The Minimum Harmonic Index for Bicyclic Graphs with Given Diameter

Adeleh Abdolghafourian ${ }^{\text {a }}$, Mohammad A. Iranmanesh ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematical Science, Yazd University, 89195-741 Yazd, I. R. Iran

Abstract

The harmonic index of a graph G, is defined as the sum of weights $\frac{2}{d(u)+d(v)}$ of all edges $u v$ of G, where $d(u)$ is the degree of the vertex u in G. In this paper we find the minimum harmonic index of bicyclic graph of order n and diameter d. We also characterized all bicyclic graphs reaching the minimum bound.

1. Introduction

Let G be a connected simple graph with vertex set $V(G)$ and edge set $E(G)$. The graph G is said of order n, where $|V(G)|=n$. The degree of a vertex $u \in V(G)$ is denoted by $d_{G}(u)$ (or simply $d(u)$). Also $N_{G}(u)$ (or simply $N(u))$ is the set of neighbors of u in G and $N[u]=N(u) \cup\{u\}$. For $u, v \in V(G), d(u, v)$ is the distance between u and v in G and $\operatorname{diam}(G)=\max \{d(u, v) ; u, v \in G\}$ is the diameter of G. If $X \subseteq G$, then $G-X$ is the graph obtained from G by deleting the vertices of X. Recall that a graph G is called unicyclic, if it contains only one cycle. In this case, $|E(G)|=|V(G)|$. Also a graph G is called a quasi-tree graph, if G is not a tree and there exists $v \in V(G)$, such that $G-v$ is a tree. A bicyclic graph G is a graph with exactly two cycles. In this case $|E(G)|=|V(G)|+1$. The other notations used here are common and may be found in [11].

The harmonic index of a graph G, is defined as $H(G)=\sum_{u v \in E(G)} \frac{2}{d(u)+d(v)}$. This index first appeared in connection with some conjectures, generated by the computer program Graffiti, [6] and can be viewed as a particular case of the general sum-connectivity index, $\chi_{\alpha}=\sum_{u v \in E(G)}(d(u)+d(v))^{\alpha}$, proposed by Zhou and Trinajstić [16] $\left(H=2 \chi_{-1}\right)$. Du and Zhou [5] studied the sum-connectivity of bicyclic graphs. Also several studies have focused on extremal sum-connectivity index of bicyclic graphs. See for example [2, 4, 10]. We refer the interested readers to [3] for a recent survey about the harmonic index.

Zhong [12] and Zhong and Ciu [14] determined the minimum and maximum harmonic indices for simple connected graphs, trees, unicyclic and characterized the corresponding extremal graphs. Liu [9], showed that if T be a tree of order $n \geq 4$ and diameter d, then $H(T) \geq d+\frac{5}{6}-\frac{n}{2}$. Jerline and Michaelraj [8], proved that for a unicyclic graph G of order $n \geq 7$ and diameter $d, H(G) \geq d+\frac{5}{3}-\frac{n}{2}$.

In [7] the minimum and maximum harmonic indices for caterpillars with diameter 4 are computed. It is also showed that $H(G) \geq d+\frac{5}{3}-\frac{n}{2}$, where G is a quasi-tree graph of order $n \geq 4$ and diameter d, except when $G=U_{5,3}^{1,1}$ or $U_{6,4}^{1,1}$ which are shown in Figure 1 [1].

[^0]This paper is a contribution to the study of harmonic index of simple connected graphs of diameter d and the main purpose is to find a lower bound for harmonic index of bicyclic graphs with respect to their diameters. Indeed all bicyclic graphs reaching the minimum bound are characterized. Let

$$
\mathfrak{B}(n, d)= \begin{cases}\frac{16}{15}+\frac{4}{n}+\frac{2}{n+2}+\frac{2(n-5)}{n-1} & d=3 \\ \frac{7}{5}+\frac{6}{n-1}+\frac{2(n-6)}{n-2} & d=4 \\ \frac{d-5}{2}+2+\frac{6}{n-d+3}+\frac{2(n-d-2)}{n-d+2} & d \geq 5\end{cases}
$$

We show that $H(G) \geq \mathfrak{B}(n, d)$, where G is a bicyclic graph of order n and diameter d.
In Section 2, we prove the lemmas that will be used in Section 3, where we prove the main theorems.

Figure 1: The graphs $U_{5,3}^{1,1}$ (left) and $U_{6,4}^{1,1}$ (right).

2. Preliminaries

Zhong [15], introduced five families of bicyclic graphs of order n with no pendant vertex. We introduce a similar structure as follows.

Let \mathcal{B} be the set of connected bicyclic graphs without pendant vertices. Let \mathcal{B}^{1} be the set of bicyclic graphs obtained by joining two vertices of disjoint cycles by a path, \mathcal{B}^{2} be the set of bicyclic graphs obtained by identifying a vertex of each two disjoint cycles and then attaching them. and \mathcal{B}^{3} be the set of bicyclic graphs obtained from a cycle by adding a path. Obviously, $\mathcal{B}=\mathcal{B}^{1} \cup \mathcal{B}^{2} \cup \mathcal{B}^{3}$. For example, the graph $\widetilde{B}_{i} \in \mathcal{B}^{i}$, for $i=1,2,3$ is shown in Figure 2.

\widetilde{B}^{2}

\widetilde{B}^{3}

Figure 2: Bicyclic graphs with no pendant vertex.

For $n \geq 4$, let $\mathcal{B}(n, d)$ be the set of connected bicyclic graphs of order n and diameter d. Every graph $G \in \mathcal{B}(n, d)$ is obtained by attaching some trees to some vertices of a graph $\mathcal{G} \in \mathcal{B}$. We say \mathcal{G} is the root of G. Note that every graph $G \in \mathcal{B}(n, d)$ has a unique root, however it is possible that some non isomorphic bicyclic graphs have common root.

Lemma 2.1. ([13, Lemma 1]) Let G be a nontrivial connected graph, and let $u v \in E(G)$ be such that $d(u), d(v) \geq 2$ and $N(u) \cap N(v)=\emptyset$. Let G^{\prime} be the graph obtained from G by contracting the edge uv into a new vertex w and adding a new pendant edge $w w^{\prime}$ to w. Then $H(G)>H\left(G^{\prime}\right)$.

Corollary 2.2. If $G \in \mathcal{B}(n, d)$ has minimum harmonic index and $P=u_{1}-u_{2}-\cdots-u_{d+1}$ is a diametrical path of G, then
(i) If u_{1} is not a pendant vertex, then it is a vertex of a triangle. Similar argument is true for u_{d+1}.
(ii) Every non pendant vertex of $G-P$ is a vertex of a cycle.
(iii) If C is a cycle of G such that $E(C) \cap E(P)=\emptyset$, then C is a triangle.

Proof. This is an immediate consequence of Lemma 2.1.
Lemma 2.3. Let G be a connected graph and $u, v \in V(G)$, such that $2 \leq d(v) \leq d(u)$. Let G_{1} obtained from G by attaching two paths of length $r \geq 1$ and $s \geq 1$ to u and v respectively and G_{2} obtained from G by attaching one pendant vertex and a path of length $r+s-1$ to u and v respectively. Then $H\left(G_{1}\right) \geq H\left(G_{2}\right)$.

