/π is the normalized Lebesgue area measure onD. In addition, f ∈ F0(p, q, s), if

lim
|a|→1

∫
D

| f ′(z)|p(1 − |z|2)q1s(z, a)dm(z) = 0.

For p > 1, the Besov space Bp consists of analytic functions f inD such that

‖ f ‖pBp
=

∫
D

| f ′(z)|p(1 − |z|2)p−2dm(z) < ∞.

It is obvious that Bp can be viewed as F(p, p−2, 0). Moreover, the Besov space B1 can be defined as the space
of analytic functions f onD satisfying

‖ f ‖B1 =

∫
D

| f ′′(z)|dm(z) < ∞.

It is known that F(p, q, s) = Qs and F0(p, q, s) = Qs,0 if p = 2, q = 0, introduced by Aulaskari, Lappan, Xiao,
and Zhao in [2, 4]. It is clear that F(p, q, s) = Q1 = BMOA and F0(p, q, s) = Q1,0 = VMOA if p = 2, q = 0
and s = 1, see [5]. It is easy to know that for 0 ≤ s < ∞, F(p, p − 2, s) and F0(p, p − 2, s) are Möbius invariant
function spaces in [1], and for 0 ≤ s < 1, F(p, p − 2, s) and F0(p, p − 2, s) are subspaces of BMOA and VMOA,
respectively.

The study of distance from a function to the function space is originated from Jones’ distance formula[6],
which characterized the distance from one function to BMOA. Then many scholars have done a series of
research in this field. Tjani [15] considered the distance from a Bloch function to the little Bloch space B0.
Zhao [18] extend Jones’ theorem from BMOA to the space F(p, p − 2, s) for 1 ≤ p < ∞ and 0 < s ≤ 1. In [7],
the distance formula from a Bloch function to BMOA by higher order derivatives is obtained. In this paper,
we will give an analogue of this result of distances from Bloch functions to some Möbius invariant spaces
F(p, p − 2, s) by higher order derivatives. We also give a characterization of the closure of F(p, p − 2, s) in the
Bloch space by higher order derivatives.

Each analytic self-map ϕ of D induces the composition operator Cϕ on H(D) defined by Cϕ f = f ◦ ϕ.
These operators have been extensively studied in a variety of function spaces [8, 14]. The differentiation
operator D on H(D) is defined by D f = f ′. Furthermore, for n ∈ N ∪ {0}, we define Dn f = f (n). The
products of composition operators and n-th differentiation operators CϕDn are defined by

CϕDn( f ) = f (n)
◦ ϕ, f ∈ H(D).

The products of composition operators and differential operators have been studied on some analytic
function spaces (see [9, 10, 22]). The boundedness and compactness of these operators have attracted a lot
of attention in many analytic function spaces. Zhang [17] characterized the boundedness and compactness
of the operator CϕDn fromBα(Bα0 ) to CBβ (A

p
ω

⋂
B
β). In this work, we will characterize the boundedness and

compactness of the operator CϕDn from B(B0) to the closure of some Möbius invariant spaces.
The rest of this paper is organized as follows: In Section 2, we characterize the distances from Bloch

functions to some Möbius invariant spaces by higher order derivatives and we also obtain the characteri-
zations of the closures of these Möbius invariant spaces in the Bloch space by higher order derivatives. In
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Section 3 and Section 4, we give the characterization of boundedness and compactness of the products of
composition and n-th differentiation operators respectively.

For simplicity, we need the following idiomatic notations. Denote by A . B, if there exists a positive
constant C such that A ≤ CB. Similarly, denote by A & B, if there exists a positive constant C such that
A ≥ CB. If A and B satisfy both A & B and A . B, or equivalently, there exists a positive constant C such
that C−1B ≤ A ≤ CB, we write A ≈ B.

2. Distances from Bloch functions to F(p, p − 2, s) by high order derivatives

We start the notation of s-Carleson is also needed in this part. For a subarc I ⊂ ∂D, the length of I is
defined as

|I| =
1

2π

∫
I
|dζ|,

and let
S(I) = {rζ ∈ D : 1 − |I| ≤ r < 1, ζ ∈ I}

denote the Carleson square inD. For 0 < s < ∞, we say that a positive measure µ defined onD is a bonuded
s-Carleson measure provided

µ(S(I)) = O(|I|s)

for all subarcs I of ∂D, where |I| denotes the arc length of I and S(I) denotes the usual Carleson box based
on I. If

lim
|I|→0

µ(S(I)) = o(|I|s),

then we say that µ is a vanishing s-Carleson measure [3]. For f ∈ H(D), we define

dµ f = | f ′(z)|p(1 − |z|2)q+sdm(z).

