Filomat 36:1 (2022), 125–140 https://doi.org/10.2298/FIL2201125A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Minimum Harmonic Index for Bicyclic Graphs with Given Diameter

Adeleh Abdolghafourian^a, Mohammad A. Iranmanesh^a

^aDepartment of Mathematical Science, Yazd University, 89195-741 Yazd, I. R. Iran

Abstract. The harmonic index of a graph *G*, is defined as the sum of weights $\frac{2}{d(u)+d(v)}$ of all edges *uv* of *G*, where d(u) is the degree of the vertex *u* in *G*. In this paper we find the minimum harmonic index of bicyclic graph of order *n* and diameter *d*. We also characterized all bicyclic graphs reaching the minimum bound.

1. Introduction

Let *G* be a connected simple graph with vertex set *V*(*G*) and edge set *E*(*G*). The graph *G* is said of order *n*, where |V(G)| = n. The degree of a vertex $u \in V(G)$ is denoted by $d_G(u)$ (or simply d(u)). Also $N_G(u)$ (or simply *N*(*u*)) is the set of neighbors of *u* in *G* and $N[u] = N(u) \cup \{u\}$. For $u, v \in V(G)$, d(u, v) is the distance between *u* and *v* in *G* and diam(*G*) = max{ $d(u, v); u, v \in G$ } is the diameter of *G*. If $X \subseteq G$, then G - X is the graph obtained from *G* by deleting the vertices of *X*. Recall that a graph *G* is called unicyclic, if it contains only one cycle. In this case, |E(G)| = |V(G)|. Also a graph *G* is called a quasi-tree graph, if *G* is not a tree and there exists $v \in V(G)$, such that G - v is a tree. A bicyclic graph *G* is a graph with exactly two cycles. In this case |E(G)| = |V(G)| + 1. The other notations used here are common and may be found in [11].

The harmonic index of a graph *G*, is defined as $H(G) = \sum_{uv \in E(G)} \frac{2}{d(u)+d(v)}$. This index first appeared in connection with some conjectures, generated by the computer program Graffiti, [6] and can be viewed as a particular case of the general sum-connectivity index, $\chi_{\alpha} = \sum_{uv \in E(G)} (d(u) + d(v))^{\alpha}$, proposed by Zhou and Trinajstić [16] ($H = 2\chi_{-1}$). Du and Zhou [5] studied the sum-connectivity of bicyclic graphs. Also several studies have focused on extremal sum-connectivity index of bicyclic graphs. See for example [2, 4, 10]. We refer the interested readers to [3] for a recent survey about the harmonic index.

Zhong [12] and Zhong and Ciu [14] determined the minimum and maximum harmonic indices for simple connected graphs, trees, unicyclic and characterized the corresponding extremal graphs. Liu [9], showed that if *T* be a tree of order $n \ge 4$ and diameter *d*, then $H(T) \ge d + \frac{5}{6} - \frac{n}{2}$. Jerline and Michaelraj [8], proved that for a unicyclic graph *G* of order $n \ge 7$ and diameter *d*, $H(G) \ge d + \frac{5}{3} - \frac{n}{2}$.

In [7] the minimum and maximum harmonic indices for caterpillars with diameter 4 are computed. It is also showed that $H(G) \ge d + \frac{5}{3} - \frac{n}{2}$, where *G* is a quasi-tree graph of order $n \ge 4$ and diameter *d*, except when $G = U_{5,3}^{1,1}$ or $U_{6,4}^{1,1}$ which are shown in Figure 1 [1].

²⁰²⁰ Mathematics Subject Classification. Primary: 05C50; Secondary: 05C09, 05C35

Keywords. Harmonic index, bicyclic graph, diameter

Received: 14 January 2021; Revised: 02 May 2021; Accepted: 31 May 2021

Communicated by Ljubiša D.R. Kočinac

Email addresses: abdolghafourian@yazd.ac.ir (Adeleh Abdolghafourian), iranmanesh@yazd.ac.ir (Mohammad A. Iranmanesh)

This paper is a contribution to the study of harmonic index of simple connected graphs of diameter *d* and the main purpose is to find a lower bound for harmonic index of bicyclic graphs with respect to their diameters. Indeed all bicyclic graphs reaching the minimum bound are characterized. Let

$$\mathfrak{B}(n,d) = \begin{cases} \frac{16}{15} + \frac{4}{n} + \frac{2}{n+2} + \frac{2(n-5)}{n-1} & d = 3\\ \\ \frac{7}{5} + \frac{6}{n-1} + \frac{2(n-6)}{n-2} & d = 4\\ \\ \frac{d-5}{2} + 2 + \frac{6}{n-d+3} + \frac{2(n-d-2)}{n-d+2} & d \ge 5 \end{cases}$$

We show that $H(G) \ge \mathfrak{B}(n, d)$, where *G* is a bicyclic graph of order *n* and diameter *d*.

In Section 2, we prove the lemmas that will be used in Section 3, where we prove the main theorems.

Figure 1: The graphs $U_{5,3}^{1,1}$ (left) and $U_{6,4}^{1,1}$ (right).

2. Preliminaries

Zhong [15], introduced five families of bicyclic graphs of order *n* with no pendant vertex. We introduce a similar structure as follows.

Let \mathcal{B} be the set of connected bicyclic graphs without pendant vertices. Let \mathcal{B}^1 be the set of bicyclic graphs obtained by joining two vertices of disjoint cycles by a path, \mathcal{B}^2 be the set of bicyclic graphs obtained by identifying a vertex of each two disjoint cycles and then attaching them. and \mathcal{B}^3 be the set of bicyclic graphs obtained from a cycle by adding a path. Obviously, $\mathcal{B} = \mathcal{B}^1 \cup \mathcal{B}^2 \cup \mathcal{B}^3$. For example, the graph $\widetilde{B_i} \in \mathcal{B}^i$, for i = 1, 2, 3 is shown in Figure 2.

Figure 2: Bicyclic graphs with no pendant vertex.

For $n \ge 4$, let $\mathcal{B}(n, d)$ be the set of connected bicyclic graphs of order n and diameter d. Every graph $G \in \mathcal{B}(n, d)$ is obtained by attaching some trees to some vertices of a graph $G \in \mathcal{B}$. We say G is the root of G. Note that every graph $G \in \mathcal{B}(n, d)$ has a unique root, however it is possible that some non isomorphic bicyclic graphs have common root.

Lemma 2.1. ([13, Lemma 1]) Let *G* be a nontrivial connected graph, and let $uv \in E(G)$ be such that $d(u), d(v) \ge 2$ and $N(u) \cap N(v) = \emptyset$. Let *G'* be the graph obtained from *G* by contracting the edge uv into a new vertex *w* and adding a new pendant edge ww' to *w*. Then H(G) > H(G').

Corollary 2.2. If $G \in \mathcal{B}(n, d)$ has minimum harmonic index and $P = u_1 - u_2 - \cdots - u_{d+1}$ is a diametrical path of G, then

- (i) If u_1 is not a pendant vertex, then it is a vertex of a triangle. Similar argument is true for u_{d+1} .
- (ii) Every non pendant vertex of G P is a vertex of a cycle.

(iii) If C is a cycle of G such that $E(C) \cap E(P) = \emptyset$, then C is a triangle.

Proof. This is an immediate consequence of Lemma 2.1. \Box

Lemma 2.3. Let G be a connected graph and $u, v \in V(G)$, such that $2 \leq d(v) \leq d(u)$. Let G_1 obtained from G by attaching two paths of length $r \geq 1$ and $s \geq 1$ to u and v respectively and G_2 obtained from G by attaching one pendant vertex and a path of length r + s - 1 to u and v respectively. Then $H(G_1) \geq H(G_2)$.

Proof. If r = 1, then $G_1 = G_2$. Hence assume $r \ge 2$. Assume first that $u \ne v$ and u and v are not adjacent. In the rest of paper, set $z_x = d_G(x) + d_G(u)$ and $w_y = d_G(y) + d_G(v)$. So

$$H(G_1) = H(G) - \sum_{x \in N_G(u)} \frac{2}{z_x(z_x + 1)} - \sum_{y \in N_G(v)} \frac{2}{w_y(w_y + 1)} + \frac{2}{d(u) + 3} + \frac{2}{3} + (r - 2)\frac{2}{4} + \begin{cases} \frac{2}{d(v) + 2} & s = 1\\ \frac{2}{d(v) + 3} + \frac{2}{3} + (s - 2)\frac{2}{4} & s \ge 2 \end{cases}$$

and

$$H(G_2) = H(G) - \sum_{x \in N_G(u)} \frac{2}{z_x(z_x+1)} - \sum_{y \in N_G(v)} \frac{2}{w_y(w_y+1)} + \frac{2}{d(u)+2} + \frac{2}{d(v)+3} + \frac{2}{3} + (r+s-3)\frac{2}{4}.$$

Hence

$$H(G_1) - H(G_2) = -\frac{2}{(d(u) + 3)(d(u) + 2)} + \frac{1}{2} + \begin{cases} \frac{2}{(d(v) + 2)(d(v) + 3)} - \frac{1}{2} & s = 1\\ -\frac{1}{3} & s \ge 2 \end{cases}$$

Since $2 \le d(v) \le d(u)$, then $H(G_1) \ge H(G_2)$.