Proof. If $r=1$, then $G_{1}=G_{2}$. Hence assume $r \geq 2$. Assume first that $u \neq v$ and u and v are not adjacent. In the rest of paper, set $z_{x}=d_{G}(x)+d_{G}(u)$ and $w_{y}=d_{G}(y)+d_{G}(v)$. So

$$
\begin{aligned}
H\left(G_{1}\right)= & H(G)-\sum_{x \in N_{G}(u)} \frac{2}{z_{x}\left(z_{x}+1\right)}-\sum_{y \in N_{G}(v)} \frac{2}{w_{y}\left(w_{y}+1\right)} \\
& +\frac{2}{d(u)+3}+\frac{2}{3}+(r-2) \frac{2}{4}+ \begin{cases}\frac{2}{d(v)+2} & s=1 \\
\frac{2}{d(v)+3}+\frac{2}{3}+(s-2) \frac{2}{4} & s \geq 2\end{cases}
\end{aligned}
$$

and

$$
H\left(G_{2}\right)=H(G)-\sum_{x \in N_{G}(u)} \frac{2}{z_{x}\left(z_{x}+1\right)}-\sum_{y \in N_{G}(v)} \frac{2}{w_{y}\left(w_{y}+1\right)}+\frac{2}{d(u)+2}+\frac{2}{d(v)+3}+\frac{2}{3}+(r+s-3) \frac{2}{4}
$$

Hence

$$
H\left(G_{1}\right)-H\left(G_{2}\right)=-\frac{2}{(d(u)+3)(d(u)+2)}+\frac{1}{2}+ \begin{cases}\frac{2}{(d(v)+2)(d(v)+3)}-\frac{1}{2} & s=1 \\ -\frac{1}{3} & s \geq 2\end{cases}
$$

Since $2 \leq d(v) \leq d(u)$, then $H\left(G_{1}\right) \geq H\left(G_{2}\right)$.
Next assume $u \neq v$ and u and v are adjacent. Therefore

$$
\begin{aligned}
H\left(G_{1}\right)= & H(G)-\sum_{\substack{x \in N_{G}(u) \\
x \neq v}} \frac{2}{z_{x}\left(z_{x}+1\right)}-\sum_{\substack{y \in N_{G}(v) \\
y \neq u}} \frac{2}{w_{y}\left(w_{y}+1\right)}-\frac{4}{(d(u)+d(v))(d(u)+d(v)+2)} \\
& +\frac{2}{d(u)+3}+\frac{2}{3}+\frac{r-2}{2}+ \begin{cases}\frac{2}{d(v)+2} & s=1 \\
\frac{2}{d(v)+3}+\frac{2}{3}+\frac{s-2}{2} & s \geq 2\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
H\left(G_{2}\right)= & H(G)-\sum_{\substack{x \in N_{G}(u) \\
x \neq v}} \frac{2}{z_{x}\left(z_{x}+1\right)}-\sum_{\substack{y \in N_{G}(v) \\
y \neq u}} \frac{2}{w_{y}\left(w_{y}+1\right)} \\
& -\frac{4}{(d(u)+d(v))(d(u)+d(v)+2)}+\frac{2}{d(u)+2}+\frac{2}{d(v)+3}+\frac{2}{3}+(r+s-3) \frac{2}{4}
\end{aligned}
$$

So $H\left(G_{1}\right) \geq H\left(G_{2}\right)$.
Finally assume $u=v$. In this case without lose of generality, one may assume that $s \geq 2$. Hence

$$
H\left(G_{1}\right)=H(G)-\sum_{x \in N_{G}(u)} \frac{4}{z_{x}\left(z_{x}+2\right)}+2\left(\frac{2}{d(u)+4}\right)+2\left(\frac{2}{3}\right)+\frac{r+s-4}{2}
$$

and

$$
H\left(G_{2}\right)=H(G)-\sum_{x \in N_{G}(u)} \frac{4}{z_{x}\left(z_{x}+2\right)}+\frac{2}{d(u)+3}+\frac{2}{d(u)+4}+\frac{2}{3}+\frac{r+s-3}{2} .
$$

Hence

$$
H\left(G_{1}\right)-H\left(G_{2}\right)=\frac{1}{6}-\frac{2}{(d(u)+3)(d(u)+4)}>0
$$

This complete the proof.
Lemma 2.4. Let $\Gamma_{1} \neq G \in \mathcal{B}(n, d)$ with only one pendant vertex u, such that $\mathcal{G} \in \mathcal{B}^{1}$. If $G-u \in \mathcal{B}(n-1, d-1)$, then there exists $G^{\prime} \in \mathcal{B}(n, d)$ such that $\mathcal{G}^{\prime} \in \mathcal{B}^{2}$ and $H(G) \geq H\left(G^{\prime}\right)$.

Proof. Suppose $u^{\prime}, v^{\prime} \in V(\mathcal{G})$ are two vertices of degree 3. Let $P^{\prime}: u^{\prime}=u_{1}^{\prime}-\cdots-u_{k+1}^{\prime}=v^{\prime}$ is the path between u^{\prime} and v^{\prime} in \mathcal{G}, where $k \geq 1$.

Since deleting u decrease the diameter, one may assume that either $P^{\prime} \subset P$ or $E\left(P^{\prime}\right) \cap E(P)=\emptyset$. If there exists a diametrical path P in G such that $E\left(P^{\prime}\right) \cap E(P)=\emptyset$, then Lemma 2.1 implies that there exists $G^{\prime} \in \mathcal{B}(n, d)$ such that $\mathcal{G}^{\prime} \in \mathcal{B}^{2}$ and $H(G) \geq H\left(G^{\prime}\right)$.

If every diametrical path of G contains P^{\prime}, then fix a diametrical path $P: u_{1}-\cdots-u_{d+1}=u$. Without lose of generality suppose $d\left(u^{\prime}, u\right)<d\left(v^{\prime}, u\right)$. Note that, in this case, at most one vertex of $N_{G}\left(u^{\prime}\right)$ is of degree 3, otherwise G has two pendant vertices. Also all neighbors of v^{\prime} are of degree 2 .

Let G^{\prime} obtain from G by contracting the path P^{\prime} into a new vertex w and adding a new vertex u_{k+2}^{\prime} such that $V\left(G^{\prime}\right)=V(G) \cup\left\{w, u_{k+2}^{\prime}\right\}-\left\{u_{1}^{\prime}, u_{k+1}^{\prime}\right\}$ and

$$
\begin{aligned}
E\left(G^{\prime}\right) & =E(G) \cup\left\{u u_{2}^{\prime}, u_{k}^{\prime} u_{k+2}^{\prime}\right\} \cup\left\{w x: x \in N\left(u^{\prime}\right) \cup N\left(v^{\prime}\right), x \neq u_{2}^{\prime}, u_{k}^{\prime}\right\} \\
& -\left\{u^{\prime} x: x \in N\left(u^{\prime}\right)\right\}-\left\{v^{\prime} y: y \in N\left(v^{\prime}\right)\right\} .
\end{aligned}
$$

Since deleting u from G decrease the diameter, then $u \notin N_{G}\left(u^{\prime}\right)$. Two possibilities are as follows:
(1) $d_{G}\left(u^{\prime}\right)=d_{G}\left(v^{\prime}\right)=3$. In this case,

$$
\begin{aligned}
H\left(G^{\prime}\right) & =H(G)-\frac{2}{\left(d\left(u_{d}\right)+1\right)\left(d\left(u_{d}\right)+2\right)}-\sum_{\substack{x \in N_{G}\left(u^{\prime}\right) \\
x \neq u_{2}^{\prime}}} \frac{2}{(3+d(x))(4+d(x))}-\sum_{\substack{y \in N\left(v^{\prime}\right) \\
y \neq u_{k}^{\prime}}} \frac{2}{(3+d(y))(4+d(y))}+A \\
& =H(G)-\frac{1}{5}-\frac{2}{\left(d\left(u_{d}\right)+1\right)\left(d\left(u_{d}\right)+2\right)}-\frac{2}{(3+d(x))(4+d(x))}+A
\end{aligned}
$$

where $A=\frac{1}{3}$ if $k=1$ and $A=\frac{11}{30}$ if $k \geq 2$. Note that $x \in N_{G}\left(u^{\prime}\right)$ and $d(x) \leq 3$.
The last expression is greater than $H(G)$ if and only if $k \geq 2$ and $d\left(u_{d}\right)=d(x)=3$. So $G=\Gamma_{1}$, shown in Figure 3.
(2) $d_{G}\left(u^{\prime}\right)=4$ and $d_{G}\left(v^{\prime}\right)=3$. Since $\operatorname{diam}(G-u)<\operatorname{diam}(G)$, then $d\left(u^{\prime}, u\right)>1$ and hence $d\left(u_{d}\right)=2$ and $d_{G}(x)=2$ for every $x \in N\left(u^{\prime}\right)-u_{2}^{\prime}$. So

$$
\begin{aligned}
H\left(G^{\prime}\right) & =H(G)-\frac{2}{\left(d\left(u_{d}\right)+1\right)\left(d\left(u_{d}\right)+2\right)}-\sum_{\substack{x \in N\left(u^{\prime}\right) \\
x \neq u_{2}^{\prime}}} \frac{2}{4+d(x))(5+d(x))}-\sum_{\substack{y \in N\left(v^{\prime}\right) \\
y \neq u_{k}^{\prime}}} \frac{4}{5+d(y))(3+d(y))}+A \\
& =H(G)-\frac{13}{42}-\frac{8}{35}+A<H(G)
\end{aligned}
$$

where $A=\frac{3}{14}$ if $k=1$ and $A=\frac{4}{15}$ if $k \geq 2$.