In [19, Theorems 2.4 and 2.5], f ∈ F(p, q, s) if and only if dµ f is a bounded s-Carleson measure. In addition,
f ∈ F0(p, q, s) if and only if dµ f is a vanishing s-Carleson measure. For a subspace X of Bloch space B, we
will denote the distance from a function f ∈ B to the space X by distB( f ,X). More specifically, we define

distB( f ,X) = inf
1∈X
‖ f − 1‖B.

For f ∈ B and ε > 0, set Ωn,ε( f ) = {z ∈ D : (1 − |z|2)n
| f (n)(z)| ≥ ε}. For a subspace X of the Bloch space, let

CB(X) denote the closure of the space X in the Bloch norm.
The following result can be found in [18, Theorem 2].

Theorem A. Let f ∈ B and 0 < s ≤ 1, 1 ≤ p < ∞, 0 ≤ t < ∞. Then the following quantities are equivalent:
(1) distB( f ,F(p, p − 2, s));
(2) inf{ε : χΩε( f )

dm(z)
(1−|z|2)2−s is an s-Carleson measure};

(3) inf{ε : supa∈D

∫
Ωε( f ) | f

′(z)|t(1 − |z|2)t−2(1 − |ϕa(z)|2)sdm(z) < ∞};

(4) inf{ε : supa∈D

∫
Ωε( f ) | f

′(z)|t(1 − |z|2)t−21s(z, a)dm(z) < ∞}, where Ωε( f ) = {z ∈ D : | f ′(z)|(1 − |z|2) ≥ ε}.
The first main result is to generalize the above theorem by higher order derivatives as follows.

Theorem 2.1. Let f ∈ B, 0 < s ≤ 1, 1 ≤ p < ∞ 0 ≤ t < ∞ and n is a positive integer. Then the following quantities
are equivalent:

(1) distB( f ,F(p, p − 2, s));
(2) inf{ε : χΩn,ε( f )

dm(z)
(1−|z|2)2−s is a bounded s-Carleson measure};

(3) inf{ε : supa∈D

∫
Ωn,ε( f ) | f

(n)(z)|t(1 − |z|2)nt−2(1 − |ϕa(z)|2)sdm(z) < ∞};

(4) inf{ε : supa∈D

∫
Ωn,ε( f ) | f

(n)(z)|t(1 − |z|2)nt−21s(z, a)dm(z) < ∞}.
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Proof. Let d1, d2, d3 and d4 denote the quantities (1), (2), (3) and (4) in Theorem 2.1, respectively. We need to
prove d1 ≈ d2 ≈ d3 ≈ d4.

For the case of d2 ≤ d1, we prove it by contradiction. If d1 < d2, then there are two constants ε > ε1 > 0
and a function fε1 ∈ F(p, p − 2, s) such that χΩn,ε( f )

dm(z)
(1−|z|2)2−s is not an s-Carleson measure and ‖ f − fε1‖B ≤ ε1.

For z ∈ D, we have

(1 − |z|2)n
| f (n)
ε1

(z)| ≥ (1 − |z|2)n
| f (n)(z)| − ‖ f − fε1‖B ≥ (1 − |z|2)n

| f (n)(z)| − ε1.

This gives Ωn,ε( f ) ⊂ Ωn,ε−ε1 ( fε1 ). Therefore,

χΩn,ε( f )
dm(z)

(1 − |z|2)2−s ≤
| f (n)
ε1

(z)|p(1 − |z|2)np−2+s

(ε − ε1)p dm(z).

For fε1 ∈ F(p, p − 2, s), we have | f (n)
ε1

(z)|p(1 − |z|2)np−2+sdm(z) is an s-Carleson measure. This implies that
χΩn,ε( f )

dm(z)
(1−|z|2)2−s is an s-Carleson measure. This is a contradiction. Thus d2 ≤ d1. On the other hand, we need

to prove that d1 . d2. Without loss of generality, we assume that f (0) = f ′(0) = · · · = f (n−1)(0) = 0. Since
f ∈ B by the hypothesis, then by [21, Lemma 4.2.8], we see that for any z ∈ D, f (z) = f1(z) + f2(z), where

f1(z) =
1
n!

