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The Minimum Harmonic Index for Bicyclic Graphs with Given
Diameter

Adeleh Abdolghafourian?, Mohammad A. Iranmanesh?

®Department of Mathematical Science, Yazd University, 89195-741 Yazd, I. R. Iran

Abstract. The harmonic index of a graph G, is defined as the sum of weights m of all edges uv of G,
where d(u) is the degree of the vertex u in G. In this paper we find the minimum harmonic index of bicyclic
graph of order n and diameter d. We also characterized all bicyclic graphs reaching the minimum bound.

1. Introduction

Let G be a connected simple graph with vertex set V(G) and edge set E(G). The graph G is said of order
n, where |V(G)| = n. The degree of a vertex u € V(G) is denoted by dg(u) (or simply d(u)). Also Ng(u) (or
simply N(u)) is the set of neighbors of u in G and N[u] = N(u) U {u}. For u,v € V(G), d(u,v) is the distance
between u and v in G and diam(G) = max{d(u, v); u,v € G} is the diameter of G. If X C G, then G — X is the
graph obtained from G by deleting the vertices of X. Recall that a graph G is called unicyclic, if it contains
only one cycle. In this case, |[E(G)| = |[V(G)|. Also a graph G is called a quasi-tree graph, if G is not a tree and
there exists v € V(G), such that G — v is a tree. A bicyclic graph G is a graph with exactly two cycles. In this
case |E(G)| = |V(G)| + 1. The other notations used here are common and may be found in [11].

The harmonic index of a graph G, is defined as H(G) = }. ek m. This index first appeared in
connection with some conjectures, generated by the computer program Graffiti, [6] and can be viewed as
a particular case of the general sum-connectivity index, xo = Y., 0er(c) (d(1) + d(v))*, proposed by Zhou and
Trinajsti¢ [16] (H = 2x-1). Du and Zhou [5] studied the sum-connectivity of bicyclic graphs. Also several
studies have focused on extremal sum-connectivity index of bicyclic graphs. See for example [2, 4, 10]. We
refer the interested readers to [3] for a recent survey about the harmonic index.

Zhong [12] and Zhong and Ciu [14] determined the minimum and maximum harmonic indices for
simple connected graphs, trees, unicyclic and characterized the corresponding extremal graphs. Liu [9],
showed that if T be a tree of order n > 4 and diameter d, then H(T) > d + g — 4. Jerline and Michaelraj [8],
proved that for a unicyclic graph G of order n > 7 and diameter d, H(G) > d + 2 — 4.

In [7] the minimum and maximum harmonic indices for caterpillars with diameter 4 are computed. It
is also showed that H(G) > d + 3 — %, where G is a quasi-tree graph of order n > 4 and diameter d, except

when G = Ué; or Ué’i which are shown in Figure 1 [1].
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This paper is a contribution to the study of harmonic index of simple connected graphs of diameter d
and the main purpose is to find a lower bound for harmonic index of bicyclic graphs with respect to their
diameters. Indeed all bicyclic graphs reaching the minimum bound are characterized. Let

16 , 4 2 2(n=5) _
BTy tiet oo d=3
B(n,d) = §+n671+2(n"__26) d=4.

d-5 6 2(n—d-2)
_+2+n—d+3+ n—d+2 d=5

We show that H(G) > B(n, d), where G is a bicyclic graph of order n and diameter 4.
In Section 2, we prove the lemmas that will be used in Section 3, where we prove the main theorems.
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Figure 1: The graphs LI;; (left) and Ué’i (right).

2. Preliminaries

Zhong [15], introduced five families of bicyclic graphs of order n with no pendant vertex. We introduce
a similar structure as follows.

Let B be the set of connected bicyclic graphs without pendant vertices. Let B! be the set of bicyclic
graphs obtained by joining two vertices of disjoint cycles by a path, 8% be the set of bicyclic graphs obtained
by identifying a vertex of each two disjoint cycles and then attaching them. and $B° be the set of bicyclic
graphs obtained from a cycle by adding a path. Obviously, B = 8! U 82 U 8. For example, the graph

B; € B, fori = 1,2,3 is shown in Figure 2.

OO OO (D

B! B? B3

Figure 2: Bicyclic graphs with no pendant vertex.

For n > 4, let B(n,d) be the set of connected bicyclic graphs of order n and diameter d. Every graph
G € B(n,d) is obtained by attaching some trees to some vertices of a graph G € 8. We say G is the root of
G. Note that every graph G € 8B(n,d) has a unique root, however it is possible that some non isomorphic
bicyclic graphs have common root.

Lemma 2.1. ([13, Lemma 1]) Let G be a nontrivial connected graph, and let uv € E(G) be such that d(u), d(v) > 2
and N(u) NN(v) = 0. Let G’ be the graph obtained from G by contracting the edge uv into a new vertex w and adding
a new pendant edge ww’ to w. Then H(G) > H(G').

Corollary 2.2. If G € B(n,d) has minimum harmonic index and P = uy — uy — - - - — ug41 is a diametrical path of G,
then
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(i) If uy is not a pendant vertex, then it is a vertex of a triangle. Similar arqument is true for ug.1.
(ii) Every non pendant vertex of G — P is a vertex of a cycle.
(iii) If Cis a cycle of G such that E(C) N E(P) = 0, then C is a triangle.

