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Abstract. The harmonic index of a graph G, is defined as the sum of weights 2
d(u)+d(v) of all edges uv of G,

where d(u) is the degree of the vertex u in G. In this paper we find the minimum harmonic index of bicyclic
graph of order n and diameter d. We also characterized all bicyclic graphs reaching the minimum bound.

1. Introduction

Let G be a connected simple graph with vertex set V(G) and edge set E(G). The graph G is said of order
n, where |V(G)| = n. The degree of a vertex u ∈ V(G) is denoted by dG(u) (or simply d(u)). Also NG(u) (or
simply N(u)) is the set of neighbors of u in G and N[u] = N(u) ∪ {u}. For u, v ∈ V(G), d(u, v) is the distance
between u and v in G and diam(G) = max{d(u, v); u, v ∈ G} is the diameter of G. If X ⊆ G, then G − X is the
graph obtained from G by deleting the vertices of X. Recall that a graph G is called unicyclic, if it contains
only one cycle. In this case, |E(G)| = |V(G)|. Also a graph G is called a quasi-tree graph, if G is not a tree and
there exists v ∈ V(G), such that G − v is a tree. A bicyclic graph G is a graph with exactly two cycles. In this
case |E(G)| = |V(G)| + 1. The other notations used here are common and may be found in [11].

The harmonic index of a graph G, is defined as H(G) =
∑

uv∈E(G)
2

d(u)+d(v) . This index first appeared in
connection with some conjectures, generated by the computer program Graffiti, [6] and can be viewed as
a particular case of the general sum-connectivity index, χα =

∑
uv∈E(G) (d(u) + d(v))α, proposed by Zhou and

Trinajstić [16] (H = 2χ−1). Du and Zhou [5] studied the sum-connectivity of bicyclic graphs. Also several
studies have focused on extremal sum-connectivity index of bicyclic graphs. See for example [2, 4, 10]. We
refer the interested readers to [3] for a recent survey about the harmonic index.

Zhong [12] and Zhong and Ciu [14] determined the minimum and maximum harmonic indices for
simple connected graphs, trees, unicyclic and characterized the corresponding extremal graphs. Liu [9],
showed that if T be a tree of order n ≥ 4 and diameter d, then H(T) ≥ d + 5

6 −
n
2 . Jerline and Michaelraj [8],

proved that for a unicyclic graph G of order n ≥ 7 and diameter d, H(G) ≥ d + 5
3 −

n
2 .

In [7] the minimum and maximum harmonic indices for caterpillars with diameter 4 are computed. It
is also showed that H(G) ≥ d + 5

3 −
n
2 , where G is a quasi-tree graph of order n ≥ 4 and diameter d, except

when G = U1,1
5,3 or U1,1

6,4 which are shown in Figure 1 [1].
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This paper is a contribution to the study of harmonic index of simple connected graphs of diameter d
and the main purpose is to find a lower bound for harmonic index of bicyclic graphs with respect to their
diameters. Indeed all bicyclic graphs reaching the minimum bound are characterized. Let

B(n, d) =



16
15 + 4

n + 2
n+2 +

2(n−5)
n−1 d = 3

7
5 + 6

n−1 +
2(n−6)

n−2 d = 4

d−5
2 + 2 + 6

n−d+3 +
2(n−d−2)

n−d+2 d ≥ 5

.

We show that H(G) ≥ B(n, d), where G is a bicyclic graph of order n and diameter d.
In Section 2, we prove the lemmas that will be used in Section 3, where we prove the main theorems.

Figure 1: The graphs U1,1
5,3 (left) and U1,1

6,4 (right).

2. Preliminaries

Zhong [15], introduced five families of bicyclic graphs of order n with no pendant vertex. We introduce
a similar structure as follows.

Let B be the set of connected bicyclic graphs without pendant vertices. Let B1 be the set of bicyclic
graphs obtained by joining two vertices of disjoint cycles by a path,B2 be the set of bicyclic graphs obtained
by identifying a vertex of each two disjoint cycles and then attaching them. and B3 be the set of bicyclic
graphs obtained from a cycle by adding a path. Obviously, B = B1

∪ B
2
∪ B

3. For example, the graph
B̃i ∈ B

i, for i = 1, 2, 3 is shown in Figure 2.

B̃1 B̃3B̃2

Figure 2: Bicyclic graphs with no pendant vertex.

For n ≥ 4, let B(n, d) be the set of connected bicyclic graphs of order n and diameter d. Every graph
G ∈ B(n, d) is obtained by attaching some trees to some vertices of a graph G ∈ B. We say G is the root of
G. Note that every graph G ∈ B(n, d) has a unique root, however it is possible that some non isomorphic
bicyclic graphs have common root.

Lemma 2.1. ([13, Lemma 1]) Let G be a nontrivial connected graph, and let uv ∈ E(G) be such that d(u), d(v) ≥ 2
and N(u)∩N(v) = ∅. Let G′ be the graph obtained from G by contracting the edge uv into a new vertex w and adding
a new pendant edge ww′ to w. Then H(G) > H(G′).

Corollary 2.2. If G ∈ B(n, d) has minimum harmonic index and P = u1 − u2 − · · · − ud+1 is a diametrical path of G,
then
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(i) If u1 is not a pendant vertex, then it is a vertex of a triangle. Similar argument is true for ud+1.

(ii) Every non pendant vertex of G − P is a vertex of a cycle.

(iii) If C is a cycle of G such that E(C) ∩ E(P) = ∅, then C is a triangle.

Proof. This is an immediate consequence of Lemma 2.1.

Lemma 2.3. Let G be a connected graph and u, v ∈ V(G), such that 2 ≤ d(v) ≤ d(u). Let G1 obtained from G by
attaching two paths of length r ≥ 1 and s ≥ 1 to u and v respectively and G2 obtained from G by attaching one pendant
vertex and a path of length r + s − 1 to u and v respectively. Then H(G1) ≥ H(G2).

Proof. If r = 1, then G1 = G2. Hence assume r ≥ 2. Assume first that u , v and u and v are not adjacent. In
the rest of paper, set zx = dG(x) + dG(u) and wy = dG(y) + dG(v). So

H(G1) =H(G) −
∑

x∈NG(u)

2
zx(zx + 1)

−

∑
y∈NG(v)

2
wy(wy + 1)

+
2

d(u) + 3
+

2
3

+ (r − 2)
2
4

+


2

d(v)+2 s = 1

2
d(v)+3 + 2

3 + (s − 2) 2
4 s ≥ 2

,

and

H(G2) =H(G) −
∑

x∈NG(u)

2
zx(zx + 1)

−

∑
y∈NG(v)

2
wy(wy + 1)

+
2

d(u) + 2
+

2
d(v) + 3

+
2
3

+ (r + s − 3)
2
4
.