∫
Ωn,ε( f )

(1 − |w|2)n f (n)(w)dm(w)

wn(1 − zw)2

and

f2(z) =
1
n!

∫
D\Ωn,ε( f )

(1 − |w|2)n f (n)(w)dm(w)

wn(1 − zw)2
.

We have

(1 − |z|2)n
| f (n)

2 (z)| ≤ (n + 1)(1 − |z|2)n
∫
D\Ωn,ε( f )

(1 − |w|2)n
| f (n)(w)|

|1 − zw|n+2 dm(w)

≤ (n + 1)ε(1 − |z|2)n
∫
D

1
|1 − zw|n+2 dm(w)

. ε.

Hence ‖ f − f1‖B,n = ‖ f2‖B,n . ε. Since f ∈ B by the hypothesis, we also have f1 ∈ B. Now we are going to
prove that f1 ∈ F(p, p − 2, s). Using Fubini’s theorem, we obtain that

I = sup
a∈D

∫
D

| f (n)
1 (z)|p(1 − |z|2)np−2(1 − |ϕa(z)|2)sdm(z)

. ‖ f1‖
p−1
B,n sup

a∈D

∫
D

| f (n)
1 (z)|(1 − |z|2)n−2(1 − |ϕa(z)|2)sdm(z)

. ‖ f1‖
p−1
B,n sup

a∈D

∫
D

∫
Ωn,ε( f )

(1 − |w|2)n
| f (n)(w)|

|1 − zw|n+2 dm(w)
(1 − |a|2)s(1 − |z|2)n−2+s

|1 − az|2s dm(z)

. ‖ f1‖
p−1
B,n‖ f ‖B,n sup

a∈D

∫
Ωn,ε( f )

(1 − |a|2)s
∫
D

(1 − |z|2)n−2+s

|1 − zw|n+2|1 − az|2s dm(z)dm(w).

Using [18, Lemma 1], we have∫
D

((1 − |z|2)n−2+s

|1 − zw|n+2|1 − az|2s dm(z) .
1

|1 − aw|2s(1 − |w|2)2−s .
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By the hypothesis and [3, Lemma 2.1], we have

I . ‖ f1‖
p−1
B,n‖ f ‖B,n sup

a∈D

∫
D

(
(1 − |a|2)
|1 − aw|2

)s

·
χΩn,ε( f )

(1 − |w|2)2−s dm(w) < ∞.

Thus, [13, Theorem 3.2] shows f1 ∈ F(p, p − 2, s). Thus d1 is bounded by d2.
We next prove d2 ≈ d3. Using [3, Lemma 2.1], we can obtain that χΩn,ε( f )

dm(z)
(1−|z|2)2−s is a bounded s-Carleson

measure, namely,

sup
a∈D

∫
Ωn,ε( f )

|ϕ′a(z)|s

(1 − |z|2)2−s dm(z) < ∞,

which is equivalent to

sup
a∈D

∫
Ωn,ε( f )

(1 − |ϕa(z)|2)s

(1 − |z|2)2 dm(z) < ∞.

This is the case t = 0 in (3). For t > 0, by noticing that for any z ∈ Ωn,ε( f ),

ε ≤ | f (n)(z)|(1 − |z|2)n
≤ ‖ f ‖B.

Thus d2 ≈ d3.
We now show d3 ≈ d4. Since

(1 − |ϕa(z)|2)s
≤ C logs 1

|ϕa(z)|
= C1s(z, a),

it has d3 . d4. For d4 . d3,

M =

∫
Ωn,ε( f )

| f (n)(z)|t(1 − |z|2)nt−21s(z, a)dm(z)

=

∫
Ωn,ε( f )∩D1/4

| f (n)(z)|t(1 − |z|2)nt−21s(z, a)dm(z)

+

∫
Ωn,ε( f )\D1/4

| f (n)(z)|t(1 − |z|2)nt−21s(z, a)dm(z)

:= M1 + M2,

where D1/4 = {z ∈ D : |z| < 1
4 }. By the following inequalities:

1s(z, a) = logs 1
|ϕa(z)|

≥ logs 4 ≥ 1, |ϕa(z)| ≤
1
4

and
1s(z, a) = logs 1

|ϕa(z)|
. 4(1 − |ϕa(z)|2)s, |ϕa(z)| ≥

1
4
,

we can get that

M2 . 4
∫

Ωn,ε( f )
| f (n)(z)|t(1 − |z|2)nt−2(1 − |ϕa(z)|2)sdm(z),

and

M1 ≤

∫
Ωn,ε( f )

| f (n)(z)|t(1 − |z|2)nt−21s(z, a)dm(z)

≤ ‖ f ‖t
B,n

∫
Ωn,ε( f )

(1 − |z|2)−21s(z, a)dm(z)

≤ K < ∞,

where K is a constant independent of a. Therefore, d4 . d3. The proof is completed.
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From Theorem 2.1 we immediately obtain the following corollary.