Proof. This is an immediate consequence of Lemma 2.1. [

Lemma 2.3. Let G be a connected graph and u,v € V(G), such that 2 < d(v) < d(u). Let Gy obtained from G by
attaching two paths of lengthr > 1and s > 1 to u and v respectively and G, obtained from G by attaching one pendant
vertex and a path of length r + s — 1 to u and v respectively. Then H(G1) = H(G).

Proof. If r = 1, then G; = G,. Hence assume r > 2. Assume first that # # v and u and v are not adjacent. In
the rest of paper, set z, = dg(x) + dc(u) and w, = dg(y) + dc(v). So

2 2
HG)=HO - ¥, == Y ey

xeNg (1) yeNg (o)
2 2+(r—2)—+ d(UZW 5=1,
du)+3 3 d(v)+3 t3+6-27 522
and
2 2 2 2,2 2

H(G,) =H(G) - xeNZG‘(H) 2+ 1) yGNZG‘(v) w,(w, +1) d(u) +2 d(v) 3737 (r+s— 3)1.

Hence
2 1 ﬁ B % s=1
H(G1) - H(G) = T 3w+ 2 (_(lv)+ o s>2
! >

Since 2 < d(v) < d(u), then H(G1) > H(G).
Next assume u # v and u and v are adjacent. Therefore

2 2 4
H(G1) =H(G) - Z Gt Z wy(wy +1) (@) +d(©))d(u) +d@©) +2)

x€Ng(u) yeNG(v)
X£0U y#u
2 —
L2 2 r-2 0w s=1
du)+3 3 2 2 2, s=2
( ) m + 3 + ST s>2

and

XeNG( ye
x;&v

H(G2) =H(G) - Z zx(zx + 1) ; wy(wy + 1)
y#u

4 2 2
T @) +d@)dw +d0) +2)  dw +2  dw)+3

So H(G1) =2 H(Gy).
Finally assume u = v. In this case without lose of generality, one may assume that s > 2. Hence

+2+(r+s—3)—

4 2 2, r+s-—4
HG) =H©@ = ), oy + A + 25+ —5—

xeNg(u)
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and

4 2 2

+ N r+s-3
Zo(zy +2)  du)+3  du)+4 '

H(Gz) = H(G) -

x€Ng(u)

24
3

Hence

H(Gy) - H(Gy) = ~ 2

6 @ xaam+y

This complete the proof. [

Lemma 2.4. Let Ty # G € B(n,d) with only one pendant vertex u, such that G € B. If G—u € B(n—1,d - 1),
then there exists G' € B(n,d) such that G' € 82 and H(G) > H(G').

Proof. Suppose u’,v" € V(G) are two vertices of degree 3. Let P’ : u’ = u] —---—u; , = v’ is the path between
v and v’ in G, where k > 1.

Since deleting u decrease the diameter, one may assume that either P C P or E(P’) N E(P) = 0. If
there exists a diametrical path P in G such that E(P") N E(P) = 0, then Lemma 2.1 implies that there exists
G’ € B(n,d) such that @ € 82 and H(G) > H(G).

If every diametrical path of G contains P’, then fix a diametrical path P : u; —- - - — 141 = u. Without lose
of generality suppose d(u’, u) < d(v’, u). Note that, in this case, at most one vertex of N¢(u”) is of degree 3,
otherwise G has two pendant vertices. Also all neighbors of v are of degree 2.

Let G’ obtain from G by contracting the path P’ into a new vertex w and adding a new vertex u

that V(G’) = V(G) U {w, u1/<+2} - {ui’ ullc+1} and

’

-~ such

E(G) = E(G) U {uu}, wuy ) U fwx : x € N(u') UN(@©'), x # uj, )
—{uWx:xeNW)-{v'y: ye N@)}

Since deleting 1 from G decrease the diameter, then u ¢ N¢(u’). Two possibilities are as follows:

(1) de(W’) = dg(v’) = 3. In this case,

No_ _ 2 3 2 _ 2
HE) =HO - G +D ~ & Fraoaim & Framaram
x#u) y#Eu
1 2 2

B R T T e R ) [ )

where A = % ifk=1and A = % if k > 2. Note that x € Ng(u') and d(x) < 3.
The last expression is greater than H(G) if and only if k > 2 and d(u;) = d(x) = 3. So G =I';, shown in
Figure 3.

(2) do(’) = 4 and dg(v’) = 3. Since diam(G — u) < diam(G), then d(u’,u) > 1 and hence d(uy) = 2 and
dg(x) = 2 for every x € N(u") — uz. So

N 3 2 3 2 3 4
HE) =HO Gy v~ AT dEam A Frame s am
x#u y#EU
=H(G) - 411_2 - % + A < H(G),

where A= Zifk=1and A= £ ifk>2.
[
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Figure 3: The bicyclic graphs related to Lemmas 2.5, 2.4.

Lemma 2.5. LetI'; # G € B(n,d), i = 2,3 (see Figure 3) such that G € B and G has only two pendant vertices u, v.
IfG—u,G-veBn-1,d-1), then there exists G’ € B(n,d) such that G’ € B* and H(G) > H(G").

’

Proof. Suppose u’,v" € V(G) are two vertices of degree 3. Let P" : 1’ = u] —u;,, = v’ is the path between
u’ and v’ in G. Since deleting every pendant vertex decrease the diameter, one may assume that either
P’ c Por E(P") N E(P) = 0. If there exists a diametrical path P in G such that E(P’) N E(P) = 0, then Lemma
2.1 implies that there exists G’ € B(n,d) such that G’ € 8% and H(G) > H(G).