Hence

H(G1) −H(G2) = −
2

(d(u) + 3)(d(u) + 2)
+

1
2

+


2

(d(v)+2)(d(v)+3) −
1
2 s = 1

−
1
3 s ≥ 2

.

Since 2 ≤ d(v) ≤ d(u), then H(G1) ≥ H(G2).
Next assume u , v and u and v are adjacent. Therefore

H(G1) =H(G) −
∑

x∈NG(u)
x,v

2
zx(zx + 1)

−

∑
y∈NG(v)

y,u

2
wy(wy + 1)

−
4

(d(u) + d(v))(d(u) + d(v) + 2)

+
2

d(u) + 3
+

2
3

+
r − 2

2
+


2

d(v)+2 s = 1

2
d(v)+3 + 2

3 + s−2
2 s ≥ 2

and

H(G2) =H(G) −
∑

x∈NG(u)
x,v

2
zx(zx + 1)

−

∑
y∈NG(v)

y,u

2
wy(wy + 1)

−
4

(d(u) + d(v))(d(u) + d(v) + 2)
+

2
d(u) + 2

+
2

d(v) + 3
+

2
3

+ (r + s − 3)
2
4
.

So H(G1) ≥ H(G2).
Finally assume u = v. In this case without lose of generality, one may assume that s ≥ 2. Hence

H(G1) = H(G) −
∑

x∈NG(u)

4
zx(zx + 2)

+ 2(
2

d(u) + 4
) + 2(

2
3

) +
r + s − 4

2
.
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and

H(G2) = H(G) −
∑

x∈NG(u)

4
zx(zx + 2)

+
2

d(u) + 3
+

2
d(u) + 4

+
2
3

+
r + s − 3

2
.

Hence

H(G1) −H(G2) =
1
6
−

2
(d(u) + 3)(d(u) + 4)

> 0.

This complete the proof.

Lemma 2.4. Let Γ1 , G ∈ B(n, d) with only one pendant vertex u, such that G ∈ B1. If G − u ∈ B(n − 1, d − 1),
then there exists G′ ∈ B(n, d) such that G′ ∈ B2 and H(G) ≥ H(G′).

Proof. Suppose u′, v′ ∈ V(G) are two vertices of degree 3. Let P′ : u′ = u′1− · · ·−u′k+1 = v′ is the path between
u′ and v′ in G, where k ≥ 1.

Since deleting u decrease the diameter, one may assume that either P′ ⊂ P or E(P′) ∩ E(P) = ∅. If
there exists a diametrical path P in G such that E(P′) ∩ E(P) = ∅, then Lemma 2.1 implies that there exists
G′ ∈ B(n, d) such that G′ ∈ B2 and H(G) ≥ H(G′).

If every diametrical path of G contains P′, then fix a diametrical path P : u1 − · · · −ud+1 = u. Without lose
of generality suppose d(u′,u) < d(v′,u). Note that, in this case, at most one vertex of NG(u′) is of degree 3,
otherwise G has two pendant vertices. Also all neighbors of v′ are of degree 2.

Let G′ obtain from G by contracting the path P′ into a new vertex w and adding a new vertex u′k+2 such
that V(G′) = V(G) ∪ {w,u′k+2} − {u

′

1,u
′

k+1} and

E(G′) = E(G) ∪ {uu′2,u
′

ku′k+2} ∪ {wx : x ∈ N(u′) ∪N(v′), x , u′2,u
′

k}

− {u′x : x ∈ N(u′)} − {v′y : y ∈ N(v′)}.

Since deleting u from G decrease the diameter, then u < NG(u′). Two possibilities are as follows:

(1) dG(u′) = dG(v′) = 3. In this case,

H(G′) = H(G) −
2

(d(ud) + 1)(d(ud) + 2)
−

∑
x∈NG(u′)

x,u′2

2
(3 + d(x))(4 + d(x))

−

∑
y∈N(v′)

y,u′k

2
(3 + d(y))(4 + d(y))

+A

= H(G) −
1
5
−

2
(d(ud) + 1)(d(ud) + 2)

−
2

(3 + d(x))(4 + d(x))
+ A,

where A = 1
3 if k = 1 and A = 11

30 if k ≥ 2. Note that x ∈ NG(u′) and d(x) ≤ 3.
The last expression is greater than H(G) if and only if k ≥ 2 and d(ud) = d(x) = 3. So G = Γ1, shown in
Figure 3.

(2) dG(u′) = 4 and dG(v′) = 3. Since diam(G − u) < diam(G), then d(u′,u) > 1 and hence d(ud) = 2 and
dG(x) = 2 for every x ∈ N(u′) − u′2. So

H(G′) = H(G) −
2

(d(ud) + 1)(d(ud) + 2)
−

∑
x∈N(u′)

x,u′2

2
(4 + d(x))(5 + d(x))

−

∑
y∈N(v′)

y,u′k

4
(5 + d(y))(3 + d(y))

+A

= H(G) −
13
42
−

8
35

+ A < H(G),

where A = 3
14 if k = 1 and A = 4

15 if k ≥ 2.
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≥ 1

≥ 1

t ≥ 0

≥ 2

≥ 1≥ 1

Γ1 Γ2 Γ3

Figure 3: The bicyclic graphs related to Lemmas 2.5, 2.4.

Lemma 2.5. Let Γi , G ∈ B(n, d), i = 2, 3 (see Figure 3) such that G ∈ B1 and G has only two pendant vertices u, v.
If G − u,G − v ∈ B(n − 1, d − 1), then there exists G′ ∈ B(n, d) such that G′ ∈ B2 and H(G) ≥ H(G′).

Proof. Suppose u′, v′ ∈ V(G) are two vertices of degree 3. Let P′ : u′ = u′1− · · ·−u′k+1 = v′ is the path between
u′ and v′ in G. Since deleting every pendant vertex decrease the diameter, one may assume that either
P′ ⊂ P or E(P′) ∩ E(P) = ∅. If there exists a diametrical path P in G such that E(P′) ∩ E(P) = ∅, then Lemma
2.1 implies that there exists G′ ∈ B(n, d) such that G′ ∈ B2 and H(G) ≥ H(G′).

If every diametrical path of G contains P′, then fix a diametrical path P : u = u1 − · · · − ud+1 = v. Let
G′ obtain from G by contracting the path P′ into a new vertex w and adding a new vertex u′k+2 such that
V(G′) = V(G) ∪ {w,u′k+2} − {u

′

1,u
′

k+1} and

E(G′) = E(G) ∪ {uu′2,u
′

ku′k+2} ∪ {wx : x ∈ N(u′) ∪N(v′), x , u′2,u
′

k}

− {u′x : x ∈ N(u′)} − {v′y : y ∈ N(v′)}.