Next assume $u \neq v$ and u and v are adjacent. Therefore

$$H(G_1) = H(G) - \sum_{\substack{x \in N_G(u) \\ x \neq v}} \frac{2}{z_x(z_x + 1)} - \sum_{\substack{y \in N_G(v) \\ y \neq u}} \frac{2}{w_y(w_y + 1)} - \frac{4}{(d(u) + d(v))(d(u) + d(v) + 2)}$$
$$+ \frac{2}{d(u) + 3} + \frac{2}{3} + \frac{r - 2}{2} + \begin{cases} \frac{2}{d(v) + 2} & s = 1\\ \frac{2}{d(v) + 3} + \frac{2}{3} + \frac{s - 2}{2} & s \ge 2 \end{cases}$$

and

$$H(G_2) = H(G) - \sum_{\substack{x \in N_G(u) \\ x \neq v}} \frac{2}{z_x(z_x + 1)} - \sum_{\substack{y \in N_G(v) \\ y \neq u}} \frac{2}{w_y(w_y + 1)} - \frac{4}{(d(u) + d(v))(d(u) + d(v) + 2)} + \frac{2}{d(u) + 2} + \frac{2}{d(v) + 3} + \frac{2}{3} + (r + s - 3)\frac{2}{4}.$$

So $H(G_1) \ge H(G_2)$.

Finally assume u = v. In this case without lose of generality, one may assume that $s \ge 2$. Hence

$$H(G_1) = H(G) - \sum_{x \in N_G(u)} \frac{4}{z_x(z_x + 2)} + 2(\frac{2}{d(u) + 4}) + 2(\frac{2}{3}) + \frac{r + s - 4}{2}.$$

and

$$H(G_2) = H(G) - \sum_{x \in N_G(u)} \frac{4}{z_x(z_x + 2)} + \frac{2}{d(u) + 3} + \frac{2}{d(u) + 4} + \frac{2}{3} + \frac{r + s - 3}{2}.$$

Hence

$$H(G_1) - H(G_2) = \frac{1}{6} - \frac{2}{(d(u) + 3)(d(u) + 4)} > 0.$$

This complete the proof. \Box

Lemma 2.4. Let $\Gamma_1 \neq G \in \mathcal{B}(n,d)$ with only one pendant vertex u, such that $\mathcal{G} \in \mathcal{B}^1$. If $G - u \in \mathcal{B}(n-1,d-1)$, then there exists $G' \in \mathcal{B}(n,d)$ such that $\mathcal{G}' \in \mathcal{B}^2$ and $H(G) \geq H(G')$.

Proof. Suppose $u', v' \in V(\mathcal{G})$ are two vertices of degree 3. Let $P' : u' = u'_1 - \cdots - u'_{k+1} = v'$ is the path between u' and v' in \mathcal{G} , where $k \ge 1$.

Since deleting *u* decrease the diameter, one may assume that either $P' \subset P$ or $E(P') \cap E(P) = \emptyset$. If there exists a diametrical path *P* in *G* such that $E(P') \cap E(P) = \emptyset$, then Lemma 2.1 implies that there exists $G' \in \mathcal{B}(n, d)$ such that $G' \in \mathcal{B}^2$ and $H(G) \ge H(G')$.

If every diametrical path of *G* contains *P*', then fix a diametrical path $P : u_1 - \cdots - u_{d+1} = u$. Without lose of generality suppose d(u', u) < d(v', u). Note that, in this case, at most one vertex of $N_G(u')$ is of degree 3, otherwise *G* has two pendant vertices. Also all neighbors of *v*' are of degree 2.

Let *G*' obtain from *G* by contracting the path *P*' into a new vertex *w* and adding a new vertex u'_{k+2} such that $V(G') = V(G) \cup \{w, u'_{k+2}\} - \{u'_1, u'_{k+1}\}$ and

$$E(G') = E(G) \cup \{uu'_2, u'_k u'_{k+2}\} \cup \{wx : x \in N(u') \cup N(v'), x \neq u'_2, u'_k\} - \{u'x : x \in N(u')\} - \{v'y : y \in N(v')\}.$$

Since deleting *u* from *G* decrease the diameter, then $u \notin N_G(u')$. Two possibilities are as follows:

(1) $d_G(u') = d_G(v') = 3$. In this case,

$$H(G') = H(G) - \frac{2}{(d(u_d) + 1)(d(u_d) + 2)} - \sum_{\substack{x \in N_G(u') \\ x \neq u'_2}} \frac{2}{(3 + d(x))(4 + d(x))} - \sum_{\substack{y \in N(v') \\ y \neq u'_k}} \frac{2}{(3 + d(y))(4 + d(y))} + A$$
$$= H(G) - \frac{1}{5} - \frac{2}{(d(u_d) + 1)(d(u_d) + 2)} - \frac{2}{(3 + d(x))(4 + d(x))} + A,$$

where $A = \frac{1}{3}$ if k = 1 and $A = \frac{11}{30}$ if $k \ge 2$. Note that $x \in N_G(u')$ and $d(x) \le 3$. The last expression is greater than H(G) if and only if $k \ge 2$ and $d(u_d) = d(x) = 3$. So $G = \Gamma_1$, shown in Figure 3.

(2) $d_G(u') = 4$ and $d_G(v') = 3$. Since diam(G - u) < diam(G), then d(u', u) > 1 and hence $d(u_d) = 2$ and $d_G(x) = 2$ for every $x \in N(u') - u'_2$. So

$$\begin{split} H(G') &= H(G) - \frac{2}{(d(u_d) + 1)(d(u_d) + 2)} - \sum_{\substack{x \in N(u') \\ x \neq u'_2}} \frac{2}{(4 + d(x))(5 + d(x))} - \sum_{\substack{y \in N(v') \\ y \neq u'_k}} \frac{4}{(5 + d(y))(3 + d(y))} + A(y) \\ &= H(G) - \frac{13}{42} - \frac{8}{35} + A < H(G), \end{split}$$

where $A = \frac{3}{14}$ if k = 1 and $A = \frac{4}{15}$ if $k \ge 2$.

Figure 3: The bicyclic graphs related to Lemmas 2.5, 2.4.

Lemma 2.5. Let $\Gamma_i \neq G \in \mathcal{B}(n, d)$, i = 2, 3 (see Figure 3) such that $G \in \mathcal{B}^1$ and G has only two pendant vertices u, v. If $G - u, G - v \in \mathcal{B}(n - 1, d - 1)$, then there exists $G' \in \mathcal{B}(n, d)$ such that $G' \in \mathcal{B}^2$ and $H(G) \ge H(G')$.

Proof. Suppose $u', v' \in V(\mathcal{G})$ are two vertices of degree 3. Let $P' : u' = u'_1 - \cdots - u'_{k+1} = v'$ is the path between u' and v' in \mathcal{G} . Since deleting every pendant vertex decrease the diameter, one may assume that either $P' \subset P$ or $E(P') \cap E(P) = \emptyset$. If there exists a diametrical path P in G such that $E(P') \cap E(P) = \emptyset$, then Lemma 2.1 implies that there exists $G' \in \mathcal{B}(n,d)$ such that $\mathcal{G}' \in \mathcal{B}^2$ and $H(G) \ge H(G')$.

If every diametrical path of *G* contains *P'*, then fix a diametrical path $P : u = u_1 - \cdots - u_{d+1} = v$. Let *G'* obtain from *G* by contracting the path *P'* into a new vertex *w* and adding a new vertex u'_{k+2} such that $V(G') = V(G) \cup \{w, u'_{k+2}\} - \{u'_1, u'_{k+1}\}$ and

$$E(G') = E(G) \cup \{uu'_2, u'_k u'_{k+2}\} \cup \{wx : x \in N(u') \cup N(v'), x \neq u'_2, u'_k\} - \{u'x : x \in N(u')\} - \{v'y : y \in N(v')\}.$$

Since deleting u, v from G decrease the diameter, then $u, v \notin N_G(u') \cup N_G(v')$. So three cases will arise as follows.