If every diametrical path of G contains P’, then fix a diametrical path P : u = uy — -+ —ug,; = v. Let
G’ obtain from G by contracting the path P’ into a new vertex w and adding a new vertex u;_, such that
V(G) = V(G) U{w,u; ,} —{uj,u;,,} and

E(G) = E(G) U {uuj, upuy ,} U f{wx : x € Nu') UN('), x # uj, u}
—{uwx:xeNW)—{v'y:ye N@)}.

Since deleting u, v from G decrease the diameter, then u,v ¢ Ng(u) U Ng(v'). So three cases will arise as
follows.

(1) do(u’) = dg(v’) = 3. Note that in this case, at most one vertex of Ng(u') — {u}} is of degree 3, otherwise
P’ ¢ P. The same argument is valid for Ng(v") — u;. Without lose of generality suppose dg(us) < dg(u2).
Hence

N 3 2 2 3 2
HE)=HO = G+ Ddwa +2) NZ() G+ d)@E+ ) yENZG@,) G+dpa+dm T
X#EU y#uy

2 2 2

=H(G) - 2 - - - =
- (d(ug) + D)(d(ua) +2)  @B+d(x)(A+d(x) G+dy)@+dy) 15

+ A,

where A = % ifk=1land A = % ifk>2.

If d(ug) = d(x) = d(y) = 3, then H(G’) > H(G) and G =I';. Also if k > 2 and without lose of generality
d(ug) = d(x) = 3,d(y) = 2, then H(G') > H(G) and G = T'5. For other possibilities of d,,d, and d,,
H(G’) < H(G).

(2) de(w’) = 3 and dg(v') = 4. (The case dc(u’) = 3 and dg(v') = 4 is similar.) Without lose of generality,
suppose d(v’, ug41) < d(u’, ugy1). Since diam(G—ug4.1) < diam(G), then d(v’, u441) > 1 and hence d(uy) = 2.
Also at most one vertex of N(u") —u; is of degree 3, otherwise P’ ¢ Pand d(y) = 2 forevery y € N(v') —u;.
So

N 3 4 3 2
HE) =HO - ), Grameram ~ 2y Erdm)E+aw)

xeN®u’) yeEN(V’
X#U y;tul’{
4 4 6
<H@G)- — - — — — + A< H(G),
©) 35 48 42 ©)

where A= 2 ifk=1and A = ,ifk > 2.
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(3) dg(u’') = dg(v') = 4. In this case, since diam(G — «’), diam(G — v') < diam(G), then d(v’, u1), d(v’, ug41) = 2
and d(x) = d(y) = 2 for every x € N(u’) —uj and y € N(v') — u;. Hence

N 3 4 3 4
HE)=HO- YV, Grerdm Ly, TrdmGr o
x£0 y#u’

= H(G) ~3(35) ~3(35) + A < H(G)

whereA:}IiszlandA: %,iszz.
O

Let K} be a graph obtained from Ky by deleting an edge. Suppose B,,» is a bicyclic graph of order n and
dlameter 2, obtained by attaching 1 — 4 pendant vertices to a vertex of degree 3 of K. Also let B! , be a
bicyclic graph of order n and diameter 3, obtained by attaching a pendant vertex to the Vertex of degree 3 of
B2. Let C; be the graph obtained from C, by adding a new vertex connected to two non adjacent vertices
of C4. For d > 3let B, 4 be a bicyclic graph of order n and diameter d, obtained by attaching # —d —2 pendant
vertices and a path of length d — 3 to two vertices of degree 3 of C; (see Figure 4).

Figure 4: Minimal bicyclic graphs of order # and diameter d.

Zhong and Xu [15], showed that H(B,,2) = + m + +2 + ("n % is the minimum harmonic index in the

set of harmonic indices of bicyclic graphs of order n. So H(G) > H(B,,2) for every G e B(n, 2) and equality
holds if and only if G = B,,. We claim that if d = 3, then H(G) > H(B) ;) = I+ b4 2n- 6) for every

,#GeB(n3)andifd > 4, then H(G) > H(B,q) = &2 +2+ b + 202 for every Bn,d % e B(n, d).
For 3 <d < n -2, define the two variable function B(#n, d) as follows.
6, 4 2 2(n-5) —
B+dy L4 o d=3
B(n,d)={ I+ -0 420 d=4
d=5 6 2(n-d-2)
2 +2+ n—d+3 + nn—d+2 dz5
Lemma 2.6. Let fi(x) = B(x,3), fz(x) £ —B(x,4) and f3(x) = 5 — % - 2&’:22) + 3. Then fi(x) > 27130 is an

increasing function for x 2 5, fz(x > Z2isan zncreaszng function when x > 6and f3(x) > 2 is an increasing function
when x > 3.

Proof. Ttis easy to see that f](x) = 1 x2 + (r+2)2 (x 1)2 Soifx>5,thenx—-1> 4and W > %— % =0.
Hence f/(x) > 0, when x > 5 and f1 (x) = f1(5) = 210 is an mcreasrng function.

Also if x > 6, then f)(x) = 5 + = 61 = 82)2 > 1+ +(x =~ £ > 0. So fo(x) > f2(6) = £ is an increasing
function when x > 6.

Suppose x > 3, then f;(x) = % + ﬁ - ﬁ > % + ﬁ - % > 0. Therefore f3(x) > f3(3) = 5 is an

increasing function too. O
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3. Main results
In this section we show that H(G) > B(n, d) for every G € B(n,d), where d > 3.