Since deleting u, v from G decrease the diameter, then u, v < NG(u′) ∪ NG(v′). So three cases will arise as
follows.

(1) dG(u′) = dG(v′) = 3. Note that in this case, at most one vertex of NG(u′) − {u′2} is of degree 3, otherwise
P′ 1 P. The same argument is valid for NG(v′) − u′k. Without lose of generality suppose dG(ud) ≤ dG(u2).
Hence

H(G′) = H(G) −
2

(d(ud) + 1)(d(ud) + 2)

∑
x∈NG(u′)

x,u′2

2
(3 + d(x))(4 + d(x))

−

∑
y∈NG(v′)

y,u′k

2
(3 + d(y))(4 + d(y))

+ A

= H(G) −
2

(d(ud) + 1)(d(ud) + 2)
−

2
(3 + d(x))(4 + d(x))

−
2

(3 + d(y))(4 + d(y))
−

2
15

+ A,

where A = 1
3 if k = 1 and A = 11

30 if k ≥ 2.
If d(ud) = d(x) = d(y) = 3, then H(G′) > H(G) and G = Γ2. Also if k ≥ 2 and without lose of generality
d(ud) = d(x) = 3, d(y) = 2, then H(G′) > H(G) and G = Γ3. For other possibilities of du, dx and dy,
H(G′) < H(G).

(2) dG(u′) = 3 and dG(v′) = 4. (The case dG(u′) = 3 and dG(v′) = 4 is similar.) Without lose of generality,
suppose d(v′,ud+1) < d(u′,ud+1). Since diam(G−ud+1) < diam(G), then d(v′,ud+1) > 1 and hence d(ud) = 2.
Also at most one vertex of N(u′)−u′2 is of degree 3, otherwise P′ 1 P and d(y) = 2 for every y ∈ N(v′)−u′k.
So

H(G′) = H(G) −
∑

x∈N(u′)
x,u′2

4
(3 + d(x))(5 + d(x))

−

∑
y∈N(v′)

y,u′k

2
(4 + d(y))(5 + d(y))

≤ H(G) −
4
35
−

4
48
−

6
42

+ A < H(G),

where A = 3
14 if k = 1 and A = 4

15 , if k ≥ 2.
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(3) dG(u′) = dG(v′) = 4. In this case, since diam(G− u′),diam(G− v′) < diam(G), then d(u′,u1), d(v′,ud+1) ≥ 2
and d(x) = d(y) = 2 for every x ∈ N(u′) − u′2 and y ∈ N(v′) − u′k. Hence

H(G′) = H(G) −
∑

x∈N(u′)
x,v′

4
(4 + d(x))(6 + d(x))

−

∑
y∈N(v′)

y,u′

4
(4 + d(y))(6 + d(y))

+ A

= H(G) − 3(
4
48

) − 3(
4

48
) + A < H(G),

where A = 1
4 if k = 1 and A = 1

3 , if k ≥ 2.

Let K−4 be a graph obtained from K4 by deleting an edge. Suppose Bn,2 is a bicyclic graph of order n and
diameter 2, obtained by attaching n − 4 pendant vertices to a vertex of degree 3 of K−4 . Also let B1

n,3 be a
bicyclic graph of order n and diameter 3, obtained by attaching a pendant vertex to the vertex of degree 3 of
Bn,2. Let C+

4 be the graph obtained from C4 by adding a new vertex connected to two non adjacent vertices
of C4. For d ≥ 3 let Bn,d be a bicyclic graph of order n and diameter d, obtained by attaching n−d−2 pendant
vertices and a path of length d − 3 to two vertices of degree 3 of C+

4 (see Figure 4).

n− d− 2

d− 3

n− 5n− 4

Bn,2 B1
n,3 Bn,d

Figure 4: Minimal bicyclic graphs of order n and diameter d.

Zhong and Xu [15], showed that H(Bn,2) = 4
5 + 4

n+1 + 2
n+2 +

2(n−4)
n is the minimum harmonic index in the

set of harmonic indices of bicyclic graphs of order n. So H(G) ≥ H(Bn,2) for every G ∈ B(n, 2) and equality
holds if and only if G = Bn,2. We claim that if d = 3, then H(G) > H(B1

n,3) = 7
5 + 6

n−1 +
2(n−6)

n−2 for every

B1
n,3 , G ∈ B(n, 3) and if d ≥ 4, then H(G) > H(Bn,d) = d−5

2 + 2 + 6
n−d+3 +

2(n−d−2)
n−d+2 for every Bn,d , G ∈ B(n, d).

For 3 ≤ d ≤ n − 2, define the two variable function B(n, d) as follows.

B(n, d) =



16
15 + 4

n + 2
n+2 +

2(n−5)
n−1 d = 3

7
5 + 6

n−1 +
2(n−6)

n−2 d = 4

d−5
2 + 2 + 6

n−d+3 +
2(n−d−2)

n−d+2 d ≥ 5

Lemma 2.6. Let f1(x) = x
2 −B(x, 3), f2(x) = x

2 −B(x, 4) and f3(x) = x
2 −

6
x+3 −

2(x−2)
x+2 + 1

2 . Then f1(x) ≥ 73
210 is an

increasing function for x ≥ 5, f2(x) ≥ 2
5 is an increasing function when x ≥ 6 and f3(x) ≥ 3

5 is an increasing function
when x ≥ 3.

Proof. It is easy to see that f ′1(x) = 1
2 + 4

x2 + 2
(x+2)2 −

8
(x−1)2 . So if x ≥ 5, then x− 1 ≥ 4 and 1

2 −
8

(x−1)2 ≥
1
2 −

8
16 = 0.

Hence f ′1(x) > 0, when x ≥ 5 and f1(x) ≥ f1(5) = 73
210 is an increasing function.

Also if x ≥ 6, then f ′2(x) = 1
2 + 6

(x−1)2 −
8

(x−2)2 ≥
1
2 + + 6

(x−1)2 −
8
16 > 0. So f2(x) ≥ f2(6) = 2

5 is an increasing
function when x ≥ 6.

Suppose x ≥ 3, then f ′3(x) = 1
2 + 6

(x+3)2 −
8

(x+2)2 ≥
1
2 + 6

(x+3)2 −
8
25 > 0. Therefore f3(x) ≥ f3(3) = 3

5 is an
increasing function too.
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3. Main results

In this section we show that H(G) ≥ B(n, d) for every G ∈ B(n, d), where d ≥ 3.

r ≥ 3s ≥ 3

t ≥ 1

G1

s ≥ 3 t ≥ 1

r2

r1

G2

s k

r

s

k

t

t

G3 G4
r1

r2

Figure 5: The graphs related to Lemma 3.1.