Corollary 2.2. Let f ∈ B, 0 < s ≤ 1, 1 ≤ p < ∞, 0 ≤ t < ∞ and n is a positive integer. Then the following
quantities are equivalent:

(1) f ∈ CB(F(p, p − 2, s));
(2) χΩn,ε( f )

dm(z)
(1−|z|2)2−s is a bounded s-Carleson measure for every ε > 0;

(3) supa∈D

∫
Ωn,ε( f ) | f

(n)(z)|t(1 − |z|2)nt−2(1 − |ϕa(z)|2)sdm(z) < ∞ for every ε > 0;

(4) supa∈D

∫
Ωn,ε( f ) | f

(n)(z)|t(1 − |z|2)nt−21s(z, a)dm(z) < ∞ for every ε > 0.

For the distance from a Bloch function to the F0(p, p − 2, s) space, combining [18, Theorem 6] and the proof
of Theorem 2.1, we have the following theorem.

Theorem 2.3. Let f ∈ B, 0 < s ≤ 1, 1 ≤ p < ∞, 0 ≤ t < ∞ and n is a positive integer. Then the following
quantities are equivalent:

(1) distB( f ,B0);
(2) distB( f ,F0(p, p − 2, s));
(3) inf{ε : χΩn,ε( f )

dm(z)
(1−|z|2)2−s is a vanishing s-Carleson measure};

(4) inf{ε : lim|a|→1

∫
Ωn,ε( f ) | f

(n)(z)|t(1 − |z|2)nt−2(1 − |ϕa(z)|2)sdm(z) = 0};

(5) inf{ε : lim|a|→1

∫
Ωn,ε( f ) | f

(n)(z)|t(1 − |z|2)nt−21s(z, a)dm(z) = 0}.

From the Theorem 2.3, we easily obtain the following corollary.

Corollary 2.4. Let 0 < s ≤ 1, f ∈ H(D). Then f ∈ B0 if and only if χΩn,ε( f )
dm(z)

(1−|z|2)2−s is a vanishing s-Carleson
measure for every ε > 0.

For the case s = 0, we give the following result:

Theorem 2.5. Let f ∈ B, 1 ≤ p < ∞, and n be a positive integer. Then the following quantities are equivalent:
(1) distB( f ,B0);
(2) distB( f ,Bp);
(3) inf{ε : λ(Ωn,ε( f )) < ∞}, where λ(Ωn,ε( f )) =

∫
Ωn,ε( f )

dm(z)
(1−|z|2)2 is the hyperbolic area of the set Ωn,ε( f ).

Proof. By [18, Theorem 8], we can get that quantity (1) is equivalent to quantity (2). Next, we show that
quantity (2) and quantity (3) are equivalent. Suppose that f1 and f2 are the same as the proof of Theorem 1.
We need only prove that f1 ∈ Bp for 1 ≤ p < ∞. Since

f (n)
1 (z) = (n + 1)

∫
Ωn,ε( f )

(1 − |w|2)n f (n)(w)dm(w)
(1 − zw)n+2 ,

By Fubini’s theorem and [21, Lemma 4.2.2], we have∫
D

| f (n)
1 (z)|p(1 − |z|2)np−2dm(z)

. ‖ f1‖
p−1
B,n

∫
D

∫
Ωn,ε( f )

| f (n)(ω)|(1 − |ω|2)n

|1 − zω|n+2 dm(ω)(1 − |z|2)n−2dm(z)

. ‖ f1‖
p−1
B,n‖ f ‖B,n

∫
Ωn,ε( f )

∫
D

(1 − |z|2)n−2

(1 − zω)n+2 dm(z)dm(ω)

. ‖ f1‖
p−1
B,n‖ f ‖B,n

∫
Ωn,ε( f )

(1 − |ω|2)−2dm(ω)

= ‖ f1‖
p−1
B,n‖ f ‖B,nλ(Ωn,ε( f )).
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Thus, [13, Theorem 3.2] shows f1 ∈ Bp if λ(Ωn,ε( f )) < ∞. Thus distB( f ,Bp) is bounded by a multiple of
quantity (3).