Figure 3: The bicyclic graphs related to Lemmas 2.5, 2.4.

Lemma 2.5. Let $\Gamma_{i} \neq G \in \mathcal{B}(n, d), i=2,3$ (see Figure 3) such that $\mathcal{G} \in \mathcal{B}^{1}$ and G has only two pendant vertices u, v. If $G-u, G-v \in \mathcal{B}(n-1, d-1)$, then there exists $G^{\prime} \in \mathcal{B}(n, d)$ such that $\mathcal{G}^{\prime} \in \mathcal{B}^{2}$ and $H(G) \geq H\left(G^{\prime}\right)$.

Proof. Suppose $u^{\prime}, v^{\prime} \in V(\mathcal{G})$ are two vertices of degree 3. Let $P^{\prime}: u^{\prime}=u_{1}^{\prime}-\cdots-u_{k+1}^{\prime}=v^{\prime}$ is the path between u^{\prime} and v^{\prime} in \mathcal{G}. Since deleting every pendant vertex decrease the diameter, one may assume that either $P^{\prime} \subset P$ or $E\left(P^{\prime}\right) \cap E(P)=\emptyset$. If there exists a diametrical path P in G such that $E\left(P^{\prime}\right) \cap E(P)=\emptyset$, then Lemma 2.1 implies that there exists $G^{\prime} \in \mathcal{B}(n, d)$ such that $\mathcal{G}^{\prime} \in \mathcal{B}^{2}$ and $H(G) \geq H\left(G^{\prime}\right)$.

If every diametrical path of G contains P^{\prime}, then fix a diametrical path $P: u=u_{1}-\cdots-u_{d+1}=v$. Let G^{\prime} obtain from G by contracting the path P^{\prime} into a new vertex w and adding a new vertex u_{k+2}^{\prime} such that $V\left(G^{\prime}\right)=V(G) \cup\left\{w, u_{k+2}^{\prime}\right\}-\left\{u_{1}^{\prime}, u_{k+1}^{\prime}\right\}$ and

$$
\begin{aligned}
E\left(G^{\prime}\right) & =E(G) \cup\left\{u u_{2}^{\prime}, u_{k}^{\prime} u_{k+2}^{\prime}\right\} \cup\left\{w x: x \in N\left(u^{\prime}\right) \cup N\left(v^{\prime}\right), x \neq u_{2}^{\prime}, u_{k}^{\prime}\right\} \\
& -\left\{u^{\prime} x: x \in N\left(u^{\prime}\right)\right\}-\left\{v^{\prime} y: y \in N\left(v^{\prime}\right)\right\} .
\end{aligned}
$$

Since deleting u, v from G decrease the diameter, then $u, v \notin N_{G}\left(u^{\prime}\right) \cup N_{G}\left(v^{\prime}\right)$. So three cases will arise as follows.
(1) $d_{G}\left(u^{\prime}\right)=d_{G}\left(v^{\prime}\right)=3$. Note that in this case, at most one vertex of $N_{G}\left(u^{\prime}\right)-\left\{u_{2}^{\prime}\right\}$ is of degree 3 , otherwise $P^{\prime} \not \subset P$. The same argument is valid for $N_{G}\left(v^{\prime}\right)-u_{k}^{\prime}$. Without lose of generality suppose $d_{G}\left(u_{d}\right) \leq d_{G}\left(u_{2}\right)$. Hence

$$
\begin{aligned}
H\left(G^{\prime}\right) & =H(G)-\frac{2}{\left(d\left(u_{d}\right)+1\right)\left(d\left(u_{d}\right)+2\right)} \sum_{\substack{x \in N_{G}\left(u^{\prime}\right) \\
x \neq u_{2}^{\prime}}} \frac{2}{(3+d(x))(4+d(x))}-\sum_{\substack{y \in N_{G}\left(v^{\prime}\right) \\
y \neq u_{k}^{\prime}}} \frac{2}{(3+d(y))(4+d(y))}+A \\
& =H(G)-\frac{2}{\left(d\left(u_{d}\right)+1\right)\left(d\left(u_{d}\right)+2\right)}-\frac{2}{(3+d(x))(4+d(x))}-\frac{2}{(3+d(y))(4+d(y))}-\frac{2}{15}+A
\end{aligned}
$$

where $A=\frac{1}{3}$ if $k=1$ and $A=\frac{11}{30}$ if $k \geq 2$.
If $d\left(u_{d}\right)=d(x)=d(y)=3$, then $H\left(G^{\prime}\right)>H(G)$ and $G=\Gamma_{2}$. Also if $k \geq 2$ and without lose of generality $d\left(u_{d}\right)=d(x)=3, d(y)=2$, then $H\left(G^{\prime}\right)>H(G)$ and $G=\Gamma_{3}$. For other possibilities of d_{u}, d_{x} and d_{y}, $H\left(G^{\prime}\right)<H(G)$.
(2) $d_{G}\left(u^{\prime}\right)=3$ and $d_{G}\left(v^{\prime}\right)=4$. (The case $d_{G}\left(u^{\prime}\right)=3$ and $d_{G}\left(v^{\prime}\right)=4$ is similar.) Without lose of generality, suppose $d\left(v^{\prime}, u_{d+1}\right)<d\left(u^{\prime}, u_{d+1}\right)$. Since $\operatorname{diam}\left(G-u_{d+1}\right)<\operatorname{diam}(G)$, then $d\left(v^{\prime}, u_{d+1}\right)>1$ and hence $d\left(u_{d}\right)=2$. Also at most one vertex of $N\left(u^{\prime}\right)-u_{2}^{\prime}$ is of degree 3, otherwise $P^{\prime} \not \subset P$ and $d(y)=2$ for every $y \in N\left(v^{\prime}\right)-u_{k}^{\prime}$. So

$$
\begin{aligned}
H\left(G^{\prime}\right) & =H(G)-\sum_{\substack{x \in N\left(u^{\prime}\right) \\
x \neq u_{2}^{\prime}}} \frac{4}{(3+d(x))(5+d(x))}-\sum_{\substack{y \in N\left(v^{\prime}\right) \\
y \neq u_{k}^{\prime}}} \frac{2}{(4+d(y))(5+d(y))} \\
& \leq H(G)-\frac{4}{35}-\frac{4}{48}-\frac{6}{42}+A<H(G)
\end{aligned}
$$

where $A=\frac{3}{14}$ if $k=1$ and $A=\frac{4}{15}$, if $k \geq 2$.
(3) $d_{G}\left(u^{\prime}\right)=d_{G}\left(v^{\prime}\right)=4$. In this case, since $\operatorname{diam}\left(G-u^{\prime}\right)$, $\operatorname{diam}\left(G-v^{\prime}\right)<\operatorname{diam}(G)$, then $d\left(u^{\prime}, u_{1}\right), d\left(v^{\prime}, u_{d+1}\right) \geq 2$ and $d(x)=d(y)=2$ for every $x \in N\left(u^{\prime}\right)-u_{2}^{\prime}$ and $y \in N\left(v^{\prime}\right)-u_{k}^{\prime}$. Hence

$$
\begin{aligned}
H\left(G^{\prime}\right) & =H(G)-\sum_{\substack{x \in N\left(l^{\prime}\right) \\
x \neq v^{\prime}}} \frac{4}{(4+d(x))(6+d(x))}-\sum_{\substack{y \in N\left(v^{\prime}\right) \\
y \neq u^{\prime}}} \frac{4}{(4+d(y))(6+d(y))}+A \\
& =H(G)-3\left(\frac{4}{48}\right)-3\left(\frac{4}{48}\right)+A<H(G),
\end{aligned}
$$

where $A=\frac{1}{4}$ if $k=1$ and $A=\frac{1}{3}$, if $k \geq 2$.