Lemma 3.1. Let G ∈ B(n, d), n − d ≥ 3 and d ≥ 3, such that G has at least one pendant vertex. If for every pendant
vertex w ∈ G, G − w ∈ B(n − 1, d − 1) then H(G) ≥ B(n, d). The equality holds if and only if G = B1

6,3 or B7,4.

Proof. Let G be the root of G. If G has more than two pendant vertices, then there is a pendant vertex v such
that G − v ∈ B(n − 1, d), a contradiction. So G has at most two pendant vertices.
• If G has one pendant vertex w, then two cases will arise as follows.
(1) G ∈ B1

∪ B
2. By Lemma 2.4, without lose of generality, assume G = Γ1 or G ∈ B2. So if G = Γ1, then

d ≥ 5, n − d ≥ 3 and H(Γ1) = n
2 −

4
15 . Therefore

H(Γ1) −B(n, d) =
n − d

2
−

6
n − d + 3

−
2(n − d − 2)

n − d + 2
+

1
2
−

4
15

> 0,

by Lemma 2.6. If G ∈ B2, then G is obtained by attaching two disjoint cycles of lengths r, s ≥ 3, joining
together in vertex u. So |V(G)| = r + s− 1, dG(u) = 4 and the other vertices of G are of degree 2. Hence G
is obtained by attaching a path of length t either to u or to a vertex of degree 2. Hence G = G1 or G = G2,
the graphs shown in Figure 5.
Suppose G = G1. Since diam(G − w) < diam(G), we find that t ≥ 2, n ≥ 7 and H(G) = n

2 −
17
42 . So

if d = 3, then r = s = 3, t = 2 and n = 7. Hence H(G) = 65
21 >

796
315 = B(7, 3). If d = 4, then n ≥ 8

and H(G) − B(n, 4) = n
2 −

6
n−1 −

2(n−6)
n−2 −

7
5 −

17
42 > 0, by Lemma 2.6. If d ≥ 5, then n − d ≥ 4 and

H(G) −B(n, d) = n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 + 1

2 −
17
42 > 0, by Lemma 2.6.

Suppose G = G2 and without lose of generality, r1 ≤ r2. If r1 = 0, then H(G) = n
2 −

11
35 + A, where A = 0 if

t = 1 and A = 1
15 if t ≥ 2. Also if r1 ≥ 1, then H(G) = n

2 −
11
30 + A, where A = 0 if t = 1 and A = 1

15 if t ≥ 2.
So if d = 3, then t = 1, r1 = 0 and n ≥ 6. Therefore H(G) − B(n, 3) ≥ n

2 −
4
n −

2
n+2 −

2(n−5)
n−1 −

145
105 > 0, by

Lemma 2.6. If d = 4, then n ≥ 7 and H(G) ≥ n
2 −

11
30 . Therefore H(G) −B(n, 4) = n

2 −
6

n−1 −
2(n−6)

n−2 −
53
30 > 0,

by Lemma 2.6. Also if d ≥ 5, then H(G) ≥ n
2 −

11
30 and H(G) −B(n, d) = n−d

2 −
6

n−d+3 −
2(n−d−2)

n−d+2 + 2
15 > 0, by

Lemma 2.6.
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(2) G ∈ B3. In this case, G is obtained by attaching a path of length t ≥ 1, to either a vertex of degree 2 or
a vertex of degree 3 of G. So G = G3 or G4, shown in Figure 5. Without lose of generality, suppose if
G = G3, then r1, r2, k ≥ 0, r1 ≤ r2. Also if G = G4, then k ≤ r, s and r, s, t ≥ 1. The following possibilities
will arise.

(i) k = 0. Hence

H(G3) =
n
2
−

13
15

+ A +


2
3 r1 = r2 = 0
19
30 r1 = 0, r2 ≥ 1
3
5 r1, r2 ≥ 1

,

where A = 0, if t = 1 and A = 1
15 , otherwise.

If d = 3, then t = 1, r1 = 0 and n ≥ 5. So H(G3) − B(n, 3) ≥ n
2 −

4
n −

2
n+2 −

2(n−5)
n−1 −

7
30 −

16
15 > 0, by

Lemma 2.6. If d = 4, then either r1 = 0 and t ≥ 2 or r1 ≥ 1. Therefore if r1 = 0, then n ≥ 6 and
H(G3) ≥ n

2 −
1
6 . Hence H(G3) − B(n, 4) ≥ 6

2 −
1
6 − B(6, 4) > 0, by Lemma 2.6. Also if r1 ≥ 1 then

n ≥ 7 and H(G3) ≥ n
2 −

4
15 . So H(G3) − B(n, 4) ≥ 7

2 −
4
15 − B(7, 4) > 0, by Lemma 2.6. If d ≥ 5, then

H(G3) −B(n, d) ≥ n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 + 1

2 −
4
15 > 0.

Also H(G4) = n
2 + A, where A = − 73

210 if t = 1 and A = − 26
105 if t ≥ 2. So if d = 3, then n ≥ 6 and

H(G4)−B(n, 3) ≥ n
2 −

4
n −

2
n+2 −

2(n−5)
n−1 −

16
15 −

73
210 > 0, by Lemma 2.6. If d = 4, then n ≥ 7 and H(G4)−B(n, 4) ≥

n
2 −

6
n−1 −

2(n−6)
n−2 −

7
5 −

73
210 > 0. Also if d ≥ 5 then H(G4) −B(n, d) ≥ n−d

2 −
6

n−d+3 −
2(n−d−2)

n−d+2 + 1
2 −

73
210 > 0.

(ii) k ≥ 1. So

H(G3) =
n
2
−

9
10

+ A +


2
3 r1 = r2 = 0
19
30 r1 = 0, r2 ≥ 1
3
5 r1, r2 ≥ 1

,

where A = 0, if t = 1 and A = 1
15 , otherwise. If d = 3, then r1 = 0, t = 1 and n ≥ 6. Therefore.

H(G3) −B(n, 3) ≥
n
2
−

4
n
−

2
n + 2

−
2(n − 5)

n − 1
−

4
3
> 0.

If d = 4, then n ≥ 7 and H(G3) −B(n, 4) ≥ n
2 −

6
n−1 −

2(n−6)
n−2 −

17
10 > 0. Also if d ≥ 5 then H(G3) −B(n, d) ≥

n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 + 1

5 > 0.
Also H(G4) = n

2 + A, where A = − 2
5 if t = 1 and A = − 3

10 if t ≥ 2. So if d = 3, then t = 1 and
H(G4) −B(n, 3) ≥ n

2 −
4
n −

2
n+2 −

2(n−5)
n−1 −

22
15 > 0. If d = 4, then H(G4) −B(n, 4) ≥ n

2 −
6

n−1 −
2(n−6)

n−2 −
9
5 > 0.