T2

ocNc oW

t>1 1

G,
1 r Gy

Figure 5: The graphs related to Lemma 3.1.

Lemma 3.1. Let G € B(n,d), n —d > 3 and d > 3, such that G has at least one pendant vertex. If for every pendant
vertexw € G,G—w € B(n—1,d — 1) then H(G) > B(n,d). The equality holds if and only if G = Bé,3 or By 4.

Proof. Let G be the root of G. If G has more than two pendant vertices, then there is a pendant vertex v such
that G — v € B(n — 1,d), a contradiction. So G has at most two pendant vertices.

o If G has one pendant vertex w, then two cases will arise as follows.

(1) G € B'u B By Lemma 2.4, without lose of generality, assume G =Ty or G € B2. So if G =Ty, then
d>5mn-d>3and HTy) = 5 - 14—5. Therefore

n-d 6 2n-d-2 1 4
2 n-d+3 n-d+2 2 157"

by Lemma 2.6. If G € 82, then G is obtained by attaching two disjoint cycles of lengths r, s > 3, joining
together in vertex u. So |[V(G)| = r +s -1, dg(u) = 4 and the other vertices of G are of degree 2. Hence G
is obtained by attaching a path of length t either to u or to a vertex of degree 2. Hence G = G; or G = G,
the graphs shown in Figure 5.

Suppose G = G;. Since diam(G — w) < diam(G), we find that t > 2, n > 7 and H(G) = 5 — %. So

ifd =3, thenr=s=3t=2andn =7 Hence HG) = £ > £ = 8(7,3). Ifd = 4, thenn > 8

andH(G)—%(n,él):g—%—%—%—% > 0, by Lemma 2.6. Ifd > 5, thenn —d > 4 and

_ —d-2)
H(G) - B(n,d) = 5% - 6 2=T2 4 11750, by Lemma 2.6. 1

Suppose G = G, and without lose of generality, 7y < 5. If r; = 0, then H(G) = 5 - % + A, where A = 0 if

t=1andA=%ift22. Alsoifr121,thenH(G)=%—%+A,whereA=0ift=1andA=11—5ift22.
Soifd =3,thent =1,r =0and n > 6. Therefore H(G) — B(n,3) > %—%—ﬁ—%—% > 0, by

Lemma 2.6. If d = 4, then nn > 7 and H(G) > £ — 1. Therefore H(G) - B(1,4) = £ — &5 - 20 _ % 5 ¢,

by Lemma 2.6. Alsoif d > 5, then H(G) > £ — &L and H(G) - B(n,d) = ¢ — b 2008 | 2 5 g py
Lemma 2.6.

H(T) - B(n,d) =




@)

()

(ii)

)

()
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G € B;. In this case, G is obtained by attaching a path of length t > 1, to either a vertex of degree 2 or
a vertex of degree 3 of G. So G = Gz or G4, shown in Figure 5. Without lose of generality, suppose if
G = Gs, thenry,12,k 20,71 < 1. Also if G = Gy, then k < 7,5 and 1,5,t > 1. The following possibilities
will arise.

k = 0. Hence
2 n=n=0
H(G3)=g—%+A+ L =0,n>1,
2 onn>1
where A =0, if t =1 and A = 7, otherwise.

15
Ifd=3thent =1, =0and n > 5. So H(G3) — %(nS)Zﬂ—é—L—M—Z—&>Oby

2 n n—-1 30 15
Lemma 2.6. If d = 4, then either r; = 0 and t > 2 or r; > 1. Therefore if 1 = 0, then n > 6 and
H(Gs3) = ¢ - %. Hence H(G3) — B(n,4) > & -1 — 23(6 4) > 0, by Lemma 2.6. Also if r; > 1 then
n>7 and H(Gs) > & — #. So H(G3) - fB(n 4) > - % -9(7,4) >0, by Lemma 2.6. If d > 5, then
H(G3) — B(n, d)>——ﬁ—2f’;;22 +1-4>o0
Also H(Gy) = 5 + A, where A = —m 1ft— 1andA = _ﬁ if t > 2. Soifd =3, thenn > 6 and
H(Gy)-B(n,3) > 1-4- 2 2D _16_7 5 0 pylemma26. Ifd = 4, thenn > 7 and H(Gs) - B(n,4) >
B 6 287750, Alsoifd > 5 then H(Gy) — B(n,d) > 58 — 6 202 1 1.5
k>1.So
% 1’121’220
n_9 19 _
H(Gg) E E+A+ 30 rn=0mrn>1,
% r,rh>1

where A=0,ift=1and A = otherwise. If d = 3, thenr; =0, =1 and n > 6. Therefore

15’
H(Gs) - %(7’13)>—————————>0,

Ifd = 4, then n > 7 and H(G3) - B(n,4) > & — & — 20 175 o Alsoif d > 5 then H(Gs) — B(n,d) >

2nd-2) = n—-1 n-2

—d 6 n—

B s - T +5 >0

AlsoH(G4)—ﬂ+A,whereA:—giftzlandA:—%ift >2 Soifd =3, thent =1 and
H(Gy) - B(n,3) 2 8 —4 - 2 2009 250 [fg =4, then H(Gy) - B(n,4) = 1 - & 29 950

Also if d > 5 then H(Gy) — B(n,d) > 58 — 6 2=t2 4 L

If G has two pendant vertices, then by Lemma 2.5, without lose of generality, suppose either G € 8, U 55
orG=1I;i=23 1If G € B,V Bs, then Lemma 2.3 implies that without lose of generality, one may
assume that G is obtained by attaching a pendant vertex w and a path of length ¢ to two vertices u and

v of G, respectively, such that d(v) < d(u). So there are four cases as follows.