(1) $d_G(u') = d_G(v') = 3$. Note that in this case, at most one vertex of $N_G(u') - \{u'_2\}$ is of degree 3, otherwise $P' \not\subset P$. The same argument is valid for $N_G(v') - u'_k$. Without lose of generality suppose $d_G(u_d) \le d_G(u_2)$. Hence

$$\begin{split} H(G') &= H(G) - \frac{2}{(d(u_d) + 1)(d(u_d) + 2)} \sum_{\substack{x \in N_G(u') \\ x \neq u'_2}} \frac{2}{(3 + d(x))(4 + d(x))} - \sum_{\substack{y \in N_G(v') \\ y \neq u'_k}} \frac{2}{(3 + d(y))(4 + d(y))} + A \\ &= H(G) - \frac{2}{(d(u_d) + 1)(d(u_d) + 2)} - \frac{2}{(3 + d(x))(4 + d(x))} - \frac{2}{(3 + d(y))(4 + d(y))} - \frac{2}{15} + A, \end{split}$$

where $A = \frac{1}{3}$ if k = 1 and $A = \frac{11}{30}$ if $k \ge 2$.

If $d(u_d) = d(x) = d(y) = 3$, then H(G') > H(G) and $G = \Gamma_2$. Also if $k \ge 2$ and without lose of generality $d(u_d) = d(x) = 3$, d(y) = 2, then H(G') > H(G) and $G = \Gamma_3$. For other possibilities of d_u , d_x and d_y , H(G') < H(G).

(2) $d_G(u') = 3$ and $d_G(v') = 4$. (The case $d_G(u') = 3$ and $d_G(v') = 4$ is similar.) Without lose of generality, suppose $d(v', u_{d+1}) < d(u', u_{d+1})$. Since diam $(G - u_{d+1}) < \text{diam}(G)$, then $d(v', u_{d+1}) > 1$ and hence $d(u_d) = 2$. Also at most one vertex of $N(u') - u'_2$ is of degree 3, otherwise $P' \not\subset P$ and d(y) = 2 for every $y \in N(v') - u'_k$. So

$$\begin{split} H(G') &= H(G) - \sum_{\substack{x \in N(u') \\ x \neq u'_2}} \frac{4}{(3 + d(x))(5 + d(x))} - \sum_{\substack{y \in N(v') \\ y \neq u'_k}} \frac{2}{(4 + d(y))(5 + d(y))} \\ &\leq H(G) - \frac{4}{35} - \frac{4}{48} - \frac{6}{42} + A < H(G), \end{split}$$

where $A = \frac{3}{14}$ if k = 1 and $A = \frac{4}{15}$, if $k \ge 2$.

129

(3) $d_G(u') = d_G(v') = 4$. In this case, since diam(G - u'), diam(G - v') < diam(G), then $d(u', u_1), d(v', u_{d+1}) \ge 2$ and d(x) = d(y) = 2 for every $x \in N(u') - u'_2$ and $y \in N(v') - u'_k$. Hence

$$\begin{split} H(G') &= H(G) - \sum_{\substack{x \in N(u') \\ x \neq v'}} \frac{4}{(4 + d(x))(6 + d(x))} - \sum_{\substack{y \in N(v') \\ y \neq u'}} \frac{4}{(4 + d(y))(6 + d(y))} + A \\ &= H(G) - 3(\frac{4}{48}) - 3(\frac{4}{48}) + A < H(G), \end{split}$$

where $A = \frac{1}{4}$ if k = 1 and $A = \frac{1}{3}$, if $k \ge 2$.

Let K_4^- be a graph obtained from K_4 by deleting an edge. Suppose $B_{n,2}$ is a bicyclic graph of order n and diameter 2, obtained by attaching n - 4 pendant vertices to a vertex of degree 3 of K_4^- . Also let $B_{n,3}^1$ be a bicyclic graph of order n and diameter 3, obtained by attaching a pendant vertex to the vertex of degree 3 of $B_{n,2}$. Let C_4^+ be the graph obtained from C_4 by adding a new vertex connected to two non adjacent vertices of C_4 . For $d \ge 3$ let $B_{n,d}$ be a bicyclic graph of order n and diameter d, obtained by attaching n - d - 2 pendant vertices and a path of length d - 3 to two vertices of degree 3 of C_4^+ (see Figure 4).

Figure 4: Minimal bicyclic graphs of order *n* and diameter *d*.

Zhong and Xu [15], showed that $H(B_{n,2}) = \frac{4}{5} + \frac{4}{n+1} + \frac{2}{n+2} + \frac{2(n-4)}{n}$ is the minimum harmonic index in the set of harmonic indices of bicyclic graphs of order *n*. So $H(G) \ge H(B_{n,2})$ for every $G \in \mathcal{B}(n, 2)$ and equality holds if and only if $G = B_{n,2}$. We claim that if d = 3, then $H(G) > H(B_{n,3}^1) = \frac{7}{5} + \frac{6}{n-1} + \frac{2(n-6)}{n-2}$ for every $B_{n,3}^1 \neq G \in \mathcal{B}(n,3)$ and if $d \ge 4$, then $H(G) > H(B_{n,d}) = \frac{d-5}{2} + 2 + \frac{6}{n-d+3} + \frac{2(n-d-2)}{n-d+2}$ for every $B_{n,d} \neq G \in \mathcal{B}(n,d)$. For $3 \le d \le n-2$, define the two variable function $\mathfrak{B}(n,d)$ as follows.

$$\mathfrak{B}(n,d) = \begin{cases} \frac{16}{15} + \frac{4}{n} + \frac{2}{n+2} + \frac{2(n-5)}{n-1} & d = 3\\ \frac{7}{5} + \frac{6}{n-1} + \frac{2(n-6)}{n-2} & d = 4\\ \frac{d-5}{2} + 2 + \frac{6}{n-d+3} + \frac{2(n-d-2)}{n-d+2} & d \ge 5 \end{cases}$$

Lemma 2.6. Let $f_1(x) = \frac{x}{2} - \mathfrak{B}(x,3)$, $f_2(x) = \frac{x}{2} - \mathfrak{B}(x,4)$ and $f_3(x) = \frac{x}{2} - \frac{6}{x+3} - \frac{2(x-2)}{x+2} + \frac{1}{2}$. Then $f_1(x) \ge \frac{73}{210}$ is an increasing function for $x \ge 5$, $f_2(x) \ge \frac{2}{5}$ is an increasing function when $x \ge 6$ and $f_3(x) \ge \frac{3}{5}$ is an increasing function when $x \ge 3$.

Proof. It is easy to see that $f'_1(x) = \frac{1}{2} + \frac{4}{x^2} + \frac{2}{(x+2)^2} - \frac{8}{(x-1)^2}$. So if $x \ge 5$, then $x - 1 \ge 4$ and $\frac{1}{2} - \frac{8}{(x-1)^2} \ge \frac{1}{2} - \frac{8}{16} = 0$. Hence $f'_1(x) > 0$, when $x \ge 5$ and $f_1(x) \ge f_1(5) = \frac{73}{210}$ is an increasing function. Also if $x \ge 6$, then $f'_2(x) = \frac{1}{2} + \frac{6}{(x-1)^2} - \frac{8}{(x-2)^2} \ge \frac{1}{2} + \frac{6}{(x-1)^2} - \frac{8}{16} > 0$. So $f_2(x) \ge f_2(6) = \frac{2}{5}$ is an increasing function.

function when $x \ge 6$.

Suppose $x \ge 3$, then $f'_3(x) = \frac{1}{2} + \frac{6}{(x+3)^2} - \frac{8}{(x+2)^2} \ge \frac{1}{2} + \frac{6}{(x+3)^2} - \frac{8}{25} > 0$. Therefore $f_3(x) \ge f_3(3) = \frac{3}{5}$ is an increasing function too. \Box

3. Main results

In this section we show that $H(G) \ge \mathfrak{B}(n, d)$ for every $G \in \mathcal{B}(n, d)$, where $d \ge 3$.

Figure 5: The graphs related to Lemma 3.1.

Lemma 3.1. Let $G \in \mathcal{B}(n, d)$, $n - d \ge 3$ and $d \ge 3$, such that G has at least one pendant vertex. If for every pendant vertex $w \in G$, $G - w \in \mathcal{B}(n-1, d-1)$ then $H(G) \geq \mathfrak{B}(n, d)$. The equality holds if and only if $G = B_{6,3}^1$ or $B_{7,4}$.

Proof. Let *G* be the root of *G*. If *G* has more than two pendant vertices, then there is a pendant vertex *v* such that $G - v \in \mathcal{B}(n - 1, d)$, a contradiction. So *G* has at most two pendant vertices.

• If *G* has one pendant vertex *w*, then two cases will arise as follows.