Let K_{4}^{-}be a graph obtained from K_{4} by deleting an edge. Suppose $B_{n, 2}$ is a bicyclic graph of order n and diameter 2 , obtained by attaching $n-4$ pendant vertices to a vertex of degree 3 of K_{4}^{-}. Also let $\mathrm{B}_{n, 3}^{1}$ be a bicyclic graph of order n and diameter 3 , obtained by attaching a pendant vertex to the vertex of degree 3 of $\mathrm{B}_{n, 2}$. Let C_{4}^{+}be the graph obtained from C_{4} by adding a new vertex connected to two non adjacent vertices of C_{4}. For $d \geq 3$ let $\mathrm{B}_{n, d}$ be a bicyclic graph of order n and diameter d, obtained by attaching $n-d-2$ pendant vertices and a path of length $d-3$ to two vertices of degree 3 of C_{4}^{+}(see Figure 4).

Figure 4: Minimal bicyclic graphs of order n and diameter d.

Zhong and Xu [15], showed that $H\left(\mathrm{~B}_{n, 2}\right)=\frac{4}{5}+\frac{4}{n+1}+\frac{2}{n+2}+\frac{2(n-4)}{n}$ is the minimum harmonic index in the set of harmonic indices of bicyclic graphs of order n. So $H(G) \geq H\left(\mathrm{~B}_{n, 2}\right)$ for every $G \in \mathcal{B}(n, 2)$ and equality holds if and only if $G=\mathrm{B}_{n, 2}$. We claim that if $d=3$, then $H(G)>H\left(\mathrm{~B}_{n, 3}^{1}\right)=\frac{7}{5}+\frac{6}{n-1}+\frac{2(n-6)}{n-2}$ for every $\mathrm{B}_{n, 3}^{1} \neq G \in \mathcal{B}(n, 3)$ and if $d \geq 4$, then $H(G)>H\left(\mathrm{~B}_{n, d}\right)=\frac{d-5}{2}+2+\frac{6}{n-d+3}+\frac{2(n-d-2)}{n-d+2}$ for every $\mathrm{B}_{n, d} \neq G \in \mathcal{B}(n, d)$. For $3 \leq d \leq n-2$, define the two variable function $\mathfrak{B}(n, d)$ as follows.

$$
\mathfrak{B}(n, d)= \begin{cases}\frac{16}{15}+\frac{4}{n}+\frac{2}{n+2}+\frac{2(n-5)}{n-1} & d=3 \\ \frac{7}{5}+\frac{6}{n-1}+\frac{2(n-6)}{n-2} & d=4 \\ \frac{d-5}{2}+2+\frac{6}{n-d+3}+\frac{2(n-d-2)}{n-d+2} & d \geq 5\end{cases}
$$

Lemma 2.6. Let $f_{1}(x)=\frac{x}{2}-\mathfrak{B}(x, 3), f_{2}(x)=\frac{x}{2}-\mathfrak{B}(x, 4)$ and $f_{3}(x)=\frac{x}{2}-\frac{6}{x+3}-\frac{2(x-2)}{x+2}+\frac{1}{2}$. Then $f_{1}(x) \geq \frac{73}{210}$ is an increasing function for $x \geq 5, f_{2}(x) \geq \frac{2}{5}$ is an increasing function when $x \geq 6$ and $f_{3}(x) \geq \frac{3}{5}$ is an increasing function when $x \geq 3$.

Proof. It is easy to see that $f_{1}^{\prime}(x)=\frac{1}{2}+\frac{4}{x^{2}}+\frac{2}{(x+2)^{2}}-\frac{8}{(x-1)^{2}}$. So if $x \geq 5$, then $x-1 \geq 4$ and $\frac{1}{2}-\frac{8}{(x-1)^{2}} \geq \frac{1}{2}-\frac{8}{16}=0$. Hence $f_{1}^{\prime}(x)>0$, when $x \geq 5$ and $f_{1}(x) \geq f_{1}(5)=\frac{73}{210}$ is an increasing function.

Also if $x \geq 6$, then $f_{2}^{\prime}(x)=\frac{1}{2}+\frac{6}{(x-1)^{2}}-\frac{8}{(x-2)^{2}} \geq \frac{1}{2}++\frac{6}{(x-1)^{2}}-\frac{8}{16}>0$. So $f_{2}(x) \geq f_{2}(6)=\frac{2}{5}$ is an increasing function when $x \geq 6$.

Suppose $x \geq 3$, then $f_{3}^{\prime}(x)=\frac{1}{2}+\frac{6}{(x+3)^{2}}-\frac{8}{(x+2)^{2}} \geq \frac{1}{2}+\frac{6}{(x+3)^{2}}-\frac{8}{25}>0$. Therefore $f_{3}(x) \geq f_{3}(3)=\frac{3}{5}$ is an increasing function too.

3. Main results

In this section we show that $H(G) \geq \mathfrak{B}(n, d)$ for every $G \in \mathcal{B}(n, d)$, where $d \geq 3$.

Figure 5: The graphs related to Lemma 3.1.

Lemma 3.1. Let $G \in \mathcal{B}(n, d), n-d \geq 3$ and $d \geq 3$, such that G has at least one pendant vertex. If for every pendant vertex $w \in G, G-w \in \mathcal{B}(n-1, d-1)$ then $H(G) \geq \mathfrak{B}(n, d)$. The equality holds if and only if $G=B_{6,3}^{1}$ or $B_{7,4}$.
Proof. Let \mathcal{G} be the root of G. If G has more than two pendant vertices, then there is a pendant vertex v such that $G-v \in \mathcal{B}(n-1, d)$, a contradiction. So G has at most two pendant vertices.

- If G has one pendant vertex w, then two cases will arise as follows.
(1) $\mathcal{G} \in \mathcal{B}^{1} \cup \mathcal{B}^{2}$. By Lemma 2.4, without lose of generality, assume $G=\Gamma_{1}$ or $\mathcal{G} \in \mathcal{B}^{2}$. So if $G=\Gamma_{1}$, then $d \geq 5, n-d \geq 3$ and $H\left(\Gamma_{1}\right)=\frac{n}{2}-\frac{4}{15}$. Therefore

$$
H\left(\Gamma_{1}\right)-\mathfrak{B}(n, d)=\frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{1}{2}-\frac{4}{15}>0
$$