G € B2. Suppose |V(G)| = m, thenn = m +t+ 1 and H(G) = - %. Since only one vertex of G is of
degree 4 and the other vertices are of degree 2, then either dg(u) = dg(v) = 3 or dg(u) = 5, dg(v) = 3.
Note that since deleting every pendant vertex, decrease the diameter, then u # v and d > 4. Hence two
possibilities will arise as follows.

u ¢ N(v). Hence

2
B 2 2 2 d(v)+1
HG) =HG) - ) [ 2. (wy—l)wy+d(u)+l+{ 242482 430

x€Ng(u) YENg(v) d(v)+2



(ii)
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If d(u) = d(v) = 3, then

n 17 [0 t=1

HG >=-—-—+ .

©=32"% { 52
Hence by Lemma 2.6, if d = 4 then n > 7 and H(G) — B(n,4) > § - % - % -2 >0. Alsoifd > 5,

thenn >8and n—d > 3. SOH(G)—%(n,d)z%—ﬁ—%—%m.
If d(u) = 5 and d(v) = 3 then

n 76 0 t=1

Since u, v are not adjacent, there exists a cycle of length at least 4 in G. So by Lemma 2.6, if d = 4, then

n > 8 and H(G) — B(n,4) > ——%—%—%g>0 Alsoif d > 5, then n > 9 and n — d > 4. Therefore
H(G) = B(n,d) 2 15% — s = Z5i 2 = 55 > 0.

u € N(v). In this case

2 2 2 4
H(G) =HG) - xeéu) (zx - Dzc yeé(v) Wy~ Dw, A +1 (@) + @) — 2)(@dQ) + d())
X#0v yFu

{ o t=1
+ 2 2, =2 )
i0)72 + 3 + = t>2
By the same calculation as (i), one may easily see that H(G) > B(n, d).

G € B and dgu',v') =1, where u’,v" are two vertices of degree 3 in G. Suppose |V(G)| = m, then
n=m+t+1and HG) = 7 - L. Note that if u = v then diam(G — w) = diam(G), a contradiction. So
u # vand d > 3. Hence either dG(u) dc(v) =3 ordg(u) =4, dg(v) = 3 or dg(u) = dg(v) = 4. Therefore

two possibilities will arise as follows.
u ¢ N(v). Thend > 4 and

2
) 2 2 2 o)+
HG) =H@ - Y. E—e Y (wy—l)wy+d(u)+l+{ HNCIERS

x¥ENg(u) YENg(v) dw)+2

Mg
N

If d(u) = d(v) = 3 then since n —d > 3, then n > 7 and

0 t=1
H(G)>——1+{ .

271 g2
If d = 4, then H(G) — QS(n 4) = §- & - 2(:% - E > 0. Also if d > 5, then H(G) — B(n,d) >
n—d 6 2An—d-2)

T2+ 3 >0, by Lemma 2.6.
If d(u) 4 and d(v) = 3 then u has at least one neighbor of degree 3 and

n 23 0 t=1
25— )
H(G) 42+{ 52

Ifd = 4, then n > 7 and H(G) — B(n,4) > 4 — & — 208 409 5 o Alsoifd > 5and t > 2, then

n-1 n-2 210
H(G) - B(n,d) > £ d_L_Z(n d+2)_%>0'
Note that since u ¢ N(v), then both d(u) and d(v) are not equal to 4.
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(ii) u € N(v). Thend > 3 and

2 2 2 4
HG) =H(G) - xeéu) (zx— Dze yEZ-g:(v) (@, -~ Dw, A +1 @) +d) - 2)d@w) + d©))
X#0v y#Fu

2 _
{ A0)+1 t=1
+

2 2, =2 :
mm ity tz2
If d = 3 then since deleting every pendant vertices decrease the diameter, then d(u) = d(v) =4 and n = 6.

SoG = Bé,3' If d > 4, then by the same calculation as (i), one may easily see that H(G) > B(n,d).

(3) G € B% and dg(/,v’) > 1, where /v’ are two vertices of degree 3 in G. Suppose |V(G)| = m, then
n=m+t+land H(G) = 5 - %. So either d(u) = d(v) = 3 or d(u) = 4, d(v) = 3 or d(u) = d(v) = 4. Note
that if u = v or u € N(v) then diam(G — w) = diam(G), a contradiction. Therefore u # v and u, v are not
adjacent. Hence d > 4 and

2
2 2 2 A)+1 t=1
H(G) = H(G) — — + { ) .
NZ() (—Dz A @y -Dwy  dw)+17 | 24242 132
If d(u) = d(v) = 3 then
H(G)Z———+{
2 27\ 1 2
Ifd = 4, then n > 7 and H(G) — B(n,4) > & — & ~ 2D 185 0 Alsoif d > 5, then H(G) — B(n,d) >
— 2(n—d-2)
Td_n—2+3_ :—d > 0.
If d(u) = 4 and d(v) = 3 then
HG)> =~ -=
©=23 5+{% 22

Ifd = 4, then n > 8 and H(G) — B(n,4) > 2 — 6. 28 _ 55 0 Alsoifd>5,thenn>9and n—d > 4.
So H(G) — B(n,d) > 158 — 6 22 L5
If d(u) = d(v) = 4, then