(1) $\mathcal{G} \in \mathcal{B}^1 \cup \mathcal{B}^2$. By Lemma 2.4, without lose of generality, assume $G = \Gamma_1$ or $\mathcal{G} \in \mathcal{B}^2$. So if $G = \Gamma_1$, then $d \ge 5$, $n - d \ge 3$ and $H(\Gamma_1) = \frac{n}{2} - \frac{4}{15}$. Therefore

$$H(\Gamma_1) - \mathfrak{B}(n,d) = \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{1}{2} - \frac{4}{15} > 0,$$

by Lemma 2.6. If $\mathcal{G} \in \mathcal{B}^2$, then \mathcal{G} is obtained by attaching two disjoint cycles of lengths $r, s \geq 3$, joining together in vertex u. So |V(G)| = r + s - 1, $d_G(u) = 4$ and the other vertices of G are of degree 2. Hence G is obtained by attaching a path of length t either to u or to a vertex of degree 2. Hence $G = G_1$ or $G = G_2$, the graphs shown in Figure 5.

the graphs shown in Figure 5. Suppose $G = G_1$. Since diam(G - w) < diam(G), we find that $t \ge 2$, $n \ge 7$ and $H(G) = \frac{n}{2} - \frac{17}{42}$. So if d = 3, then r = s = 3, t = 2 and n = 7. Hence $H(G) = \frac{65}{21} > \frac{796}{315} = \mathfrak{B}(7,3)$. If d = 4, then $n \ge 8$ and $H(G) - \mathfrak{B}(n,4) = \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{7}{5} - \frac{17}{42} > 0$, by Lemma 2.6. If $d \ge 5$, then $n - d \ge 4$ and $H(G) - \mathfrak{B}(n,d) = \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{1}{2} - \frac{17}{42} > 0$, by Lemma 2.6. Suppose $G = G_2$ and without lose of generality, $r_1 \le r_2$. If $r_1 = 0$, then $H(G) = \frac{n}{2} - \frac{11}{35} + A$, where A = 0 if t = 1 and $A = \frac{1}{15}$ if $t \ge 2$. Also if $r_1 \ge 1$, then $H(G) = \frac{n}{2} - \frac{11}{30} + A$, where A = 0 if t = 1 and $A = \frac{1}{15}$ if $t \ge 2$. Also if $r_1 \ge 1$, then $H(G) = \frac{n}{2} - \frac{11}{30} + A$, where A = 0 if t = 1 and $A = \frac{1}{15}$ if $t \ge 2$. So if d = 3, then t = 1, $r_1 = 0$ and $n \ge 6$. Therefore $H(G) - \mathfrak{B}(n,3) \ge \frac{n}{2} - \frac{4}{n} - \frac{2}{n+2} - \frac{2(n-5)}{n-1} - \frac{145}{105} > 0$, by Lemma 2.6. If d = 4, then $n \ge 7$ and $H(G) \ge \frac{n}{2} - \frac{11}{30}$. Therefore $H(G) - \mathfrak{B}(n,4) = \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{53}{30} > 0$, by Lemma 2.6. Also if $d \ge 5$, then $H(G) \ge \frac{n}{2} - \frac{11}{30}$ and $H(G) - \mathfrak{B}(n,d) = \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{2}{15} > 0$, by Lemma 2.6. Lemma 2.6.

- (2) $\mathcal{G} \in \mathcal{B}_3$. In this case, G is obtained by attaching a path of length $t \ge 1$, to either a vertex of degree 2 or a vertex of degree 3 of G. So $G = G_3$ or G_4 , shown in Figure 5. Without lose of generality, suppose if $G = G_3$, then $r_1, r_2, k \ge 0$, $r_1 \le r_2$. Also if $G = G_4$, then $k \le r, s$ and $r, s, t \ge 1$. The following possibilities will arise.
- (i) k = 0. Hence

$$H(G_3) = \frac{n}{2} - \frac{13}{15} + A + \begin{cases} \frac{2}{3} & r_1 = r_2 = 0\\ \frac{19}{30} & r_1 = 0, r_2 \ge 1\\ \frac{3}{5} & r_1, r_2 \ge 1 \end{cases}$$

where A = 0, if t = 1 and $A = \frac{1}{15}$, otherwise.

where A = 0, if t = 1 and $A = \frac{1}{15}$, otherwise. If d = 3, then t = 1, $r_1 = 0$ and $n \ge 5$. So $H(G_3) - \mathfrak{B}(n,3) \ge \frac{n}{2} - \frac{4}{n} - \frac{2}{n+2} - \frac{2(n-5)}{n-1} - \frac{7}{30} - \frac{16}{15} > 0$, by Lemma 2.6. If d = 4, then either $r_1 = 0$ and $t \ge 2$ or $r_1 \ge 1$. Therefore if $r_1 = 0$, then $n \ge 6$ and $H(G_3) \ge \frac{n}{2} - \frac{1}{6}$. Hence $H(G_3) - \mathfrak{B}(n,4) \ge \frac{6}{2} - \frac{1}{6} - \mathfrak{B}(6,4) > 0$, by Lemma 2.6. Also if $r_1 \ge 1$ then $n \ge 7$ and $H(G_3) \ge \frac{n}{2} - \frac{4}{15}$. So $H(G_3) - \mathfrak{B}(n,4) \ge \frac{7}{2} - \frac{4}{15} - \mathfrak{B}(7,4) > 0$, by Lemma 2.6. If $d \ge 5$, then $H(G_3) - \mathfrak{B}(n,d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{1}{2} - \frac{4}{15} > 0$. Also $H(G_4) = \frac{n}{2} + A$, where $A = -\frac{73}{210}$ if t = 1 and $A = -\frac{26}{105}$ if $t \ge 2$. So if d = 3, then $n \ge 6$ and $H(G_4) - \mathfrak{B}(n,3) \ge \frac{n}{2} - \frac{4}{n} - \frac{2}{n+2} - \frac{2(n-5)}{n-1} - \frac{16}{15} - \frac{73}{210} > 0$, by Lemma 2.6. If d = 4, then $n \ge 7$ and $H(G_4) - \mathfrak{B}(n,4) \ge \frac{n}{2} - \frac{6}{n-d+2} - \frac{7}{2} - \frac{73}{210} > 0$. Also if $d \ge 5$ then $H(G_4) - \mathfrak{B}(n,d) \ge \frac{n-d}{n-d+2} - \frac{7}{2} - \frac{73}{210} > 0$. Also if $d \ge 5$ then $H(G_4) - \mathfrak{B}(n,d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{1}{2} - \frac{73}{210} > 0$. (*ii*) $k \ge 1$. So

$$H(G_3) = \frac{n}{2} - \frac{9}{10} + A + \begin{cases} \frac{2}{3} & r_1 = r_2 = 0\\ \frac{19}{30} & r_1 = 0, r_2 \ge 1\\ \frac{3}{5} & r_1, r_2 \ge 1 \end{cases}$$

where A = 0, if t = 1 and $A = \frac{1}{15}$, otherwise. If d = 3, then $r_1 = 0$, t = 1 and $n \ge 6$. Therefore

$$H(G_3) - \mathfrak{B}(n,3) \ge \frac{n}{2} - \frac{4}{n} - \frac{2}{n+2} - \frac{2(n-5)}{n-1} - \frac{4}{3} > 0.$$

If d = 4, then $n \ge 7$ and $H(G_3) - \mathfrak{B}(n, 4) \ge \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{17}{10} > 0$. Also if $d \ge 5$ then $H(G_3) - \mathfrak{B}(n, d) \ge 1$.