by Lemma 2.6. If $\mathcal{G} \in \mathcal{B}^{2}$, then \mathcal{G} is obtained by attaching two disjoint cycles of lengths $r, s \geq 3$, joining together in vertex u. So $|V(\mathcal{G})|=r+s-1, d_{\mathcal{G}}(u)=4$ and the other vertices of \mathcal{G} are of degree 2 . Hence G is obtained by attaching a path of length t either to u or to a vertex of degree 2 . Hence $G=G_{1}$ or $G=G_{2}$, the graphs shown in Figure 5.
Suppose $G=G_{1}$. Since $\operatorname{diam}(G-w)<\operatorname{diam}(G)$, we find that $t \geq 2, n \geq 7$ and $H(G)=\frac{n}{2}-\frac{17}{42}$. So if $d=3$, then $r=s=3, t=2$ and $n=7$. Hence $H(G)=\frac{65}{21}>\frac{796}{315}=\mathfrak{B}(7,3)$. If $d=4$, then $n \geq 8$ and $H(G)-\mathfrak{B}(n, 4)=\frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{7}{5}-\frac{17}{42}>0$, by Lemma 2.6. If $d \geq 5$, then $n-d \geq 4$ and $H(G)-\mathfrak{B}(n, d)=\frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{1}{2}-\frac{17}{42}>0$, by Lemma 2.6.
Suppose $G=G_{2}$ and without lose of generality, $r_{1} \leq r_{2}$. If $r_{1}=0$, then $H(G)=\frac{n}{2}-\frac{11}{35}+A$, where $A=0$ if $t=1$ and $A=\frac{1}{15}$ if $t \geq 2$. Also if $r_{1} \geq 1$, then $H(G)=\frac{n}{2}-\frac{11}{30}+A$, where $A=0$ if $t=1$ and $A=\frac{1}{15}$ if $t \geq 2$. So if $d=3$, then $t=1, r_{1}=0$ and $n \geq 6$. Therefore $H(G)-\mathfrak{B}(n, 3) \geq \frac{n}{2}-\frac{4}{n}-\frac{2}{n+2}-\frac{2(n-5)}{n-1}-\frac{145}{105}>0$, by Lemma 2.6. If $d=4$, then $n \geq 7$ and $H(G) \geq \frac{n}{2}-\frac{11}{30}$. Therefore $H(G)-\mathfrak{B}(n, 4)=\frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{53}{30}>0$, by Lemma 2.6. Also if $d \geq 5$, then $H(G) \geq \frac{n}{2}-\frac{11}{30}$ and $H(G)-\mathfrak{B}(n, d)=\frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{2}{15}>0$, by Lemma 2.6.
(2) $\mathcal{G} \in \mathcal{B}_{3}$. In this case, G is obtained by attaching a path of length $t \geq 1$, to either a vertex of degree 2 or a vertex of degree 3 of \mathcal{G}. So $G=G_{3}$ or G_{4}, shown in Figure 5. Without lose of generality, suppose if $G=G_{3}$, then $r_{1}, r_{2}, k \geq 0, r_{1} \leq r_{2}$. Also if $G=G_{4}$, then $k \leq r, s$ and $r, s, t \geq 1$. The following possibilities will arise.
(i) $k=0$. Hence

$$
H\left(G_{3}\right)=\frac{n}{2}-\frac{13}{15}+A+ \begin{cases}\frac{2}{3} & r_{1}=r_{2}=0 \\ \frac{19}{30} & r_{1}=0, r_{2} \geq 1 \\ \frac{3}{5} & r_{1}, r_{2} \geq 1\end{cases}
$$

where $A=0$, if $t=1$ and $A=\frac{1}{15}$, otherwise.
If $d=3$, then $t=1, r_{1}=0$ and $n \geq 5$. So $H\left(G_{3}\right)-\mathfrak{B}(n, 3) \geq \frac{n}{2}-\frac{4}{n}-\frac{2}{n+2}-\frac{2(n-5)}{n-1}-\frac{7}{30}-\frac{16}{15}>0$, by Lemma 2.6. If $d=4$, then either $r_{1}=0$ and $t \geq 2$ or $r_{1} \geq 1$. Therefore if $r_{1}=0$, then $n \geq 6$ and $H\left(G_{3}\right) \geq \frac{n}{2}-\frac{1}{6}$. Hence $H\left(G_{3}\right)-\mathfrak{B}(n, 4) \geq \frac{6}{2}-\frac{1}{6}-\mathfrak{B}(6,4)>0$, by Lemma 2.6. Also if $r_{1} \geq 1$ then $n \geq 7$ and $H\left(G_{3}\right) \geq \frac{n}{2}-\frac{4}{15}$. So $H\left(G_{3}\right)-\mathfrak{B}(n, 4) \geq \frac{7}{2}-\frac{4}{15}-\mathfrak{B}(7,4)>0$, by Lemma 2.6. If $d \geq 5$, then $H\left(G_{3}\right)-\mathfrak{B}(n, d) \geq \frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{1}{2}-\frac{4}{15}>0$.
Also $H\left(G_{4}\right)=\frac{n}{2}+A$, where $A=-\frac{73}{210}$ if $t=1$ and $A=-\frac{26}{105}$ if $t \geq 2$. So if $d=3$, then $n \geq 6$ and $H\left(G_{4}\right)-\mathfrak{B}(n, 3) \geq \frac{n}{2}-\frac{4}{n}-\frac{2}{n+2}-\frac{2(n-5)}{n-1}-\frac{16}{15}-\frac{73}{210}>0$, by Lemma 2.6. If $d=4$, then $n \geq 7$ and $H\left(G_{4}\right)-\mathfrak{B}(n, 4) \geq$ $\frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{7}{5}-\frac{73}{210}>0$. Also if $d \geq 5$ then $H\left(G_{4}\right)-\mathfrak{B}(n, d) \geq \frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{1}{2}-\frac{73}{210}>0$.
(ii) $k \geq 1$. So

$$
H\left(G_{3}\right)=\frac{n}{2}-\frac{9}{10}+A+ \begin{cases}\frac{2}{3} & r_{1}=r_{2}=0 \\ \frac{19}{30} & r_{1}=0, r_{2} \geq 1 \\ \frac{3}{5} & r_{1}, r_{2} \geq 1\end{cases}
$$

where $A=0$, if $t=1$ and $A=\frac{1}{15}$, otherwise. If $d=3$, then $r_{1}=0, t=1$ and $n \geq 6$. Therefore

$$
H\left(G_{3}\right)-\mathfrak{B}(n, 3) \geq \frac{n}{2}-\frac{4}{n}-\frac{2}{n+2}-\frac{2(n-5)}{n-1}-\frac{4}{3}>0 .
$$

If $d=4$, then $n \geq 7$ and $H\left(G_{3}\right)-\mathfrak{B}(n, 4) \geq \frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{17}{10}>0$. Also if $d \geq 5$ then $H\left(G_{3}\right)-\mathfrak{B}(n, d) \geq$ $\frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{1}{5}>0$.
Also $H\left(G_{4}\right)=\frac{n}{2}+A$, where $A=-\frac{2}{5}$ if $t=1$ and $A=-\frac{3}{10}$ if $t \geq 2$. So if $d=3$, then $t=1$ and $H\left(G_{4}\right)-\mathfrak{B}(n, 3) \geq \frac{n}{2}-\frac{4}{n}-\frac{2}{n+2}-\frac{2(n-5)}{n-1}-\frac{22}{15}>0$. If $d=4$, then $H\left(G_{4}\right)-\mathfrak{B}(n, 4) \geq \frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{9}{5}>0$. Also if $d \geq 5$ then $H\left(G_{4}\right)-\mathfrak{B}(n, d) \geq \frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{1}{10}>0$.