H(G) = —%

N3

Ifd=4,thent=1andn >7. If n =7, then G = By4 and H(G) = B(7,4). If n > 8, then H(G) — B(n,4) =
B 6 A9 250 Alsoifd > 5, thenn>8. Ifn—d =3, thent > 2. SoG = B,z and H(G) = B(n,d).
Ifn—d >4, then HG) - B(n,d) > 154 - 6 282 2.5

4) G=T;,i=2,3.S0d > 5.
If G=1TI5 thend >5n-d=3and H(G) = 7 — A, where A = %ift=0andA= %ift=0. Therefore

H(G)-B(n,d) = I~A> 0. IfG = T3, then H(G) = 2~ Z. SO H(G)~B(n,d) = 51~ 6 202 4 L5 g
[

Theorem 3.2. Let G € B(n,d) and d > 3 then H(G) > B(n,d) and equality holds if and only if G = B}lﬁ, where
d=3and G =B, 4, whered > 4.
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f i A_/i>1

G1 2

Figure 6: The graphs related to Theorem 3.2
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Figure 7: Bicyclic graph of order n and diameter d, such thatn —d = 2.

Proof. By induction on n. First suppose n —d = 2. So if P C G be a diametrical path, then only one vertex
of G is not in P. Note that two cycles of G should have a common vertex not in P and all other vertices of
G should be in P, since every cycle has at least one vertex which is not in P. Therefore G € Band G =V,
is a quasi-tree graph introduced in [1]. The graph V,; obtained by adding two paths of lengths 7, s to two
vertices of degree 2 of K}, (see Figure 7). The authors showed [1], H(V,;) > d + 3 — %, where equality holds
if and only if 7 = s = 1. One may easily see thatif d <5, thend + 2 — 2 > B(n, d) since n—d = 2. Suppose
d > 5. Then G = V,, wherer,s > 0 and r + s > 3. Hence by [1, Table 1], H(G) >4 + = > B(d +2,d).
Suppose n —d = 3. So two vertices of G are not in its diametrical path. If G has no pendant vertex, then
Corollary 2.2 implies that every cycle of G is a triangle. Hence G is one of the gragh shown in Figure 6,
since d > 3. By an easy calculation, it is seen that H(G1) = > B(6,3), HGy) = > Bk+6,k+3).
Assume G has at least one pendant vertex. If for every pendant vertex of G namely v, diam(G - v) <
diam(G), then Lemma 3.1 implies that H(G) > B(n,d). Hence suppose there exists a pendant vertex v € G
such that diam(G — v) = diam(G) and N¢(v) = u. Since v is a pendant vertex, G —v € B(n —1,d) and G- v is

one of the graph shown in Figure 7. Now by [1], HG - v) > d + 3 — (” DI 4 + 2, where equality holds if
and only if G —v = V; ;. Also 2 < dg_»(1) < 3 and
2 2
HG) =HG-v)+ —————= —
@=HC-0+ 555~ Lo o do e T Ao 7T

XENG- (1)

Note that at most one neighbor of u is of degree one. If dg_,(1) = 2 thend > 4 and G — v # V1. Therefore
H(G-v)>4+2.1fd=4,thenn=7and HG) > £ > 14 = 8(7,4). If d > 5, then

H(G) - SB(nd)>H(G—v)+1—%(nd) é+%—%( n,d) =0

Suppose dg_,(1) = 3, then at most one ne1ghbor of u is of degree less than 3. So H(G) > H(G —v) +
Ifd=3thenG-v="Vipand H(G—-v) = 10. Hence H(G) > 28 > 143 = B(6,3).

= 105
Ifd = 4, then n = 7 and H(G - v) > §. Hence H(G) > B(7,4).

210 :
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Alsoifd > 5, then H(G — v) > % + % Therefore H(G) — B(d + 3,d) > 0.

Suppose n > d + 3 and for convenience, G has minimum harmonic index among all graphs in B(n, d).
Let P = vy — v — - -+ — 0441 is a diametrical path of G. If G has no pendant vertex, then by Corollary 2.2,
every cycle of G is a triangle. So at most two vertices of G are not in its diametrical path. Hencen —d <3, a
contradiction.

Suppose G has at least one pendant vertex. If for every pendant vertexv € G, G—v € B(n—1,d — 1), then
by Lemma 3.1, H(G) > B(n, d). Hence assume there exists a pendant vertex v in G such that G-v € B(n—1,d)
and N(v) = u. Note that d(u) < n —d + 1, since diam(G) = d. Suppose there exist k; vertices of degree i in
N(u) for 1 <i <r. Itis clear that there exists i > 1 such that k; # 0. Hence

2
(d(u) = 1+ d(x))(d(u) + d(x))

H(G) =H(G—-9) + -
( ) ( ) 1+ d(u) v#XeN(u)
2k, 2k,

2
A0 T T dew e ) T @ - D

There are three cases as follows.

(i) d(u) <n—d - 1. In this case, Equation 1, implies that

2 2(d(u) - 2) 2
H(G) 2 HG =)+ 7205 ~ dwdw + 1)~ @ + Ddw) +2)
i 2(d(u) + 4)
=HG =9+ T dmdwe + dw)
2(x+4)

Since the function f(x) = 0 is a decreasing function for x > 0, f(d(u)) > f(n —d —1). So if d = 4,

then induction hypothesis implies
7 6 2(n—-7) 2(n—1)
HG) > =
© 25+ 2" =3 T n—Hn-3)
and H(G) — B(n,4) > 0. Also if d > 5 then

d-5 6 2(n—d—3) 2(n—d+3)
HO) 22+ ==+ = Y s ar (n—d-1)m-d)n-d+1)

and
12(5(n — d) + 3)

HC) =8 d) = = d+ 3 — A\~ dE 1)

0.