Suppose that there are two constants ε > ε1 > 0 and a function fε1 ∈ Bp (1 < p < ∞) such that
λ(Ωn,ε( f )) = ∞ and ‖ f − fε1‖B ≤ ε1. As before, we have

χΩn,ε( f )
dm(z)

(1 − |z|2)2 ≤
| f (n)
ε1

(z)|p(1 − |z|2)np−2

(ε − ε1)p dm(z).

Since fε1 ∈ Bp, we have ∫
D

| f (n)
ε1

(z)|p(1 − |z|2)np−2dm(z) < ∞.

Thus

λ(Ωn,ε( f )) =

∫
D

χΩn,ε( f )
dm(z)

(1 − |z|2)2

≤
1

(ε − ε1)p

∫
D

| f (n)
ε1

(z)|p(1 − |z|2)np−2dm(z)

< ∞,

which contradicts λ(Ωn,ε( f )) = ∞.

As immediate, we get the following corollary from Theorem 2.5.

Corollary 2.6. Let f ∈ H(D), and n is a positive integer. Then f ∈ B0 if and only if λ(Ωn,ε( f )) < ∞ for every ε > 0.

3. The boundedness of the product of composition and n-th differentiation operators

In this part, we consider the boundedness of the product of composition and n-th differentiation opera-
tors. Firstly, we start with the case from B to CB(F(p, p − 2, s)).

Theorem 3.1. Let 0 < s ≤ 1, 1 ≤ p < ∞. Let ϕ be an analytic self-map ofD. Then CϕDn is bounded from the Bloch
space B to CB(F(p, p − 2, s)) if and only if

sup
a∈D

∫
Ω
η
ε(ϕ)

(1 − |ϕa(z)|2)sdλ(z) < ∞ (3.1)

for every ε > 0, where Ω
η
ε(ϕ) = {z ∈ D : |ϕ′(z)|

(1−|ϕ(z)|2)n+1 (1 − |z|2) ≥ ε}.

Proof. Assume that (3.1) is true for any ε > 0. Let f ∈ B, then

|(CϕDn f )′(z)|(1 − |z|2) =
∣∣∣ f (n+1)(ϕ(z))

∣∣∣ |ϕ′(z)|(1 − |z|2)
(1 − |ϕ(z)|2)n+1 (1 − |ϕ(z)|2)n+1

≤ ‖ f ‖B,n+1
|ϕ′(z)|(1 − |z|2)
(1 − |ϕ(z)|2)n+1 .

For any fixed ε > 0, |(CϕDn f )′(z)|(1 − |z|2) ≥ ε, then

|ϕ′(z)|(1 − |z|2)
(1 − |ϕ(z)|2)n+1 ≥

ε
‖ f ‖B,n+1

= ε′,

that is, we have Ωε(CϕDn f ) ⊂ Ω
η
ε′ (ϕ). Thus

sup
a∈D

∫
Ωε(CϕDn f )

(1 − |ϕa(z)|2)sdλ(z) ≤ sup
a∈D

∫
Ω
η

ε′
(ϕ)

(1 − |ϕa(z)|2)sdλ(z) < ∞.
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By [12], CϕDn f ∈ CB(F(p, p− 2, s)). The Schwarzian-Pick Lemma implies that ‖CϕDn f ‖B ≤ ‖ f ‖B. Thus CϕDn

is bounded from the Bloch space B to CB(F(p, p − 2, s)).
Conversely, assume that CϕDn : B → CB(F(p, p− 2, s)) is bounded. According to [16, Theorem 2.2.1] and

[11, Theorem 2.1], for any positive integer n, there exist two functions f1, f2 ∈ B such that

| f (n+1)
1 (z)| + | f (n+1)

2 (z)| ≥
1

(1 − |z|2)n+1 . (3.2)

Owing to the hypothesis, we obtain f (n)
1 ◦ϕ, f (n)

2 ◦ϕ ∈ CB(F(p, p− 2, s)). Given any ε > 0, let z ∈ Ω
η
ε(ϕ), then

|ϕ′(z)|
(1−|ϕ(z)|2)n+1 (1 − |z|2) ≥ ε. By (3.2),

(
| f (n+1)

1 (ϕ(z))| + | f (n+1)
2 (ϕ(z))|

)
|ϕ′(z)|(1 − |z|2) ≥

|ϕ′(z)|(1 − |z|2)
1 − (|ϕ(z)|2)n+1 ≥ ε

Thus (∣∣∣(CϕDn f1)′(z)
∣∣∣ +

∣∣∣(CϕDn f2)′(z)
∣∣∣) (1 − |z|2) ≥ ε.