- If G has two pendant vertices, then by Lemma 2.5, without lose of generality, suppose either $\mathcal{G} \in \mathcal{B}_{2} \cup \mathcal{B}_{3}$ or $G=\Gamma_{i}, i=2,3$. If $\mathcal{G} \in \mathcal{B}_{2} \cup \mathcal{B}_{3}$, then Lemma 2.3 implies that without lose of generality, one may assume that G is obtained by attaching a pendant vertex w and a path of length t to two vertices u and v of \mathcal{G}, respectively, such that $d(v) \leq d(u)$. So there are four cases as follows.
(1) $\mathcal{G} \in \mathcal{B}^{2}$. Suppose $|V(\mathcal{G})|=m$, then $n=m+t+1$ and $H(\mathcal{G})=\frac{m}{2}-\frac{1}{6}$. Since only one vertex of \mathcal{G} is of degree 4 and the other vertices are of degree 2 , then either $d_{G}(u)=d_{G}(v)=3$ or $d_{G}(u)=5, d_{G}(v)=3$. Note that since deleting every pendant vertex, decrease the diameter, then $u \neq v$ and $d \geq 4$. Hence two possibilities will arise as follows.
(i) $u \notin N(v)$. Hence

$$
H(G)=H(\mathcal{G})-\sum_{x \in N_{\mathcal{G}}(u)} \frac{2}{\left(z_{x}-1\right) z_{x}}-\sum_{y \in N_{\mathcal{G}}(v)} \frac{2}{\left(w_{y}-1\right) w_{y}}+\frac{2}{d(u)+1}+\left\{\begin{array}{ll}
\frac{2}{d(v)+1} & t=1 \\
\frac{2}{d(v)+2}+\frac{2}{3}+\frac{t-2}{2} & t \geq 2
\end{array} .\right.
$$

If $d(u)=d(v)=3$, then

$$
H(G) \geq \frac{n}{2}-\frac{17}{30}+ \begin{cases}0 & t=1 \\ \frac{1}{15} & t \geq 2\end{cases}
$$

Hence by Lemma 2.6, if $d=4$ then $n \geq 7$ and $H(G)-\mathfrak{B}(n, 4) \geq \frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{59}{30}>0$. Also if $d \geq 5$, then $n \geq 8$ and $n-d \geq 3$. So $H(G)-\mathfrak{B}(n, d) \geq \frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}-\frac{1}{15}>0$.
If $d(u)=5$ and $d(v)=3$ then

$$
H(G) \geq \frac{n}{2}-\frac{76}{105}+\left\{\begin{array}{cc}
0 & t=1 \\
\frac{1}{15} & t \geq 2
\end{array}\right.
$$

Since u, v are not adjacent, there exists a cycle of length at least 4 in G. So by Lemma 2.6, if $d=4$, then $n \geq 8$ and $H(G)-\mathfrak{B}(n, 4) \geq \frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{223}{105}>0$. Also if $d \geq 5$, then $n \geq 9$ and $n-d \geq 4$. Therefore $H(G)-\mathfrak{B}(n, d) \geq \frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}-\frac{47}{210}>0$.
(ii) $u \in N(v)$. In this case

$$
\begin{aligned}
H(G) & =H(\mathcal{G})-\sum_{\substack{x \in N_{G}(u) \\
x \neq v}} \frac{2}{\left(z_{x}-1\right) z_{x}}-\sum_{\substack{y \in N_{G}(v) \\
y \neq u}} \frac{2}{\left(w_{y}-1\right) w_{y}}+\frac{2}{d(u)+1}-\frac{4}{(d(u)+d(v)-2)(d(u)+d(v))} \\
& + \begin{cases}\frac{2}{d(v)+1} & t=1 \\
\frac{2}{d(v)+2}+\frac{2}{3}+\frac{t-2}{2} & t \geq 2\end{cases}
\end{aligned}
$$

By the same calculation as (i), one may easily see that $H(G)>\mathfrak{B}(n, d)$.
(2) $\mathcal{G} \in \mathcal{B}^{3}$ and $d_{\mathcal{G}}\left(u^{\prime}, v^{\prime}\right)=1$, where u^{\prime}, v^{\prime} are two vertices of degree 3 in \mathcal{G}. Suppose $|V(\mathcal{G})|=m$, then $n=m+t+1$ and $H(\mathcal{G})=\frac{m}{2}-\frac{1}{15}$. Note that if $u=v$ then $\operatorname{diam}(G-w)=\operatorname{diam}(G)$, a contradiction. So $u \neq v$ and $d \geq 3$. Hence either $d_{G}(u)=d_{G}(v)=3$ or $d_{G}(u)=4, d_{G}(v)=3$ or $d_{G}(u)=d_{G}(v)=4$. Therefore two possibilities will arise as follows.
(i) $u \notin N(v)$. Then $d \geq 4$ and

$$
H(G)=H(\mathcal{G})-\sum_{x \in N_{\mathcal{G}}(u)} \frac{2}{\left(z_{x}-1\right) z_{x}}-\sum_{y \in N_{\mathcal{G}}(v)} \frac{2}{\left(w_{y}-1\right) w_{y}}+\frac{2}{d(u)+1}+\left\{\begin{array}{ll}
\frac{2}{d(v)+1} & t=1 \\
\frac{2}{d(v)+2}+\frac{2}{3}+\frac{t-2}{2} & t \geq 2
\end{array} .\right.
$$

If $d(u)=d(v)=3$ then since $n-d \geq 3$, then $n \geq 7$ and

$$
H(G) \geq \frac{n}{2}-\frac{7}{15}+ \begin{cases}0 & t=1 \\ \frac{1}{5} & t \geq 2\end{cases}
$$

If $d=4$, then $H(G)-\mathfrak{B}(n, 4)=\frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{28}{15}>0$. Also if $d \geq 5$, then $H(G)-\mathfrak{B}(n, d) \geq$ $\frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{1}{30}>0$, by Lemma 2.6.
If $d(u)=4$ and $d(v)=3$ then u has at least one neighbor of degree 3 and

$$
H(G) \geq \frac{n}{2}-\frac{23}{42}+\left\{\begin{array}{cc}
0 & t=1 \\
\frac{1}{15} & t \geq 2
\end{array}\right.
$$

If $d=4$, then $n \geq 7$ and $H(G)-\mathfrak{B}(n, 4) \geq \frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{409}{210}>0$. Also if $d \geq 5$ and $t \geq 2$, then $H(G)-\mathfrak{B}(n, d) \geq \frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}-\frac{1}{21}>0$.
Note that since $u \notin N(v)$, then both $d(u)$ and $d(v)$ are not equal to 4 .
(ii) $u \in N(v)$. Then $d \geq 3$ and

$$
\begin{aligned}
H(G) & =H(\mathcal{G})-\sum_{\substack{x \in N_{G}(u) \\
x \neq v}} \frac{2}{\left(z_{x}-1\right) z_{x}}-\sum_{\substack{y \in N_{G}(v) \\
y \neq u}} \frac{2}{\left(w_{y}-1\right) w_{y}}+\frac{2}{d(u)+1}-\frac{4}{(d(u)+d(v)-2)(d(u)+d(v))} \\
& + \begin{cases}\frac{2}{d(v)+1} & t=1 \\
\frac{2}{d(v)+2}+\frac{2}{3}+\frac{t-2}{2} & t \geq 2\end{cases}
\end{aligned}
$$

If $d=3$ then since deleting every pendant vertices decrease the diameter, then $d(u)=d(v)=4$ and $n=6$. So $G=\mathrm{B}_{6,3}^{1}$. If $d \geq 4$, then by the same calculation as (i), one may easily see that $H(G)>\mathfrak{B}(n, d)$.
(3) $\mathcal{G} \in \mathcal{B}^{3}$ and $d_{\mathcal{G}}\left(u^{\prime}, v^{\prime}\right)>1$, where u^{\prime}, v^{\prime} are two vertices of degree 3 in \mathcal{G}. Suppose $|V(\mathcal{G})|=m$, then $n=m+t+1$ and $H(G)=\frac{m}{2}-\frac{1}{10}$. So either $d(u)=d(v)=3$ or $d(u)=4, d(v)=3$ or $d(u)=d(v)=4$. Note that if $u=v$ or $u \in N(v)$ then $\operatorname{diam}(G-w)=\operatorname{diam}(G)$, a contradiction. Therefore $u \neq v$ and u, v are not adjacent. Hence $d \geq 4$ and

$$
H(G)=H(\mathcal{G})-\sum_{x \in N_{\mathcal{G}}(u)} \frac{2}{\left(z_{x}-1\right) z_{x}}-\sum_{y \in N_{\mathcal{G}}(v)} \frac{2}{\left(w_{y}-1\right) w_{y}}+\frac{2}{d(u)+1}+\left\{\begin{array}{ll}
\frac{2}{d(v)+1} & t=1 \\
\frac{2}{d(v)+2}+\frac{2}{3}+\frac{t-2}{2} & t \geq 2
\end{array} .\right.
$$