Also if d ≥ 5 then H(G4) −B(n, d) ≥ n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 + 1

10 > 0.
• If G has two pendant vertices, then by Lemma 2.5, without lose of generality, suppose eitherG ∈ B2∪B3

or G = Γi, i = 2, 3. If G ∈ B2 ∪ B3, then Lemma 2.3 implies that without lose of generality, one may
assume that G is obtained by attaching a pendant vertex w and a path of length t to two vertices u and
v of G, respectively, such that d(v) ≤ d(u). So there are four cases as follows.

(1) G ∈ B2. Suppose |V(G)| = m, then n = m + t + 1 and H(G) = m
2 −

1
6 . Since only one vertex of G is of

degree 4 and the other vertices are of degree 2, then either dG(u) = dG(v) = 3 or dG(u) = 5, dG(v) = 3.
Note that since deleting every pendant vertex, decrease the diameter, then u , v and d ≥ 4. Hence two
possibilities will arise as follows.

(i) u < N(v). Hence

H(G) = H(G) −
∑

x∈NG(u)

2
(zx − 1)zx

−

∑
y∈NG(v)

2
(wy − 1)wy

+
2

d(u) + 1
+


2

d(v)+1 t = 1

2
d(v)+2 + 2

3 + t−2
2 t ≥ 2

.



A. Abdolghafourian, M.A. Iranmanesh / Filomat 36:1 (2022), 125–140 133

If d(u) = d(v) = 3, then

H(G) ≥
n
2
−

17
30

+

 0 t = 1
1

15 t ≥ 2
.

Hence by Lemma 2.6, if d = 4 then n ≥ 7 and H(G) − B(n, 4) ≥ n
2 −

6
n−1 −

2(n−6)
n−2 −

59
30 > 0. Also if d ≥ 5,

then n ≥ 8 and n − d ≥ 3. So H(G) −B(n, d) ≥ n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 −

1
15 > 0.

If d(u) = 5 and d(v) = 3 then

H(G) ≥
n
2
−

76
105

+

 0 t = 1
1
15 t ≥ 2

.

Since u, v are not adjacent, there exists a cycle of length at least 4 in G. So by Lemma 2.6, if d = 4, then
n ≥ 8 and H(G) −B(n, 4) ≥ n

2 −
6

n−1 −
2(n−6)

n−2 −
223
105 > 0. Also if d ≥ 5, then n ≥ 9 and n − d ≥ 4. Therefore

H(G) −B(n, d) ≥ n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 −

47
210 > 0.

(ii) u ∈ N(v). In this case

H(G) = H(G) −
∑

x∈NG(u)
x,v

2
(zx − 1)zx

−

∑
y∈NG(v)

y,u

2
(wy − 1)wy

+
2

d(u) + 1
−

4
(d(u) + d(v) − 2)(d(u) + d(v))

+


2

d(v)+1 t = 1

2
d(v)+2 + 2

3 + t−2
2 t ≥ 2

.

By the same calculation as (i), one may easily see that H(G) > B(n, d).
(2) G ∈ B3 and dG(u′, v′) = 1, where u′, v′ are two vertices of degree 3 in G. Suppose |V(G)| = m, then

n = m + t + 1 and H(G) = m
2 −

1
15 . Note that if u = v then diam(G − w) = diam(G), a contradiction. So

u , v and d ≥ 3. Hence either dG(u) = dG(v) = 3 or dG(u) = 4, dG(v) = 3 or dG(u) = dG(v) = 4. Therefore
two possibilities will arise as follows.

(i) u < N(v). Then d ≥ 4 and

H(G) = H(G) −
∑

x∈NG(u)

2
(zx − 1)zx

−

∑
y∈NG(v)

2
(wy − 1)wy

+
2

d(u) + 1
+


2

d(v)+1 t = 1

2
d(v)+2 + 2

3 + t−2
2 t ≥ 2

.

If d(u) = d(v) = 3 then since n − d ≥ 3, then n ≥ 7 and

H(G) ≥
n
2
−

7
15

+

 0 t = 1
1
5 t ≥ 2

.

If d = 4, then H(G) − B(n, 4) = n
2 −

6
n−1 −

2(n−6)
n−2 −

28
15 > 0. Also if d ≥ 5, then H(G) − B(n, d) ≥

n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 + 1

30 > 0, by Lemma 2.6.
If d(u) = 4 and d(v) = 3 then u has at least one neighbor of degree 3 and

H(G) ≥
n
2
−

23
42

+

 0 t = 1
1

15 t ≥ 2
.

If d = 4, then n ≥ 7 and H(G) − B(n, 4) ≥ n
2 −

6
n−1 −

2(n−6)
n−2 −

409
210 > 0. Also if d ≥ 5 and t ≥ 2, then

H(G) −B(n, d) ≥ n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 −

1
21 > 0.

Note that since u < N(v), then both d(u) and d(v) are not equal to 4.
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(ii) u ∈ N(v). Then d ≥ 3 and

H(G) = H(G) −
∑

x∈NG(u)
x,v

2
(zx − 1)zx

−

∑
y∈NG(v)

y,u

2
(wy − 1)wy

+
2

d(u) + 1
−

4
(d(u) + d(v) − 2)(d(u) + d(v))

+


2

d(v)+1 t = 1

2
d(v)+2 + 2

3 + t−2
2 t ≥ 2

.

If d = 3 then since deleting every pendant vertices decrease the diameter, then d(u) = d(v) = 4 and n = 6.
So G = B1

6,3. If d ≥ 4, then by the same calculation as (i), one may easily see that H(G) > B(n, d).
(3) G ∈ B3 and dG(u′, v′) > 1, where u′, v′ are two vertices of degree 3 in G. Suppose |V(G)| = m, then

n = m + t + 1 and H(G) = m
2 −

1
10 . So either d(u) = d(v) = 3 or d(u) = 4, d(v) = 3 or d(u) = d(v) = 4. Note

that if u = v or u ∈ N(v) then diam(G − w) = diam(G), a contradiction. Therefore u , v and u, v are not
adjacent. Hence d ≥ 4 and

H(G) = H(G) −
∑

x∈NG(u)

2
(zx − 1)zx

−

∑
y∈NG(v)

2
(wy − 1)wy

+
2

d(u) + 1
+


2

d(v)+1 t = 1

2
d(v)+2 + 2

3 + t−2
2 t ≥ 2

.

If d(u) = d(v) = 3 then

H(G) ≥
n
2
−

1
2

+

 0 t = 1
1

15 t ≥ 2
.

If d = 4, then n ≥ 7 and H(G) −B(n, 4) ≥ n
2 −

6
n−1 −

2(n−6)
n−2 −

19
10 > 0. Also if d ≥ 5, then H(G) −B(n, d) ≥

n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 > 0.