Therefore, either ∣∣∣(CϕDn f1)′(z)
∣∣∣ (1 − |z|2) ≥

ε
2

or ∣∣∣(CϕDn f2)′(z)
∣∣∣ (1 − |z|2) ≥

ε
2
.

So we have

sup
a∈D

∫
Ω
η
ε(ϕ)

(1 − |ϕ(z)|2)sdλ(z)

≤ sup
a∈D

∫
Ωε/2(CϕDn f1)∪Ωε/2(CϕDn f2)

(1 − |ϕ(z)|2)sdλ(z)

≤ sup
a∈D

∫
Ωε/2(CϕDn f1)

(1 − |ϕ(z)|2)sdλ(z) + sup
a∈D

∫
Ωε/2(CϕDn f2)

(1 − |ϕ(z)|2)sdλ(z)

< ∞.

The proof of Theorem 3.1 is complete.

Theorem 3.2. Let 0 < s ≤ 1, 1 ≤ p < ∞. Let ϕ be an analytic self-map of D. Then CϕDn is bounded from B0 to
CB(F(p, p − 2, s)) if and only if ϕ ∈ CB(F(p, p − 2, s)) and

sup
z∈D

(1 − |z|2)
(1 − |ϕ(z)|2)n+1 |ϕ

′(z)| < ∞. (3.3)

Proof. To prove the necessity. Suppose that CϕDn : B0 → CB(F(p, p− 2, s)) is bounded. Notice fn(z) = zn+1

(n+1)! ∈

B0, then we have ϕ = CϕDn( fn) ∈ CB(F(p, p − 2, s)). Since CϕDn : B0 → CB(F(p, p − 2, s)) is bounded and
CB(F(p, p− 2, s)) ⊆ B, then CϕDn : B0 → B is bounded. It is easy to see (3.3) holds according to [22, Theorem
2].

Conversely, assume that ϕ ∈ CB(F(p, p−2, s)) and supz∈D
(1−|z|2)

(1−|ϕ(z)|2)n+1 |ϕ′(z)| < ∞. Let f ∈ B0. For any ε > 0,
there exists a constant 0 < r < 1 such that

| f (n)(z)|(1 − |z|2)n <
ε

supz∈D
(1−|z|2)

(1−|ϕ(z)|2)n+1 |ϕ′(z)|
, |z| > r.
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Let z ∈ Ωε(CϕDn f ). It is obvious that we have

sup
z∈D

(1 − |z|2)
(1 − |ϕ(z)|2)n+1 |ϕ

′(z)|| f (n+1)(ϕ(z))|(1 − |ϕ(z)|2)n+1

≥ f (n+1)(ϕ(z))(1 − |z|2)|ϕ′(z)| = |(CϕDn f )′(z)|(1 − |z|2) ≥ ε.

This implies that |ϕ(z)| ≤ r. Therefore

‖ f ‖B,n+1

(1 − r2)n+1 (1 − |z|2)|ϕ′(z)|

≥

∣∣∣ f (n+1)(ϕ(z))
∣∣∣ (1 − |ϕ(z)|2)n+1 (1 − |z|2)

(1 − |ϕ(z)|2)n+1 |ϕ
′(z)|

= |(CϕDn f )′(z)|(1 − |z|2) ≥ ε.

Let δ =
(1−r2)n+1ε
‖ f ‖B,n+1

. Thus we have |ϕ′(z)|(1 − |z|2) ≥ δ. This means that Ωε(CϕDn f ) ⊆ Ωδ(ϕ). Due to
ϕ ∈ CB(F(p, p − 2, s)), we can obtain

sup
a∈D

∫
Ωε(CϕDn f )

(1 − |ϕa(z)|2)sdλ(z) ≤ sup
a∈D

∫
Ωδ(ϕ)

(1 − |ϕa(z)|2)sdλ(z).