If $d(u)=d(v)=3$ then

$$
H(G) \geq \frac{n}{2}-\frac{1}{2}+\left\{\begin{array}{cc}
0 & t=1 \\
\frac{1}{15} & t \geq 2
\end{array}\right.
$$

If $d=4$, then $n \geq 7$ and $H(G)-\mathfrak{B}(n, 4) \geq \frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{19}{10}>0$. Also if $d \geq 5$, then $H(G)-\mathfrak{B}(n, d) \geq$ $\frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}>0$.
If $d(u)=4$ and $d(v)=3$ then

$$
H(G) \geq \frac{n}{2}-\frac{3}{5}+ \begin{cases}0 & t=1 \\ \frac{1}{15} & t \geq 2\end{cases}
$$

If $d=4$, then $n \geq 8$ and $H(G)-\mathfrak{B}(n, 4) \geq \frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-2>0$. Also if $d \geq 5$, then $n \geq 9$ and $n-d \geq 4$. So $H(G)-\mathfrak{B}(n, d) \geq \frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}-\frac{1}{10}>0$.
If $d(u)=d(v)=4$, then

$$
H(G)=\frac{n}{2}-\frac{3}{5}- \begin{cases}\frac{1}{10} & t=1 \\ 0 & t \geq 2\end{cases}
$$

If $d=4$, then $t=1$ and $n \geq 7$. If $n=7$, then $G=B_{7,4}$ and $H(G)=\mathfrak{B}(7,4)$. If $n \geq 8$, then $H(G)-\mathfrak{B}(n, 4)=$ $\frac{n}{2}-\frac{6}{n-1}-\frac{2(n-6)}{n-2}-\frac{21}{10}>0$. Also if $d \geq 5$, then $n \geq 8$. If $n-d=3$, then $t \geq 2$. So $G=B_{n, d}$ and $H(G)=\mathfrak{B}(n, d)$. If $n-d \geq 4$, then $H(G)-\mathfrak{B}(n, d) \geq \frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}-\frac{2}{10}>0$.
(4) $G=\Gamma_{i}, i=2,3$. So $d \geq 5$.

If $G=\Gamma_{2}$, then $d \geq 5, n-d=3$ and $H(G)=\frac{n}{2}-A$, where $A=\frac{2}{5}$ if $t=0$ and $A=\frac{13}{30}$ if $t=0$. Therefore $H(G)-\mathfrak{B}(n, d)=\frac{3}{5}-A>0$. If $G=\Gamma_{3}$, then $H(G)=\frac{n}{2}-\frac{7}{15}$. So $H(G)-\mathfrak{B}(n, d)=\frac{n-d}{2}-\frac{6}{n-d+3}-\frac{2(n-d-2)}{n-d+2}+\frac{1}{30}>0$.

Theorem 3.2. Let $G \in \mathcal{B}(n, d)$ and $d \geq 3$ then $H(G) \geq \mathfrak{B}(n, d)$ and equality holds if and only if $G=\mathrm{B}_{n, 3^{\prime}}^{1}$ where $d=3$ and $G=B_{n, d}$, where $d \geq 4$.

Figure 6: The graphs related to Theorem 3.2

Figure 7: Bicyclic graph of order n and diameter d, such that $n-d=2$.

Proof. By induction on n. First suppose $n-d=2$. So if $P \subset G$ be a diametrical path, then only one vertex of G is not in P. Note that two cycles of G should have a common vertex not in P and all other vertices of G should be in P, since every cycle has at least one vertex which is not in P. Therefore $\mathcal{G} \in \mathcal{B}^{3}$ and $G=V_{r, s}$, is a quasi-tree graph introduced in [1]. The graph $V_{r, s}$ obtained by adding two paths of lengths r, s to two vertices of degree 2 of K_{4}^{-}, (see Figure 7). The authors showed [1], $H\left(V_{r, s}\right) \geq d+\frac{5}{3}-\frac{n}{2}$, where equality holds if and only if $r=s=1$. One may easily see that if $d \leq 5$, then $d+\frac{5}{3}-\frac{n}{2}>\mathfrak{B}(n, d)$, since $n-d=2$. Suppose $d \geq 5$. Then $G=V_{s, r}$ where $r, s \geq 0$ and $r+s \geq 3$. Hence by [1, Table 1], $H(G) \geq \frac{d}{2}+\frac{11}{15}>\mathfrak{B}(d+2, d)$.

Suppose $n-d=3$. So two vertices of G are not in its diametrical path. If G has no pendant vertex, then Corollary 2.2 implies that every cycle of G is a triangle. Hence G is one of the graph shown in Figure 6, since $d \geq 3$. By an easy calculation, it is seen that $H\left(G_{1}\right)=\frac{44}{15}>\mathfrak{B}(6,3), H\left(G_{2}\right)=\frac{29}{10}+\frac{k}{2}>\mathfrak{B}(k+6, k+3)$.

Assume G has at least one pendant vertex. If for every pendant vertex of G, namely $v, \operatorname{diam}(G-v)<$ $\operatorname{diam}(G)$, then Lemma 3.1 implies that $H(G)>\mathfrak{B}(n, d)$. Hence suppose there exists a pendant vertex $v \in G$ such that $\operatorname{diam}(G-v)=\operatorname{diam}(G)$ and $N_{G}(v)=u$. Since v is a pendant vertex, $G-v \in \mathcal{B}(n-1, d)$ and $G-v$ is one of the graph shown in Figure 7. Now by [1], $H(G-v) \geq d+\frac{5}{3}-\frac{(n-1)}{2}=\frac{d}{2}+\frac{2}{3}$, where equality holds if and only if $G-v=V_{1,1}$. Also $2 \leq d_{G-v}(u) \leq 3$ and

$$
H(G)=H(G-v)+\frac{2}{d_{G-v}(u)+2}-\sum_{x \in N_{G-v}(u)} \frac{2}{\left(d_{G-v}(x)+d_{G-v}(u)\right)\left(d_{G-v}(x)+d_{G-v}(u)+1\right)}
$$

Note that at most one neighbor of u is of degree one. If $d_{G-v}(u)=2$ then $d \geq 4$ and $G-v \neq V_{1,1}$. Therefore $H(G-v)>\frac{d}{2}+\frac{2}{3}$. If $d=4$, then $n=7$ and $H(G)>\frac{87}{30}>\frac{14}{5}=\mathfrak{B}(7,4)$. If $d \geq 5$, then

$$
H(G)-\mathfrak{B}(n, d) \geq H(G-v)+\frac{7}{30}-\mathfrak{B}(n, d)>\frac{d}{2}+\frac{27}{30}-\mathfrak{B}(n, d)=0
$$

Suppose $d_{G-v}(u)=3$, then at most one neighbor of u is of degree less than 3. So $H(G) \geq H(G-v)+\frac{43}{210}$.
If $d=3$ then $G-v=V_{1,0}$ and $H(G-v)=\frac{23}{10}$. Hence $H(G) \geq \frac{263}{105}>\frac{143}{60}=\mathfrak{B}(6,3)$.
If $d=4$, then $n=7$ and $H(G-v) \geq \frac{8}{3}$. Hence $H(G)>\mathfrak{B}(7,4)$.

Also if $d \geq 5$, then $H(G-v) \geq \frac{d}{2}+\frac{11}{15}$. Therefore $H(G)-\mathfrak{B}(d+3, d) \geq 0$.
Suppose $n>d+3$ and for convenience, G has minimum harmonic index among all graphs in $\mathcal{B}(n, d)$. Let $P=v_{1}-v_{2}-\cdots-v_{d+1}$ is a diametrical path of G. If G has no pendant vertex, then by Corollary 2.2, every cycle of G is a triangle. So at most two vertices of G are not in its diametrical path. Hence $n-d \leq 3$, a contradiction.