If d(u) = 4 and d(v) = 3 then

H(G) ≥
n
2
−

3
5

+

 0 t = 1
1

15 t ≥ 2
.

If d = 4, then n ≥ 8 and H(G) −B(n, 4) ≥ n
2 −

6
n−1 −

2(n−6)
n−2 − 2 > 0. Also if d ≥ 5, then n ≥ 9 and n − d ≥ 4.

So H(G) −B(n, d) ≥ n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 −

1
10 > 0.

If d(u) = d(v) = 4, then

H(G) =
n
2
−

3
5
−

 1
10 t = 1

0 t ≥ 2
.

If d = 4, then t = 1 and n ≥ 7. If n = 7, then G = B7,4 and H(G) = B(7, 4). If n ≥ 8, then H(G) −B(n, 4) =
n
2 −

6
n−1 −

2(n−6)
n−2 −

21
10 > 0. Also if d ≥ 5, then n ≥ 8. If n− d = 3, then t ≥ 2. So G = Bn,d and H(G) = B(n, d).

If n − d ≥ 4, then H(G) −B(n, d) ≥ n−d
2 −

6
n−d+3 −

2(n−d−2)
n−d+2 −

2
10 > 0.

(4) G = Γi, i = 2, 3. So d ≥ 5.
If G = Γ2, then d ≥ 5, n − d = 3 and H(G) = n

2 − A, where A = 2
5 if t = 0 and A = 13

30 if t = 0. Therefore
H(G)−B(n, d) = 3

5 −A > 0. If G = Γ3, then H(G) = n
2 −

7
15 . So H(G)−B(n, d) = n−d

2 −
6

n−d+3 −
2(n−d−2)

n−d+2 + 1
30 > 0.

Theorem 3.2. Let G ∈ B(n, d) and d ≥ 3 then H(G) ≥ B(n, d) and equality holds if and only if G = B1
n,3, where

d = 3 and G = Bn,d, where d ≥ 4.
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G1 G2

k ≥ 1

Figure 6: The graphs related to Theorem 3.2

r

rs

V0,0 V1,0 Vr,0

V1,1 Vr,s

Figure 7: Bicyclic graph of order n and diameter d, such that n − d = 2.

Proof. By induction on n. First suppose n − d = 2. So if P ⊂ G be a diametrical path, then only one vertex
of G is not in P. Note that two cycles of G should have a common vertex not in P and all other vertices of
G should be in P, since every cycle has at least one vertex which is not in P. Therefore G ∈ B3 and G = Vr,s,
is a quasi-tree graph introduced in [1]. The graph Vr,s obtained by adding two paths of lengths r, s to two
vertices of degree 2 of K−4 , (see Figure 7). The authors showed [1], H(Vr,s) ≥ d + 5

3 −
n
2 , where equality holds

if and only if r = s = 1. One may easily see that if d ≤ 5, then d + 5
3 −

n
2 > B(n, d), since n − d = 2. Suppose

d ≥ 5. Then G = Vs,r where r, s ≥ 0 and r + s ≥ 3. Hence by [1, Table 1], H(G) ≥ d
2 + 11

15 > B(d + 2, d).
Suppose n − d = 3. So two vertices of G are not in its diametrical path. If G has no pendant vertex, then

Corollary 2.2 implies that every cycle of G is a triangle. Hence G is one of the graph shown in Figure 6,
since d ≥ 3. By an easy calculation, it is seen that H(G1) = 44

15 > B(6, 3), H(G2) = 29
10 + k

2 > B(k + 6, k + 3).
Assume G has at least one pendant vertex. If for every pendant vertex of G, namely v, diam(G − v) <

diam(G), then Lemma 3.1 implies that H(G) > B(n, d). Hence suppose there exists a pendant vertex v ∈ G
such that diam(G− v) = diam(G) and NG(v) = u. Since v is a pendant vertex, G− v ∈ B(n− 1, d) and G− v is
one of the graph shown in Figure 7. Now by [1], H(G − v) ≥ d + 5

3 −
(n−1)

2 = d
2 + 2

3 , where equality holds if
and only if G − v = V1,1. Also 2 ≤ dG−v(u) ≤ 3 and

H(G) = H(G − v) +
2

dG−v(u) + 2
−

∑
x∈NG−v(u)

2
(dG−v(x) + dG−v(u))(dG−v(x) + dG−v(u) + 1)

Note that at most one neighbor of u is of degree one. If dG−v(u) = 2 then d ≥ 4 and G − v , V1,1. Therefore
H(G − v) > d

2 + 2
3 . If d = 4, then n = 7 and H(G) > 87

30 >
14
5 = B(7, 4). If d ≥ 5, then

H(G) −B(n, d) ≥ H(G − v) +
7

30
−B(n, d) >

d
2

+
27
30
−B(n, d) = 0

Suppose dG−v(u) = 3, then at most one neighbor of u is of degree less than 3. So H(G) ≥ H(G − v) + 43
210 .

If d = 3 then G − v = V1,0 and H(G − v) = 23
10 . Hence H(G) ≥ 263

105 >
143
60 = B(6, 3).

If d = 4, then n = 7 and H(G − v) ≥ 8
3 . Hence H(G) > B(7, 4).
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Also if d ≥ 5, then H(G − v) ≥ d
2 + 11

15 . Therefore H(G) −B(d + 3, d) ≥ 0.
Suppose n > d + 3 and for convenience, G has minimum harmonic index among all graphs in B(n, d).

Let P = v1 − v2 − · · · − vd+1 is a diametrical path of G. If G has no pendant vertex, then by Corollary 2.2,
every cycle of G is a triangle. So at most two vertices of G are not in its diametrical path. Hence n− d ≤ 3, a
contradiction.

Suppose G has at least one pendant vertex. If for every pendant vertex v ∈ G, G−v ∈ B(n−1, d−1), then
by Lemma 3.1, H(G) > B(n, d). Hence assume there exists a pendant vertex v in G such that G−v ∈ B(n−1, d)
and N(v) = u. Note that d(u) ≤ n − d + 1, since diam(G) = d. Suppose there exist ki vertices of degree i in
N(u) for 1 ≤ i ≤ r. It is clear that there exists i > 1 such that ki , 0. Hence

H(G) = H(G − v) +
2

1 + d(u)
−

∑
v,x∈N(u)

2
(d(u) − 1 + d(x))(d(u) + d(x))

= H(G − v) +
2

1 + d(u)
−

2k1

d(u)(d(u) + 1)
− · · · −

2kr

(d(u) + r − 1)(u + r)
. (1)

There are three cases as follows.