Suppose d = 3 and d(u) < n — 5. To the contrary, suppose there exists only one vertex x € N(u) such
that d(x) = 2 and other neighbors of u are pendant vertices. Then if u = v; or v4, we find thatd > 4, a
contradiction. If u = v, or vs, then G is a tree, another contradiction. So u # v; for 1 < i < 4. Without
lose of generality assume d(v1,x) < d(vy,x) = t. Then d(vy,v) =1+ d(vg, u) =2+ d(vg,x) =2+t >4, a
contradiction. Therefore there exist x, y € N(u) such that d(x), d(y) > 2. Hence by Equation 1,

2 2(d(u) - 3) 4
H(G) 2 HG =0+ 7505 ~ dmdw = 1)~ @+ Dd@ +2)
) 2(d(u) + 6)
=H(G-0)+ (1 + dw)dw)@dw) +2)°
2(x+6)

Since the function f(x) = is a decreasing function,

(1+x)x(x+2)

0.

12(80 + 37n2 + 781 — 661 + 151
B O R e [ e
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Assume that d(u1) = n — 4. If at least three neighbors of u, are not pendant vertices, then the Equation 1
implies

2 2(d(u) - 4) 6

H(G) 2 H(G - 0)+ 7= dw)  dw)dw)+1)  (dw)+ D)dw) +2)
_ 2(d(u) + 8)
=H(G-v)+ (1 + d(w)d(u)(d(u) +2)°

So

48(3x3 — 3x2 —5x — 4
H(G) - B(n,3) > 8(3x°> — 3x* —5x — 4)

Z @1

Also if there exist x, y € N(u) such that d(x) > 2 and d(y) > 3, then

2 2(d(u) - 3) 2 2
H(G) 2 HG =)+ = dw)  dw)dw)+1)  dw)+D@w) +2) @)+ 2)(dwu) + 3)
~ ~ 2(d(u) + 9)
= HG =0+ Gy + 3@ + 1)
Since f(x) = % is an decreasing function,

12(~16 — 221 — 1512 + 1113
H(G) - B(n,3) > (=16 n —15n° + 11n°)

2 == - D=1

Suppose there exist x, y € N(u) such that d(x) = d(y) = 2 and d(z) = 1 for every vertices x, y # z € N(u).
If u ¢ P, then since every neighbor of G is of degree at most 2, then N(u) N P C {vq,v4}. Also since
diam(G) = 3, then |[N(u) N {v1,74)| = 1. So u is adjacent to exactly one vertex of P, since d(u) = n — 4.
without lose of generality suppose x = v; € N(u). Hence d(v, v4) > 5, a contradiction.

If u € P and u = vy, then d(v,v4) > 3, a contradiction. The same argument is valid for v4. Therefore
without lose of generality, suppose u = v, x = vy, y = v3 and u # z € N(v1). Hence N(z) N N[u] = v;.
Hence either z is a pendant vertex or there exists a vertex w € N(z). If z is a pendant vertex, thend > 3,
a contradiction. If w = vy, then d(vy,v4) < 2, another contradiction. Also if w # vy, then d(v,t) > 4,
which is a contradiction.

d(u) = n —d. So either u = v;, where i € {1,d + 1} or u is adjacent to at least two vertices of P.

Assume first that u € P. If u = v; or v, then diam(G —v) < diam(G), a contradiction. So there is exactly
one vertex w € G — p, such that w ¢ N(u). If 3. ey d(x) = n —d + 1, then exactly one neighbors of u
is of degree 2 and the other neighbors are pendant vertices. Hence without lose of generality, u = v,
and N(w) = {vx_1, U, Ux+1} for 5 < k < d, since G is a bicyclic graph. Therefored > 5, n > 9 and G is the

And D) | _2 + A, where A = % ift =0,

graph which is shown in Figure 8. Therefore H(G) = [12;5 + =5t

andA=3lift=1,and A =%, if t > 2. Hence

(n—d) +6(n—df +41(n—d) -84

HG) =B d) 2 s D —d+ 2 —d+3)

If Y yeny dx) >n—d + 1.

It is easy to see that if d > 4 then H(G) > B(n,d). Also if d = 3 and ¥ ey, d(x) > n —d + 2, then
H(G) > B(n,3). Suppose d = 3 and Y. e, d(x) = n —d + 2. Hence u has either exactly two neighbors
of degree 2 or one neighbor of degree 3. Without lose of generality suppose u = v,. If u has two
neighbors of degree 2, namely x, v3, then N(w) C {x, v4} and G is unicycle, a contradiction. If d(v3) = 3,
then N(w) C {v3,v4} and G is unicycle, another contradiction.