If d = 4, then $n \ge 7$ and $H(G_3) - \mathfrak{D}(n, 4) \ge \frac{1}{2} - \frac{1}{n-1} - \frac{1}{n-2} - \frac{1}{10} > 0$. Also if $u \ge 5$ then $H(G_3) - \mathfrak{D}(n, u) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{1}{5} > 0$. Also $H(G_4) = \frac{n}{2} + A$, where $A = -\frac{2}{5}$ if t = 1 and $A = -\frac{3}{10}$ if $t \ge 2$. So if d = 3, then t = 1 and $H(G_4) - \mathfrak{B}(n, 3) \ge \frac{n}{2} - \frac{4}{n} - \frac{2}{n+2} - \frac{2(n-5)}{n-1} - \frac{22}{15} > 0$. If d = 4, then $H(G_4) - \mathfrak{B}(n, 4) \ge \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{9}{5} > 0$. Also if $d \ge 5$ then $H(G_4) - \mathfrak{B}(n, d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{1}{10} > 0$. • If *G* has two pendant vertices, then by Lemma 2.5, without lose of generality, suppose either $\mathcal{G} \in \mathcal{B}_2 \cup \mathcal{B}_3$

- or $G = \Gamma_i$, i = 2, 3. If $\mathcal{G} \in \mathcal{B}_2 \cup \mathcal{B}_3$, then Lemma 2.3 implies that without lose of generality, one may assume that G is obtained by attaching a pendant vertex w and a path of length t to two vertices u and *v* of *G*, respectively, such that $d(v) \le d(u)$. So there are four cases as follows.
- (1) $\mathcal{G} \in \mathcal{B}^2$. Suppose $|V(\mathcal{G})| = m$, then n = m + t + 1 and $H(\mathcal{G}) = \frac{m}{2} \frac{1}{6}$. Since only one vertex of \mathcal{G} is of degree 4 and the other vertices are of degree 2, then either $d_G(u) = d_G(v) = 3$ or $d_G(u) = 5$, $d_G(v) = 3$. Note that since deleting every pendant vertex, decrease the diameter, then $u \neq v$ and $d \geq 4$. Hence two possibilities will arise as follows.
- (i) $u \notin N(v)$. Hence

$$H(G) = H(G) - \sum_{x \in N_{G}(u)} \frac{2}{(z_{x} - 1)z_{x}} - \sum_{y \in N_{G}(v)} \frac{2}{(w_{y} - 1)w_{y}} + \frac{2}{d(u) + 1} + \begin{cases} \frac{2}{d(v) + 1} & t = 1\\ \frac{2}{d(v) + 2} + \frac{2}{3} + \frac{t - 2}{2} & t \ge 2 \end{cases}$$

If d(u) = d(v) = 3, then

$$H(G) \ge \frac{n}{2} - \frac{17}{30} + \begin{cases} 0 & t = 1\\ \frac{1}{15} & t \ge 2 \end{cases}$$

Hence by Lemma 2.6, if d = 4 then $n \ge 7$ and $H(G) - \mathfrak{B}(n, 4) \ge \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{59}{30} > 0$. Also if $d \ge 5$, then $n \ge 8$ and $n - d \ge 3$. So $H(G) - \mathfrak{B}(n, d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} - \frac{1}{15} > 0$. If d(u) = 5 and d(v) = 3 then

$$H(G) \ge \frac{n}{2} - \frac{76}{105} + \begin{cases} 0 & t = 1\\ \frac{1}{15} & t \ge 2 \end{cases}.$$

Since u, v are not adjacent, there exists a cycle of length at least 4 in G. So by Lemma 2.6, if d = 4, then $n \ge 8$ and $H(G) - \mathfrak{B}(n,4) \ge \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{223}{105} > 0$. Also if $d \ge 5$, then $n \ge 9$ and $n - d \ge 4$. Therefore $H(G) - \mathfrak{B}(n,d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} - \frac{47}{210} > 0$.

(*ii*) $u \in N(v)$. In this case

$$\begin{split} H(G) &= H(\mathcal{G}) - \sum_{\substack{x \in N_{\mathcal{G}}(u) \\ x \neq v}} \frac{2}{(z_x - 1)z_x} - \sum_{\substack{y \in N_{\mathcal{G}}(v) \\ y \neq u}} \frac{2}{(w_y - 1)w_y} + \frac{2}{d(u) + 1} - \frac{4}{(d(u) + d(v) - 2)(d(u) + d(v))} \\ &+ \begin{cases} \frac{2}{d(v) + 1} & t = 1 \\ \frac{2}{d(v) + 2} + \frac{2}{3} + \frac{t - 2}{2} & t \geq 2 \end{cases} . \end{split}$$

By the same calculation as (*i*), one may easily see that $H(G) > \mathfrak{B}(n, d)$.

- (2) $\mathcal{G} \in \mathcal{B}^3$ and $d_{\mathcal{G}}(u', v') = 1$, where u', v' are two vertices of degree 3 in \mathcal{G} . Suppose $|V(\mathcal{G})| = m$, then n = m + t + 1 and $H(\mathcal{G}) = \frac{m}{2} - \frac{1}{15}$. Note that if u = v then diam(G - w) = diam(G), a contradiction. So $u \neq v$ and $d \ge 3$. Hence either $d_G(u) = d_G(v) = 3$ or $d_G(u) = 4$, $d_G(v) = 3$ or $d_G(u) = d_G(v) = 4$. Therefore two possibilities will arise as follows.
- (*i*) $u \notin N(v)$. Then $d \ge 4$ and

$$H(G) = H(G) - \sum_{x \in N_{G}(u)} \frac{2}{(z_x - 1)z_x} - \sum_{y \in N_{G}(v)} \frac{2}{(w_y - 1)w_y} + \frac{2}{d(u) + 1} + \begin{cases} \frac{1}{d(v) + 1} & t = 1\\ \frac{2}{d(v) + 2} + \frac{2}{3} + \frac{t - 2}{2} & t \ge 2 \end{cases}$$

If d(u) = d(v) = 3 then since $n - d \ge 3$, then $n \ge 7$ and

$$H(G) \ge \frac{n}{2} - \frac{7}{15} + \begin{cases} 0 & t = 1\\ \frac{1}{5} & t \ge 2 \end{cases}$$

If d = 4, then $H(G) - \mathfrak{B}(n, 4) = \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{28}{15} > 0$. Also if $d \ge 5$, then $H(G) - \mathfrak{B}(n, d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{1}{30} > 0$, by Lemma 2.6. If d(u) = 4 and d(v) = 3 then u has at least one neighbor of degree 3 and

.

$$H(G) \ge \frac{n}{2} - \frac{23}{42} + \begin{cases} 0 & t = 1\\ \frac{1}{15} & t \ge 2 \end{cases}$$

If d = 4, then $n \ge 7$ and $H(G) - \mathfrak{B}(n, 4) \ge \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{409}{210} > 0$. Also if $d \ge 5$ and $t \ge 2$, then $H(G) - \mathfrak{B}(n, d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} - \frac{1}{21} > 0$. Note that since $u \notin N(v)$, then both d(u) and d(v) are not equal to 4.

(*ii*) $u \in N(v)$. Then $d \ge 3$ and

$$\begin{split} H(G) &= H(\mathcal{G}) - \sum_{\substack{x \in N_{\mathcal{G}}(u) \\ x \neq v}} \frac{2}{(z_x - 1)z_x} - \sum_{\substack{y \in N_{\mathcal{G}}(v) \\ y \neq u}} \frac{2}{(w_y - 1)w_y} + \frac{2}{d(u) + 1} - \frac{4}{(d(u) + d(v) - 2)(d(u) + d(v))} \\ &+ \begin{cases} \frac{2}{d(v) + 1} & t = 1 \\ \frac{2}{d(v) + 2} + \frac{2}{3} + \frac{t - 2}{2} & t \geq 2 \end{cases} . \end{split}$$

If d = 3 then since deleting every pendant vertices decrease the diameter, then d(u) = d(v) = 4 and n = 6. So $G = B_{6,3}^1$. If $d \ge 4$, then by the same calculation as (*i*), one may easily see that $H(G) > \mathfrak{B}(n, d)$.

(3) $\mathcal{G} \in \mathcal{B}^3$ and $d_{\mathcal{G}}(u', v') > 1$, where u', v' are two vertices of degree 3 in \mathcal{G} . Suppose $|V(\mathcal{G})| = m$, then n = m + t + 1 and $H(\mathcal{G}) = \frac{m}{2} - \frac{1}{10}$. So either d(u) = d(v) = 3 or d(u) = 4, d(v) = 3 or d(u) = d(v) = 4. Note that if u = v or $u \in N(v)$ then diam(G - w) = diam(G), a contradiction. Therefore $u \neq v$ and u, v are not adjacent. Hence $d \ge 4$ and

$$H(G) = H(\mathcal{G}) - \sum_{x \in N_{\mathcal{G}}(u)} \frac{2}{(z_x - 1)z_x} - \sum_{y \in N_{\mathcal{G}}(v)} \frac{2}{(w_y - 1)w_y} + \frac{2}{d(u) + 1} + \begin{cases} \frac{2}{d(v) + 1} & t = 1\\ \frac{2}{d(v) + 2} + \frac{2}{3} + \frac{t - 2}{2} & t \ge 2 \end{cases}.$$

If d(u) = d(v) = 3 then

$$H(G) \ge \frac{n}{2} - \frac{1}{2} + \begin{cases} 0 & t = 1\\ \frac{1}{15} & t \ge 2 \end{cases}$$