(i) d(u) ≤ n − d − 1. In this case, Equation 1, implies that

H(G) ≥ H(G − v) +
2

1 + d(u)
−

2(d(u) − 2)
d(u)(d(u) + 1)

−
2

(d(u) + 1)(d(u) + 2)

= H(G − v) +
2(d(u) + 4)

(1 + d(u))d(u)(2 + d(u))
.

Since the function f (x) =
2(x+4)

x(1+x)(2+x) is a decreasing function for x > 0, f (d(u)) ≥ f (n − d − 1). So if d = 4,
then induction hypothesis implies

H(G) ≥
7
5

+
6

n − 2
+

2(n − 7)
n − 3

+
2(n − 1)

(n − 5)(n − 4)(n − 3)

and H(G) −B(n, 4) > 0. Also if d ≥ 5 then

H(G) ≥ 2 +
d − 5

2
+

6
n − d + 2

+
2(n − d − 3)

n − d + 1
+

2(n − d + 3)
(n − d − 1)(n − d)(n − d + 1)

,

and

H(G) −B(n, d) ≥
12(5(n − d) + 3)

(n − d + 2)(n − d + 3)(n − d)((n − d)2 − 1)
> 0.

Suppose d = 3 and d(u) ≤ n − 5. To the contrary, suppose there exists only one vertex x ∈ N(u) such
that d(x) = 2 and other neighbors of u are pendant vertices. Then if u = v1 or v4, we find that d ≥ 4, a
contradiction. If u = v2 or v3, then G is a tree, another contradiction. So u , vi for 1 ≤ i ≤ 4. Without
lose of generality assume d(v1, x) < d(v4, x) = t. Then d(v4, v) = 1 + d(v4,u) = 2 + d(v4, x) = 2 + t ≥ 4, a
contradiction. Therefore there exist x, y ∈ N(u) such that d(x), d(y) ≥ 2. Hence by Equation 1,

H(G) ≥ H(G − v) +
2

1 + d(u)
−

2(d(u) − 3)
d(u)(d(u) + 1)

−
4

(d(u) + 1)(d(u) + 2)

= H(G − v) +
2(d(u) + 6)

(1 + d(u))d(u)(d(u) + 2)
.

Since the function f (x) =
2(x+6)

(1+x)x(x+2) is a decreasing function,

H(G) −B(n, 3) ≥
12(80 + 37n2 + 78n − 66n3 + 15n4)

n(n − 4)(n − 5)(n − 3)(n2 − 1)(n2 − 4)
> 0.
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Assume that d(u) = n− 4. If at least three neighbors of u, are not pendant vertices, then the Equation 1
implies

H(G) ≥ H(G − v) +
2

1 + d(u)
−

2(d(u) − 4)
d(u)(d(u) + 1)

−
6

(d(u) + 1)(d(u) + 2)

= H(G − v) +
2(d(u) + 8)

(1 + d(u))d(u)(d(u) + 2)
.

So

H(G) −B(n, 3) ≥
48(3x3

− 3x2
− 5x − 4)

(x − 3)x(x − 4)(x2 − 1)(x2 − 4)
> 0.

Also if there exist x, y ∈ N(u) such that d(x) ≥ 2 and d(y) ≥ 3, then

H(G) ≥ H(G − v) +
2

1 + d(u)
−

2(d(u) − 3)
d(u)(d(u) + 1)

−
2

(d(u) + 1)(d(u) + 2)
−

2
(d(u) + 2)(d(u) + 3)

= H(G − v) +
2(d(u) + 9)

(d(u) + 3)d(u)(d(u) + 1)
.

Since f (x) =
2(x+9)

(x+3)x(x+1) is an decreasing function,

H(G) −B(n, 3) ≥
12(−16 − 22n − 15n2 + 11n3)

n(n − 4)(n − 3)(n2 − 1)(n2 − 4)
> 0.

Suppose there exist x, y ∈ N(u) such that d(x) = d(y) = 2 and d(z) = 1 for every vertices x, y , z ∈ N(u).
If u < P, then since every neighbor of G is of degree at most 2, then N(u) ∩ P ⊂ {v1, v4}. Also since
diam(G) = 3, then |N(u) ∩ {v1, v4}| = 1. So u is adjacent to exactly one vertex of P, since d(u) = n − 4.
without lose of generality suppose x = v1 ∈ N(u). Hence d(v, v4) ≥ 5, a contradiction.
If u ∈ P and u = v1, then d(v, v4) > 3, a contradiction. The same argument is valid for v4. Therefore
without lose of generality, suppose u = v2, x = v1, y = v3 and u , z ∈ N(v1). Hence N(z) ∩ N[u] = v1.
Hence either z is a pendant vertex or there exists a vertex w ∈ N(z). If z is a pendant vertex, then d > 3,
a contradiction. If w = v4, then d(v1, v4) ≤ 2, another contradiction. Also if w , v4, then d(v, t) ≥ 4,
which is a contradiction.

(ii) d(u) = n − d. So either u = vi, where i ∈ {1, d + 1} or u is adjacent to at least two vertices of P.
Assume first that u ∈ P. If u = v1 or vd, then diam(G−v) < diam(G), a contradiction. So there is exactly
one vertex w ∈ G − p, such that w < N(u). If

∑
x∈N(u) d(x) = n − d + 1, then exactly one neighbors of u

is of degree 2 and the other neighbors are pendant vertices. Hence without lose of generality, u = v2
and N(w) = {vk−1, vk, vk+1} for 5 ≤ k ≤ d, since G is a bicyclic graph. Therefore d ≥ 5, n ≥ 9 and G is the
graph which is shown in Figure 8. Therefore H(G) = d−5

2 +
2(n−d−1)

n−d+1 + 2
n−d+2 + A, where A = 11

5 if t = 0,
and A = 31

15 if t = 1, and A = 32
15 , if t ≥ 2. Hence

H(G) −B(n, d) ≥
(n − d)3 + 6(n − d)2 + 41(n − d) − 84
15(n − d + 1)(n − d + 2)(n − d + 3)

> 0.

If
∑

x∈N(u) d(x) > n − d + 1.
It is easy to see that if d ≥ 4 then H(G) > B(n, d). Also if d = 3 and

∑
x∈N(u) d(x) > n − d + 2, then

H(G) > B(n, 3). Suppose d = 3 and
∑

x∈N(u) d(x) = n − d + 2. Hence u has either exactly two neighbors
of degree 2 or one neighbor of degree 3. Without lose of generality suppose u = v2. If u has two
neighbors of degree 2, namely x, v3, then N(w) ⊆ {x, v4} and G is unicycle, a contradiction. If d(v3) = 3,
then N(w) ⊆ {v3, v4} and G is unicycle, another contradiction.
Suppose now that u < P. If v1 ∈ N(u) then vd+1 < N(u), otherwise diam(G) = 2. So there exists a vertex
of degree at least 3 and a vertex of degree 2 in N(u). If the other neighbors of u are pendant vertices,
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u
k ≥ 1 t ≥ 0

n− d− 2

Figure 8: The graph related to Case (ii) of Theorem 3.2.

then G is a unicyclic graph, a contradiction. Hence there is another vertex of degree at least 2 in N(u)
and hence by Equation 1,

H(G) ≥ H(G − v) +
2

1 + d(u)
−

2(d(u) − 4)
d(u)(d(u) + 1)

−
4

(d(u) + 1)(d(u) + 2)
−

2
(d(u) + 2)(d(u) + 3)

= H(G − v) +
2(d(u)2 + 13d(u) + 24)

(d(u) + 1)d(u)(d(u) + 2)(d(u) + 3)
.