Suppose now that u ¢ P. If v; € N(u) then v4,1 ¢ N(u), otherwise diam(G) = 2. So there exists a vertex
of degree at least 3 and a vertex of degree 2 in N(u). If the other neighbors of u are pendant vertices,
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k>1 t>0
U — T
n—d—2

Figure 8: The graph related to Case (ii) of Theorem 3.2.

then G is a unicyclic graph, a contradiction. Hence there is another vertex of degree at least 2 in N(u)
and hence by Equation 1,

2 2(d(u) — 4) 4 2
T+dw) dw@dw)+1)  @w)+D)dw)+2) () + 2)(d(u) + 3)
2(d(u)? + 13d(u) + 24)
(@(u) + )d(u)(d(u) + 2)(d(u) + 3)°

H(G) > H(G - ) +

=H(G-v)+

Ifd =3, thend(u) =n—-3and

4 N 2 +2(11—6)_%_ 2 _2(n—5)+ 2(n% + 7n — 6)
n-1 n+1 n—2 n n+2 n-1 nn—-3)n-2)(n-1)
122 + 5n + 7n?)

= a3 -1

H(G) - B(n,3) >

If d = 4 then

8(n+2)
D) -2 -3)n—-4)

H(G) - B(n,4) > 0.

If d > 5 then

8((n —d) +6)
H(G) - B(n,d) > —d+D)n—-d)n-d+2)(n—d+3)

> 0.

@Fii) du)=n—-d+1.
If u ¢ P then u is adjacent to at least three vertices of P. Since diam(G) > 2, u is not adjacent to both
v1,v441. Hence there exist two vertices of degree at least 3 and a vertex of degree at least 2 in N(u). By
a similar argument as in Case (i), H(G) > B(n, d).
If u e P,then G—P c N(u) and [N(u) N P| = 2. So u # v1,0441. Suppose u = v;, where 2 < i < d and
x € N(u) — P. Then N(x) NP C {v;_3,0;_1,0i, Vi1, Vis2}. Also if v, vp € N(x), then k — k' < 2. Therefore
IN(x) " P| < 3. If d(x) > 4, then IN(x) " N(u) — P| > 1. So if d > 4, then u has a neighbor of degree at
least 4 and two neighbors of degree at least 2. Therefore Equation 1 implies that H(G) > B(n,d). If
d = 3, then x should be adjacent to at least three neighbors of  and hence u has at least two neighbors
of degree at least 2, one neighbor of degree at least 3 and one neighbor of degree at least 4. Therefore
Equation 1 implies,

2 4 2 2
H(G) 2 HG —0)+ = dw) @)+ 1)dw) +2) (@) +2)dw) +3)  (d) + 3)d(u) + 4)
2d@) -5 _ C—7)+ 2(d(u)? + 20d (1) + 40)

A dw) +1) (d(u) + Dd(u)(d(u) + 2)(d(u) +4)
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and

42n—1)

H(G) —B(n,d) > =2 1) > 0.
Suppose d(x) < 3 for every x € N(u) — P. If d(x) = 1 for every x € G — P, then G is a tree, a contradiction.
If there exists only one vertex in G — P such that d(x) = 2, then G is a unicyclic graph, a contradiction
too. So either there is a vertex x in G — P such that d(x) > 3 or there exist two vertices z, y in G — P such
that deg(z), d(y) > 2. Since E(G) = n + 1, counting the degrees of vertices, implies that either there is a
vertex x in G — P such that d(x) = 3 and d(w) = 1 for every w € G — (P U N(x)) or there are two vertices
z,y in G — P such that deg(z), d(y) = 2 and d(w) = 1 for every w € G — (P U N(y) U N(z)).
If u € P - {v,v,;) thend > 4 and there exist at least two vertex in P N N(u) of degree more than 1 and
H(G) > 8B(n,d), by a similar argument as in Case (ii). Also if u = v, (or u = v4) and d(v1) > 2 (or
d(v44+1) 2 2), then there exist at least two vertices in P N N(u) of degree more than 1 and H(G) > B(n, d).
So without lose of generality suppose u = v, and d(v;) = 1. Then u can only have a common neighbor
with v3 or v4. Hence there are two possibilities.
There exists a vertex x € N(u) — P such that d(x) = 3 and d(w) = 1 for every w € G — (P U N(x)). If
x € N(v3) N N(vy), then G = V7, which is shown in Figure 7, and H(G) > B(n,d). If x € N(v3) and
x ¢ N(vs), then u has a neighbor of degree 2 and two neighbors of degree 3. One may easily see that
H(G) > B(n,d). If x ¢ N(v3) U N(vy), then u has three neighbors of degree 2 and a neighbor of degree 3
and H(G) > B(n, d).
There exist two vertices z, y in G—P such thatd(z), d(y) = 2and d(w) = 1forevery w € G—(PUN(y)UN(z)).
If y,z € N(v3) and d = 3, then G = B, , and H(G) = B(1,3). If y,z € N(vs) and d > 4, then

2 2(d(u) — 4) 4 2
T+dw) dw@dw)+1)  @w)+D)dw)+2) () + 3)du) + 4)
2(d(u)® + 19d(u)? + 78d(u) + 96)
(1 + d(w))(dw) + 2)[d(w) + 4)(d(u) + 3)d(u)

H(G) > H(G - ) +

=H(G-v)+

and it is easy to see that H(G) — B(n,d) > 0. If y,z € N(v4), then G = B, 4. Soif d = 3 then G = B, 3 and

H(G) =1+ ¢ + 222 Hence H(G) - B(1,3) = “;;;)15) > 0. Ifd > 4 then G = B, 4 and H(G) = B(n, d).
If z, y ¢ N(v3) U N(v4), then u has at least five neighbors of degree 1 and H(G) > B(n, d). If without lose
of generality, ¥ € N(v3) and z ¢ N(v3) U N(vy), then u has three neighbors of degree 2 and a neighbor

of degree 3 and H(G) > B(n, d).

Now the proof is complete. [
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