If d = 4, then $n \ge 7$ and $H(G) - \mathfrak{B}(n, 4) \ge \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{19}{10} > 0$. Also if $d \ge 5$, then $H(G) - \mathfrak{B}(n, d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} > 0$. If d(u) = 4 and d(v) = 3 then

$$H(G) \ge \frac{n}{2} - \frac{3}{5} + \begin{cases} 0 & t = 1\\ \frac{1}{15} & t \ge 2 \end{cases}$$

If d = 4, then $n \ge 8$ and $H(G) - \mathfrak{B}(n, 4) \ge \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - 2 > 0$. Also if $d \ge 5$, then $n \ge 9$ and $n - d \ge 4$. So $H(G) - \mathfrak{B}(n, d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} - \frac{1}{10} > 0$. If d(u) = d(v) = 4, then

$$H(G) = \frac{n}{2} - \frac{3}{5} - \begin{cases} \frac{1}{10} & t = 1\\ 0 & t \ge 2 \end{cases}.$$

If d = 4, then t = 1 and $n \ge 7$. If n = 7, then $G = B_{7,4}$ and $H(G) = \mathfrak{B}(7,4)$. If $n \ge 8$, then $H(G) - \mathfrak{B}(n,4) = \frac{n}{2} - \frac{6}{n-1} - \frac{2(n-6)}{n-2} - \frac{21}{10} > 0$. Also if $d \ge 5$, then $n \ge 8$. If n - d = 3, then $t \ge 2$. So $G = B_{n,d}$ and $H(G) = \mathfrak{B}(n,d)$. If $n - d \ge 4$, then $H(G) - \mathfrak{B}(n,d) \ge \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} - \frac{2}{10} > 0$.

(4) $G = \Gamma_i, i = 2, 3$. So $d \ge 5$.

If $G = \Gamma_2$, then $d \ge 5$, n - d = 3 and $H(G) = \frac{n}{2} - A$, where $A = \frac{2}{5}$ if t = 0 and $A = \frac{13}{30}$ if t = 0. Therefore $H(G) - \mathfrak{B}(n, d) = \frac{3}{5} - A > 0$. If $G = \Gamma_3$, then $H(G) = \frac{n}{2} - \frac{7}{15}$. So $H(G) - \mathfrak{B}(n, d) = \frac{n-d}{2} - \frac{6}{n-d+3} - \frac{2(n-d-2)}{n-d+2} + \frac{1}{30} > 0$.

Theorem 3.2. Let $G \in \mathcal{B}(n, d)$ and $d \ge 3$ then $H(G) \ge \mathfrak{B}(n, d)$ and equality holds if and only if $G = B_{n,3'}^1$ where d = 3 and $G = B_{n,d}$, where $d \ge 4$.

Figure 6: The graphs related to Theorem 3.2

Figure 7: Bicyclic graph of order *n* and diameter *d*, such that n - d = 2.

Proof. By induction on *n*. First suppose n - d = 2. So if $P \subset G$ be a diametrical path, then only one vertex of *G* is not in *P*. Note that two cycles of *G* should have a common vertex not in *P* and all other vertices of *G* should be in *P*, since every cycle has at least one vertex which is not in *P*. Therefore $G \in \mathcal{B}^3$ and $G = V_{r,s}$, is a quasi-tree graph introduced in [1]. The graph $V_{r,s}$ obtained by adding two paths of lengths r, s to two vertices of degree 2 of K_4^- , (see Figure 7). The authors showed [1], $H(V_{r,s}) \ge d + \frac{5}{3} - \frac{n}{2}$, where equality holds if and only if r = s = 1. One may easily see that if $d \le 5$, then $d + \frac{5}{3} - \frac{n}{2} > \mathfrak{V}(n, d)$, since n - d = 2. Suppose $d \ge 5$. Then $G = V_{s,r}$ where $r, s \ge 0$ and $r + s \ge 3$. Hence by [1, Table 1], $H(G) \ge \frac{d}{2} + \frac{11}{15} > \mathfrak{V}(d + 2, d)$.

Suppose n - d = 3. So two vertices of *G* are not in its diametrical path. If *G* has no pendant vertex, then Corollary 2.2 implies that every cycle of *G* is a triangle. Hence *G* is one of the graph shown in Figure 6, since $d \ge 3$. By an easy calculation, it is seen that $H(G_1) = \frac{44}{15} > \mathfrak{B}(6,3)$, $H(G_2) = \frac{29}{10} + \frac{k}{2} > \mathfrak{B}(k + 6, k + 3)$. Assume *G* has at least one pendant vertex. If for every pendant vertex of *G*, namely *v*, diam(G - v) < 1

Assume *G* has at least one pendant vertex. If for every pendant vertex of *G*, namely *v*, diam(*G* – *v*) < diam(*G*), then Lemma 3.1 implies that $H(G) > \mathfrak{B}(n,d)$. Hence suppose there exists a pendant vertex $v \in G$ such that diam(*G* – *v*) = diam(*G*) and $N_G(v) = u$. Since *v* is a pendant vertex, $G - v \in \mathcal{B}(n - 1, d)$ and G - v is one of the graph shown in Figure 7. Now by [1], $H(G - v) \ge d + \frac{5}{3} - \frac{(n-1)}{2} = \frac{d}{2} + \frac{2}{3}$, where equality holds if and only if $G - v = V_{1,1}$. Also $2 \le d_{G-v}(u) \le 3$ and

$$H(G) = H(G - v) + \frac{2}{d_{G-v}(u) + 2} - \sum_{x \in N_{G-v}(u)} \frac{2}{(d_{G-v}(x) + d_{G-v}(u))(d_{G-v}(x) + d_{G-v}(u) + 1)}$$

Note that at most one neighbor of u is of degree one. If $d_{G-v}(u) = 2$ then $d \ge 4$ and $G - v \ne V_{1,1}$. Therefore $H(G-v) > \frac{d}{2} + \frac{2}{3}$. If d = 4, then n = 7 and $H(G) > \frac{87}{30} > \frac{14}{5} = \mathfrak{B}(7, 4)$. If $d \ge 5$, then

$$H(G) - \mathfrak{B}(n,d) \ge H(G-v) + \frac{7}{30} - \mathfrak{B}(n,d) > \frac{d}{2} + \frac{27}{30} - \mathfrak{B}(n,d) = 0$$

Suppose $d_{G-v}(u) = 3$, then at most one neighbor of u is of degree less than 3. So $H(G) \ge H(G-v) + \frac{43}{210}$. If d = 3 then $G - v = V_{1,0}$ and $H(G - v) = \frac{23}{10}$. Hence $H(G) \ge \frac{263}{105} > \frac{143}{60} = \mathfrak{B}(6,3)$.

If d = 4, then n = 7 and $H(G - v) \ge \frac{8}{3}$. Hence $H(G) > \mathfrak{B}(7, 4)$.

135

Also if $d \ge 5$, then $H(G - v) \ge \frac{d}{2} + \frac{11}{15}$. Therefore $H(G) - \mathfrak{B}(d + 3, d) \ge 0$.

Suppose n > d + 3 and for convenience, *G* has minimum harmonic index among all graphs in $\mathcal{B}(n, d)$. Let $P = v_1 - v_2 - \cdots - v_{d+1}$ is a diametrical path of *G*. If *G* has no pendant vertex, then by Corollary 2.2, every cycle of *G* is a triangle. So at most two vertices of *G* are not in its diametrical path. Hence $n - d \le 3$, a contradiction.

Suppose *G* has at least one pendant vertex. If for every pendant vertex $v \in G$, $G - v \in \mathcal{B}(n-1, d-1)$, then by Lemma 3.1, $H(G) > \mathfrak{B}(n, d)$. Hence assume there exists a pendant vertex v in *G* such that $G - v \in \mathcal{B}(n-1, d)$ and N(v) = u. Note that $d(u) \le n - d + 1$, since diam(G) = d. Suppose there exist k_i vertices of degree i in N(u) for $1 \le i \le r$. It is clear that there exists i > 1 such that $k_i \ne 0$. Hence

$$H(G) = H(G - v) + \frac{2}{1 + d(u)} - \sum_{v \neq x \in N(u)} \frac{2}{(d(u) - 1 + d(x))(d(u) + d(x))}$$

= $H(G - v) + \frac{2}{1 + d(u)} - \frac{2k_1}{d(u)(d(u) + 1)} - \dots - \frac{2k_r}{(d(u) + r - 1)(u + r)}.$ (1)

There are three cases as follows.