By [12], we know that CϕDn f ∈ CB(F(p, p − 2, s)). Therefore CϕDn : B0 → CB(F(p, p − 2, s)) is bounded. The
proof is complete.

4. The compactness of the product of composition and n-th differentiation operators

In this part, we consider the compactness of the product of composition and n-th differentiation opera-
tors.

Theorem 4.1. Let 0 < s ≤ 1, 1 ≤ p < ∞. Let ϕ be an analytic self-map of D. Then the following conditions are
equivalent.

(1) CϕDn is compact from B to CB(F(p, p − 2, s));
(2) CϕDn is compact from B0 to CB(F(p, p − 2, s));
(3) ϕ ∈ CB(F(p, p − 2, s)) and

lim
|ϕ(z)|→1

1 − |z|2

(1 − |ϕ(z)|2)n+1 |ϕ
′(z)| = 0.

Proof. Since B0 ⊆ B, the implication (1) =⇒ (2) is obvious.
To prove that (2) implies (3), assume that CϕDn : B0 → CB(F(p, p − 2, s)) is compact. Then CϕDn :

B0 → CB(F(p, p − 2, s)) is bounded. By Theorem 3.2, we obtain ϕ ∈ CB(F(p, p − 2, s)). It is well known that
CB(F(p, p − 2, s)) ⊆ B. Thus CϕDn : B0 → B is compact. This implies that lim|ϕ(z)|→1

1−|z|2

(1−|ϕ(z)|2)n+1 |ϕ′(z)| = 0 by
[22, Theorem 2].

It remains to show that (3) implies (1).By the hypothesis, there exists 0 < r < 1 such that

1 − |z|2

(1 − |ϕ(z)|2)n+1 |ϕ
′(z)| <

ε
2
, whereever |ϕ(z)| > r.

Let z ∈ Ωε(ϕ), then |ϕ(z)| ≤ r. Therefore,

1 − |z|2

(1 − r2)n+1 |ϕ
′(z)| ≥

1 − |z|2

(1 − |ϕ(z)|2)n+1 |ϕ
′(z)| ≥ ε.
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Thus |ϕ′(z)|(1 − |z|2) ≥ (1 − r2)n+1ε. Set δ = (1 − r2)n+1ε, then z ∈ Ωδ(ϕ). Since ϕ ∈ CB(F(p, p − 2, s)), we have

∞ > sup
a∈D

∫
Ωδ(ϕ)

(1 − |ϕa(z)|2)sdλ(z) > sup
a∈D

∫
Ωε(ϕ)

(1 − |ϕa(z)|2)sdλ(z).

By Theorem 3.1, CϕDn : B0 → CB(F(p, p− 2, s)) is bounded. It is easy to know that CϕDn : B → B is compact
by [22, Theorem 2] with α = β = 1. Therefore, CϕDn : B0 → CB(F(p, p − 2, s)) is compact. We finished the
proof.

Theorem 4.2. Let 0 < s ≤ 1, 1 ≤ p < ∞. Let ϕ be an analytic self-map of D. Then CϕDn : CB(F(p, p − 2, s)) →
CB(F(p, p − 2, s)) is compact if and only if ϕ ∈ CB(F(p, p − 2, s)) and

lim
|ϕ(z)|→1

1 − |z|2

(1 − |ϕ(z)|2)n+1 |ϕ
′(z)| = 0. (1)

Proof. The necessity of the conditions can be proved immediately. Assume that CϕDn : CB(F(p, p − 2, s))→
CB(F(p, p− 2, s)) is compact. Thus CϕDn : CB(F(p, p− 2, s))→ CB(F(p, p− 2, s)) is bounded. Since fn = zn+1

(n+1)! ∈

CB(F(p, p − 2, s)), we obtain ϕ ∈ CB(F(p, p − 2, s)). It is well known that B0 is the closure of all polynomials
in B. Therefore, CϕDn : B0 → CB(F(p, p − 2, s)) is compact.

To prove the sufficiency, assume that ϕ ∈ CB(F(p, p− 2, s)) and (1) holds. By [22, Theorem 2], we see that
CϕDn : B → B is compact. From the theorem above, we get CϕDn is compact from B to CB(F(p, p − 2, s)).
Since CB(F(p, p − 2, s)) ⊆ B, we obtain CϕDn : CB(F(p, p − 2, s))→ CB(F(p, p − 2, s)) is compact. We finish the
proof.
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