If d = 3, then d(u) = n − 3 and

H(G) −B(n, 3) ≥
4

n − 1
+

2
n + 1

+
2(n − 6)

n − 2
−

4
n
−

2
n + 2

−
2(n − 5)

n − 1
+

2(n2 + 7n − 6)
n(n − 3)(n − 2)(n − 1)

=
12(2 + 5n + 7n2)

n(n − 3)(n2 − 1)(n2 − 4)
> 0.

If d = 4 then

H(G) −B(n, 4) ≥
8(n + 2)

(n − 1)(n − 2)(n − 3)(n − 4)
> 0.

If d ≥ 5 then

H(G) −B(n, d) ≥
8((n − d) + 6)

(n − d + 1)(n − d)(n − d + 2)(n − d + 3)
> 0.

(iii) d(u) = n − d + 1.
If u < P then u is adjacent to at least three vertices of P. Since diam(G) > 2, u is not adjacent to both
v1, vd+1. Hence there exist two vertices of degree at least 3 and a vertex of degree at least 2 in N(u). By
a similar argument as in Case (ii), H(G) > B(n, d).
If u ∈ P, then G − P ⊂ N(u) and |N(u) ∩ P| = 2. So u , v1, vd+1. Suppose u = vi, where 2 ≤ i ≤ d and
x ∈ N(u) − P. Then N(x) ∩ P ⊆ {vi−2, vi−1, vi, vi+1, vi+2}. Also if vk, vk′ ∈ N(x), then k − k′ ≤ 2. Therefore
|N(x) ∩ P| ≤ 3. If d(x) ≥ 4, then |N(x) ∩ N(u) − P| ≥ 1. So if d ≥ 4, then u has a neighbor of degree at
least 4 and two neighbors of degree at least 2. Therefore Equation 1 implies that H(G) > B(n, d). If
d = 3, then x should be adjacent to at least three neighbors of u and hence u has at least two neighbors
of degree at least 2, one neighbor of degree at least 3 and one neighbor of degree at least 4. Therefore
Equation 1 implies,

H(G) ≥ H(G − v) +
2

1 + d(u)
−

4
(d(u) + 1)(d(u) + 2)

−
2

(d(u) + 2)(d(u) + 3)
−

2
(d(u) + 3)(d(u) + 4)

−
2(d(u) − 5)

d(u)(d(u) + 1)
= H(G − v) +

2(d(u)2 + 20d(u) + 40)
(d(u) + 1)d(u)(d(u) + 2)(d(u) + 4)
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and

H(G) −B(n, d) ≥
4(2n − 1)

(n − 2)n(n2 − 1)
> 0.

Suppose d(x) ≤ 3 for every x ∈ N(u)−P. If d(x) = 1 for every x ∈ G−P, then G is a tree, a contradiction.
If there exists only one vertex in G − P such that d(x) = 2, then G is a unicyclic graph, a contradiction
too. So either there is a vertex x in G− P such that d(x) ≥ 3 or there exist two vertices z, y in G− P such
that deg(z), d(y) ≥ 2. Since E(G) = n + 1, counting the degrees of vertices, implies that either there is a
vertex x in G − P such that d(x) = 3 and d(w) = 1 for every w ∈ G − (P ∪N(x)) or there are two vertices
z, y in G − P such that deg(z), d(y) = 2 and d(w) = 1 for every w ∈ G − (P ∪N(y) ∪N(z)).
If u ∈ P − {v2, vd} then d ≥ 4 and there exist at least two vertex in P ∩ N(u) of degree more than 1 and
H(G) ≥ B(n, d), by a similar argument as in Case (ii). Also if u = v2 (or u = vd) and d(v1) ≥ 2 (or
d(vd+1) ≥ 2), then there exist at least two vertices in P∩N(u) of degree more than 1 and H(G) ≥ B(n, d).
So without lose of generality suppose u = v2 and d(v1) = 1. Then u can only have a common neighbor
with v3 or v4. Hence there are two possibilities.

(a) There exists a vertex x ∈ N(u) − P such that d(x) = 3 and d(w) = 1 for every w ∈ G − (P ∪ N(x)). If
x ∈ N(v3) ∩ N(v4), then G = V1,r, which is shown in Figure 7, and H(G) > B(n, d). If x ∈ N(v3) and
x < N(v4), then u has a neighbor of degree 2 and two neighbors of degree 3. One may easily see that
H(G) > B(n, d). If x < N(v3) ∪N(v4), then u has three neighbors of degree 2 and a neighbor of degree 3
and H(G) > B(n, d).

(b) There exist two vertices z, y in G−P such that d(z), d(y) = 2 and d(w) = 1 for every w ∈ G−(P∪N(y)∪N(z)).
If y, z ∈ N(v3) and d = 3, then G = B1

n,3 and H(G) = B(n, 3). If y, z ∈ N(v3) and d ≥ 4, then

H(G) ≥ H(G − v) +
2

1 + d(u)
−

2(d(u) − 4)
d(u)(d(u) + 1)

−
4

(d(u) + 1)(d(u) + 2)
−

2
(d(u) + 3)(d(u) + 4)

= H(G − v) +
2(d(u)3 + 19d(u)2 + 78d(u) + 96)

(1 + d(u))(d(u) + 2)(d(u) + 4)(d(u) + 3)d(u)

and it is easy to see that H(G) −B(n, d) > 0. If y, z ∈ N(v4), then G = Bn,d. So if d = 3 then G = Bn,3 and
H(G) = 1 + 6

n +
2(n−5)

n−1 . Hence H(G) −B(n, 3) =
4(n2+2n+15)

n(n+2) > 0. If d ≥ 4 then G = Bn,d and H(G) = B(n, d).
If z, y < N(v3)∪N(v4), then u has at least five neighbors of degree 1 and H(G) > B(n, d). If without lose
of generality, y ∈ N(v3) and z < N(v3) ∪ N(v4), then u has three neighbors of degree 2 and a neighbor
of degree 3 and H(G) > B(n, d).

Now the proof is complete.
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