(*i*) $d(u) \le n - d - 1$. In this case, Equation 1, implies that

$$\begin{split} H(G) &\geq H(G-v) + \frac{2}{1+d(u)} - \frac{2(d(u)-2)}{d(u)(d(u)+1)} - \frac{2}{(d(u)+1)(d(u)+2)} \\ &= H(G-v) + \frac{2(d(u)+4)}{(1+d(u))d(u)(2+d(u))}. \end{split}$$

Since the function $f(x) = \frac{2(x+4)}{x(1+x)(2+x)}$ is a decreasing function for x > 0, $f(d(u)) \ge f(n-d-1)$. So if d = 4, then induction hypothesis implies

$$H(G) \ge \frac{7}{5} + \frac{6}{n-2} + \frac{2(n-7)}{n-3} + \frac{2(n-1)}{(n-5)(n-4)(n-3)}$$

and $H(G) - \mathfrak{B}(n, 4) > 0$. Also if $d \ge 5$ then

$$H(G) \ge 2 + \frac{d-5}{2} + \frac{6}{n-d+2} + \frac{2(n-d-3)}{n-d+1} + \frac{2(n-d+3)}{(n-d-1)(n-d)(n-d+1)}$$

and

$$H(G) - \mathfrak{B}(n,d) \geq \frac{12(5(n-d)+3)}{(n-d+2)(n-d+3)(n-d)((n-d)^2-1)} > 0.$$

Suppose d = 3 and $d(u) \le n - 5$. To the contrary, suppose there exists only one vertex $x \in N(u)$ such that d(x) = 2 and other neighbors of u are pendant vertices. Then if $u = v_1$ or v_4 , we find that $d \ge 4$, a contradiction. If $u = v_2$ or v_3 , then G is a tree, another contradiction. So $u \ne v_i$ for $1 \le i \le 4$. Without lose of generality assume $d(v_1, x) < d(v_4, x) = t$. Then $d(v_4, v) = 1 + d(v_4, u) = 2 + d(v_4, x) = 2 + t \ge 4$, a contradiction. Therefore there exist $x, y \in N(u)$ such that $d(x), d(y) \ge 2$. Hence by Equation 1,

$$H(G) \ge H(G - v) + \frac{2}{1 + d(u)} - \frac{2(d(u) - 3)}{d(u)(d(u) + 1)} - \frac{4}{(d(u) + 1)(d(u) + 2)}$$
$$= H(G - v) + \frac{2(d(u) + 6)}{(1 + d(u))d(u)(d(u) + 2)}.$$

Since the function $f(x) = \frac{2(x+6)}{(1+x)x(x+2)}$ is a decreasing function,

$$H(G) - \mathfrak{B}(n,3) \ge \frac{12(80 + 37n^2 + 78n - 66n^3 + 15n^4)}{n(n-4)(n-5)(n-3)(n^2-1)(n^2-4)} > 0$$

Assume that d(u) = n - 4. If at least three neighbors of u, are not pendant vertices, then the Equation 1 implies

$$H(G) \ge H(G - v) + \frac{2}{1 + d(u)} - \frac{2(d(u) - 4)}{d(u)(d(u) + 1)} - \frac{6}{(d(u) + 1)(d(u) + 2)}$$
$$= H(G - v) + \frac{2(d(u) + 8)}{(1 + d(u))d(u)(d(u) + 2)}.$$

So

$$H(G) - \mathfrak{B}(n,3) \ge \frac{48(3x^3 - 3x^2 - 5x - 4)}{(x - 3)x(x - 4)(x^2 - 1)(x^2 - 4)} > 0.$$

Also if there exist $x, y \in N(u)$ such that $d(x) \ge 2$ and $d(y) \ge 3$, then

$$H(G) \ge H(G-v) + \frac{2}{1+d(u)} - \frac{2(d(u)-3)}{d(u)(d(u)+1)} - \frac{2}{(d(u)+1)(d(u)+2)} - \frac{2}{(d(u)+2)(d(u)+3)} = H(G-v) + \frac{2(d(u)+9)}{(d(u)+3)d(u)(d(u)+1)}.$$

Since $f(x) = \frac{2(x+9)}{(x+3)x(x+1)}$ is an decreasing function,

$$H(G) - \mathfrak{B}(n,3) \ge \frac{12(-16 - 22n - 15n^2 + 11n^3)}{n(n-4)(n-3)(n^2 - 1)(n^2 - 4)} > 0.$$

Suppose there exist $x, y \in N(u)$ such that d(x) = d(y) = 2 and d(z) = 1 for every vertices $x, y \neq z \in N(u)$. If $u \notin P$, then since every neighbor of *G* is of degree at most 2, then $N(u) \cap P \subset \{v_1, v_4\}$. Also since diam(*G*) = 3, then $|N(u) \cap \{v_1, v_4\}| = 1$. So *u* is adjacent to exactly one vertex of *P*, since d(u) = n - 4. without lose of generality suppose $x = v_1 \in N(u)$. Hence $d(v, v_4) \ge 5$, a contradiction.

If $u \in P$ and $u = v_1$, then $d(v, v_4) > 3$, a contradiction. The same argument is valid for v_4 . Therefore without lose of generality, suppose $u = v_2$, $x = v_1$, $y = v_3$ and $u \neq z \in N(v_1)$. Hence $N(z) \cap N[u] = v_1$. Hence either *z* is a pendant vertex or there exists a vertex $w \in N(z)$. If *z* is a pendant vertex, then d > 3, a contradiction. If $w = v_4$, then $d(v_1, v_4) \le 2$, another contradiction. Also if $w \neq v_4$, then $d(v, t) \ge 4$, which is a contradiction.

(*ii*) d(u) = n - d. So either $u = v_i$, where $i \in \{1, d + 1\}$ or u is adjacent to at least two vertices of P. Assume first that $u \in P$. If $u = v_1$ or v_d , then diam(G - v) < diam(G), a contradiction. So there is exactly one vertex $w \in G - p$, such that $w \notin N(u)$. If $\sum_{x \in N(u)} d(x) = n - d + 1$, then exactly one neighbors of u is of degree 2 and the other neighbors are pendant vertices. Hence without lose of generality, $u = v_2$ and $N(w) = \{v_{k-1}, v_k, v_{k+1}\}$ for $5 \le k \le d$, since G is a bicyclic graph. Therefore $d \ge 5$, $n \ge 9$ and G is the graph which is shown in Figure 8. Therefore $H(G) = \frac{d-5}{2} + \frac{2(n-d-1)}{n-d+1} + \frac{2}{n-d+2} + A$, where $A = \frac{11}{5}$ if t = 0, and $A = \frac{31}{15}$ if t = 1, and $A = \frac{32}{15}$, if $t \ge 2$. Hence

$$H(G) - \mathfrak{B}(n,d) \ge \frac{(n-d)^3 + 6(n-d)^2 + 41(n-d) - 84}{15(n-d+1)(n-d+2)(n-d+3)} > 0$$

If $\sum_{x \in N(u)} d(x) > n - d + 1$.

It is easy to see that if $d \ge 4$ then $H(G) > \mathfrak{B}(n, d)$. Also if d = 3 and $\sum_{x \in N(u)} d(x) > n - d + 2$, then $H(G) > \mathfrak{B}(n, 3)$. Suppose d = 3 and $\sum_{x \in N(u)} d(x) = n - d + 2$. Hence *u* has either exactly two neighbors of degree 2 or one neighbor of degree 3. Without lose of generality suppose $u = v_2$. If *u* has two neighbors of degree 2, namely x, v_3 , then $N(w) \subseteq \{x, v_4\}$ and *G* is unicycle, a contradiction. If $d(v_3) = 3$, then $N(w) \subseteq \{v_3, v_4\}$ and *G* is unicycle, another contradiction.

Suppose now that $u \notin P$. If $v_1 \in N(u)$ then $v_{d+1} \notin N(u)$, otherwise diam(G) = 2. So there exists a vertex of degree at least 3 and a vertex of degree 2 in N(u). If the other neighbors of u are pendant vertices,

Figure 8: The graph related to Case (*ii*) of Theorem 3.2.

then *G* is a unicyclic graph, a contradiction. Hence there is another vertex of degree at least 2 in N(u) and hence by Equation 1,

$$\begin{split} H(G) &\geq H(G-v) + \frac{2}{1+d(u)} - \frac{2(d(u)-4)}{d(u)(d(u)+1)} - \frac{4}{(d(u)+1)(d(u)+2)} - \frac{2}{(d(u)+2)(d(u)+3)} \\ &= H(G-v) + \frac{2(d(u)^2+13d(u)+24)}{(d(u)+1)d(u)(d(u)+2)(d(u)+3)}. \end{split}$$

If d = 3, then d(u) = n - 3 and

$$\begin{split} H(G) - \mathfrak{B}(n,3) &\geq \frac{4}{n-1} + \frac{2}{n+1} + \frac{2(n-6)}{n-2} - \frac{4}{n} - \frac{2}{n+2} - \frac{2(n-5)}{n-1} + \frac{2(n^2+7n-6)}{n(n-3)(n-2)(n-1)} \\ &= \frac{12(2+5n+7n^2)}{n(n-3)(n^2-1)(n^2-4)} > 0. \end{split}$$

If d = 4 then

$$H(G) - \mathfrak{B}(n,4) \ge \frac{8(n+2)}{(n-1)(n-2)(n-3)(n-4)} > 0$$

If $d \ge 5$ then

$$H(G) - \mathfrak{B}(n,d) \ge \frac{8((n-d)+6)}{(n-d+1)(n-d)(n-d+2)(n-d+3)} > 0$$

(*iii*) d(u) = n - d + 1.

If $u \notin P$ then u is adjacent to at least three vertices of P. Since diam(G) > 2, u is not adjacent to both v_1, v_{d+1} . Hence there exist two vertices of degree at least 3 and a vertex of degree at least 2 in N(u). By a similar argument as in Case (ii), $H(G) > \mathfrak{B}(n, d)$.

If $u \in P$, then $G - P \subset N(u)$ and $|N(u) \cap P| = 2$. So $u \neq v_1, v_{d+1}$. Suppose $u = v_i$, where $2 \le i \le d$ and $x \in N(u) - P$. Then $N(x) \cap P \subseteq \{v_{i-2}, v_{i-1}, v_i, v_{i+1}, v_{i+2}\}$. Also if $v_k, v_{k'} \in N(x)$, then $k - k' \le 2$. Therefore $|N(x) \cap P| \le 3$. If $d(x) \ge 4$, then $|N(x) \cap N(u) - P| \ge 1$. So if $d \ge 4$, then u has a neighbor of degree at least 4 and two neighbors of degree at least 2. Therefore Equation 1 implies that $H(G) > \mathfrak{B}(n, d)$. If d = 3, then x should be adjacent to at least three neighbors of u and hence u has at least two neighbors of degree at least 3 and one neighbor of degree at least 4. Therefore Equation 1 implies,

$$\begin{split} H(G) &\geq H(G-v) + \frac{2}{1+d(u)} - \frac{4}{(d(u)+1)(d(u)+2)} - \frac{2}{(d(u)+2)(d(u)+3)} - \frac{2}{(d(u)+3)(d(u)+4)} \\ &- \frac{2(d(u)-5)}{d(u)(d(u)+1)} = H(G-v) + \frac{2(d(u)^2+20d(u)+40)}{(d(u)+1)d(u)(d(u)+2)(d(u)+4)} \end{split}$$

138

and

$$H(G) - \mathfrak{B}(n, d) \ge \frac{4(2n-1)}{(n-2)n(n^2-1)} > 0.$$

Suppose $d(x) \le 3$ for every $x \in N(u) - P$. If d(x) = 1 for every $x \in G - P$, then *G* is a tree, a contradiction. If there exists only one vertex in G - P such that d(x) = 2, then *G* is a unicyclic graph, a contradiction too. So either there is a vertex *x* in G - P such that $d(x) \ge 3$ or there exist two vertices *z*, *y* in G - P such that $d(g(z), d(y) \ge 2$. Since E(G) = n + 1, counting the degrees of vertices, implies that either there is a vertex *x* in G - P such that d(w) = 1 for every $w \in G - (P \cup N(x))$ or there are two vertices *z*, *y* in G - P such that d(g(z), d(y) = 2 and d(w) = 1 for every $w \in G - (P \cup N(y) \cup N(z))$.

If $u \in P - \{v_2, v_d\}$ then $d \ge 4$ and there exist at least two vertex in $P \cap N(u)$ of degree more than 1 and $H(G) \ge \mathfrak{B}(n, d)$, by a similar argument as in Case (*ii*). Also if $u = v_2$ (or $u = v_d$) and $d(v_1) \ge 2$ (or $d(v_{d+1}) \ge 2$), then there exist at least two vertices in $P \cap N(u)$ of degree more than 1 and $H(G) \ge \mathfrak{B}(n, d)$. So without lose of generality suppose $u = v_2$ and $d(v_1) = 1$. Then u can only have a common neighbor with v_3 or v_4 . Hence there are two possibilities.

- (a) There exists a vertex $x \in N(u) P$ such that d(x) = 3 and d(w) = 1 for every $w \in G (P \cup N(x))$. If $x \in N(v_3) \cap N(v_4)$, then $G = V_{1,r}$, which is shown in Figure 7, and $H(G) > \mathfrak{B}(n,d)$. If $x \in N(v_3)$ and $x \notin N(v_4)$, then *u* has a neighbor of degree 2 and two neighbors of degree 3. One may easily see that $H(G) > \mathfrak{B}(n,d)$. If $x \notin N(v_3) \cup N(v_4)$, then *u* has three neighbors of degree 2 and a neighbor of degree 3 and $H(G) > \mathfrak{B}(n,d)$.
- (b) There exist two vertices z, y in G-P such that d(z), d(y) = 2 and d(w) = 1 for every $w \in G-(P \cup N(y) \cup N(z))$. If $y, z \in N(v_3)$ and d = 3, then $G = B_{n,3}^1$ and $H(G) = \mathfrak{B}(n,3)$. If $y, z \in N(v_3)$ and $d \ge 4$, then

$$\begin{split} H(G) &\geq H(G-v) + \frac{2}{1+d(u)} - \frac{2(d(u)-4)}{d(u)(d(u)+1)} - \frac{4}{(d(u)+1)(d(u)+2)} - \frac{2}{(d(u)+3)(d(u)+4)} \\ &= H(G-v) + \frac{2(d(u)^3 + 19d(u)^2 + 78d(u) + 96)}{(1+d(u))(d(u)+2)(d(u)+4)(d(u)+3)d(u)} \end{split}$$

and it is easy to see that $H(G) - \mathfrak{B}(n, d) > 0$. If $y, z \in N(v_4)$, then $G = B_{n,d}$. So if d = 3 then $G = B_{n,3}$ and $H(G) = 1 + \frac{6}{n} + \frac{2(n-5)}{n-1}$. Hence $H(G) - \mathfrak{B}(n, 3) = \frac{4(n^2+2n+15)}{n(n+2)} > 0$. If $d \ge 4$ then $G = B_{n,d}$ and $H(G) = \mathfrak{B}(n, d)$. If $z, y \notin N(v_3) \cup N(v_4)$, then u has at least five neighbors of degree 1 and $H(G) > \mathfrak{B}(n, d)$. If without lose of generality, $y \in N(v_3)$ and $z \notin N(v_3) \cup N(v_4)$, then u has three neighbors of degree 2 and a neighbor of degree 3 and $H(G) > \mathfrak{B}(n, d)$.

Now the proof is complete. \Box

References

- A. Abdolghafourian, M.A. Iranmanesh, On Harmonic index and diameter of quasi-tree graphs, J. Math. 2021 (2021), Article ID 6650407, 9 pages.
- [2] N. Akhterm, J. Tomescu, Bycylic graphs with minimum general sum-connectivity index for $-1 \le \alpha < 0$, Publ. Roman. Acad. A. 16 (2015) 484–489.
- [3] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) 249–311.
- [4] M. Arshad, I. Tomescu, Maximum general sum-connectivity index with $-1 \le \alpha < 0$ for bicyclic graphs, Math. Rep. 19 (2017) 93–96.
- [5] Z. Du, B. Zhou, On sum-connectivity index of bicyclic graphs, Bull. Malays. Math. Sci. Soc. 35 (2012) 101–117.
- [6] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. 60 (1987) 187–197.
- [7] M.A. Iranmanesh, M. Saheli, On the harmonic index and harmonic polynomial of Caterpillars with diameter four, Iranian J. Math. Chem. 6 (2015) 35–43.
- [8] J.A. Jerline, B.A. Michaelraj, On a conjecture of harmonic index and diameter of graphs, Kragujevac J. Math. 40 (2016) 73–78.
- [9] J. Liu, On harmonic index and diameter of graphs, J. Appl. Math. Phys. 1 (2013) 5–6.
- [10] I. Tomescu, Extremal results concerning the general sum-connectivity index in some classes of connected graphs, ROMAI J. 10 (2014) 45–51.
- [11] D.B. West, Introduction to Graph Theory, (2nd edition), Prentice hall Upper Saddle River, 2001.

- [12] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
 [13] L. Zhong, The minimum harmonic index for unicyclic graphs with given diameter, Discuss. Math. Graph Theory 38 (2018) 429–442.
- [14] L. Zhong, Q. Cui, The harmonic index for unicyclic graphs with given girth, Filomat 29 (2015) 673–686.
 [15] L. Zhong, K. Xu, The harmonic index for bicyclic graphs, Util. Math. 90 (2013) 23–32.
 [16] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210–218.