Suppose G has at least one pendant vertex. If for every pendant vertex $v \in G, G-v \in \mathcal{B}(n-1, d-1)$, then by Lemma 3.1, $H(G)>\mathfrak{B}(n, d)$. Hence assume there exists a pendant vertex v in G such that $G-v \in \mathcal{B}(n-1, d)$ and $N(v)=u$. Note that $d(u) \leq n-d+1$, since $\operatorname{diam}(G)=d$. Suppose there exist k_{i} vertices of degree i in $N(u)$ for $1 \leq i \leq r$. It is clear that there exists $i>1$ such that $k_{i} \neq 0$. Hence

$$
\begin{align*}
H(G) & =H(G-v)+\frac{2}{1+d(u)}-\sum_{v \neq x \in N(u)} \frac{2}{(d(u)-1+d(x))(d(u)+d(x))} \\
& =H(G-v)+\frac{2}{1+d(u)}-\frac{2 k_{1}}{d(u)(d(u)+1)}-\cdots-\frac{2 k_{r}}{(d(u)+r-1)(u+r)} . \tag{1}
\end{align*}
$$

There are three cases as follows.
(i) $d(u) \leq n-d-1$. In this case, Equation 1, implies that

$$
\begin{aligned}
H(G) & \geq H(G-v)+\frac{2}{1+d(u)}-\frac{2(d(u)-2)}{d(u)(d(u)+1)}-\frac{2}{(d(u)+1)(d(u)+2)} \\
& =H(G-v)+\frac{2(d(u)+4)}{(1+d(u)) d(u)(2+d(u))} .
\end{aligned}
$$

Since the function $f(x)=\frac{2(x+4)}{x(1+x)(2+x)}$ is a decreasing function for $x>0, f(d(u)) \geq f(n-d-1)$. So if $d=4$, then induction hypothesis implies

$$
H(G) \geq \frac{7}{5}+\frac{6}{n-2}+\frac{2(n-7)}{n-3}+\frac{2(n-1)}{(n-5)(n-4)(n-3)}
$$

and $H(G)-\mathfrak{B}(n, 4)>0$. Also if $d \geq 5$ then

$$
H(G) \geq 2+\frac{d-5}{2}+\frac{6}{n-d+2}+\frac{2(n-d-3)}{n-d+1}+\frac{2(n-d+3)}{(n-d-1)(n-d)(n-d+1)},
$$

and

$$
H(G)-\mathfrak{B}(n, d) \geq \frac{12(5(n-d)+3)}{(n-d+2)(n-d+3)(n-d)\left((n-d)^{2}-1\right)}>0
$$

Suppose $d=3$ and $d(u) \leq n-5$. To the contrary, suppose there exists only one vertex $x \in N(u)$ such that $d(x)=2$ and other neighbors of u are pendant vertices. Then if $u=v_{1}$ or v_{4}, we find that $d \geq 4$, a contradiction. If $u=v_{2}$ or v_{3}, then G is a tree, another contradiction. So $u \neq v_{i}$ for $1 \leq i \leq 4$. Without lose of generality assume $d\left(v_{1}, x\right)<d\left(v_{4}, x\right)=t$. Then $d\left(v_{4}, v\right)=1+d\left(v_{4}, u\right)=2+d\left(v_{4}, x\right)=2+t \geq 4$, a contradiction. Therefore there exist $x, y \in N(u)$ such that $d(x), d(y) \geq 2$. Hence by Equation 1 ,

$$
\begin{aligned}
H(G) & \geq H(G-v)+\frac{2}{1+d(u)}-\frac{2(d(u)-3)}{d(u)(d(u)+1)}-\frac{4}{(d(u)+1)(d(u)+2)} \\
& =H(G-v)+\frac{2(d(u)+6)}{(1+d(u)) d(u)(d(u)+2)}
\end{aligned}
$$

Since the function $f(x)=\frac{2(x+6)}{(1+x) x(x+2)}$ is a decreasing function,

$$
H(G)-\mathfrak{B}(n, 3) \geq \frac{12\left(80+37 n^{2}+78 n-66 n^{3}+15 n^{4}\right)}{n(n-4)(n-5)(n-3)\left(n^{2}-1\right)\left(n^{2}-4\right)}>0
$$

Assume that $d(u)=n-4$. If at least three neighbors of u, are not pendant vertices, then the Equation 1 implies

$$
\begin{aligned}
H(G) & \geq H(G-v)+\frac{2}{1+d(u)}-\frac{2(d(u)-4)}{d(u)(d(u)+1)}-\frac{6}{(d(u)+1)(d(u)+2)} \\
& =H(G-v)+\frac{2(d(u)+8)}{(1+d(u)) d(u)(d(u)+2)}
\end{aligned}
$$

So

$$
H(G)-\mathfrak{B}(n, 3) \geq \frac{48\left(3 x^{3}-3 x^{2}-5 x-4\right)}{(x-3) x(x-4)\left(x^{2}-1\right)\left(x^{2}-4\right)}>0
$$

Also if there exist $x, y \in N(u)$ such that $d(x) \geq 2$ and $d(y) \geq 3$, then

$$
\begin{aligned}
H(G) & \geq H(G-v)+\frac{2}{1+d(u)}-\frac{2(d(u)-3)}{d(u)(d(u)+1)}-\frac{2}{(d(u)+1)(d(u)+2)}-\frac{2}{(d(u)+2)(d(u)+3)} \\
& =H(G-v)+\frac{2(d(u)+9)}{(d(u)+3) d(u)(d(u)+1)}
\end{aligned}
$$

Since $f(x)=\frac{2(x+9)}{(x+3) x(x+1)}$ is an decreasing function,

$$
H(G)-\mathfrak{B}(n, 3) \geq \frac{12\left(-16-22 n-15 n^{2}+11 n^{3}\right)}{n(n-4)(n-3)\left(n^{2}-1\right)\left(n^{2}-4\right)}>0
$$

Suppose there exist $x, y \in N(u)$ such that $d(x)=d(y)=2$ and $d(z)=1$ for every vertices $x, y \neq z \in N(u)$. If $u \notin P$, then since every neighbor of G is of degree at most 2 , then $N(u) \cap P \subset\left\{v_{1}, v_{4}\right\}$. Also since $\operatorname{diam}(G)=3$, then $\left|N(u) \cap\left\{v_{1}, v_{4}\right\}\right|=1$. So u is adjacent to exactly one vertex of P, since $d(u)=n-4$. without lose of generality suppose $x=v_{1} \in N(u)$. Hence $d\left(v, v_{4}\right) \geq 5$, a contradiction.
If $u \in P$ and $u=v_{1}$, then $d\left(v, v_{4}\right)>3$, a contradiction. The same argument is valid for v_{4}. Therefore without lose of generality, suppose $u=v_{2}, x=v_{1}, y=v_{3}$ and $u \neq z \in N\left(v_{1}\right)$. Hence $N(z) \cap N[u]=v_{1}$. Hence either z is a pendant vertex or there exists a vertex $w \in N(z)$. If z is a pendant vertex, then $d>3$, a contradiction. If $w=v_{4}$, then $d\left(v_{1}, v_{4}\right) \leq 2$, another contradiction. Also if $w \neq v_{4}$, then $d(v, t) \geq 4$, which is a contradiction.
(ii) $d(u)=n-d$. So either $u=v_{i}$, where $i \in\{1, d+1\}$ or u is adjacent to at least two vertices of P.

Assume first that $u \in P$. If $u=v_{1}$ or v_{d}, then $\operatorname{diam}(G-v)<\operatorname{diam}(G)$, a contradiction. So there is exactly one vertex $w \in G-p$, such that $w \notin N(u)$. If $\sum_{x \in N(u)} d(x)=n-d+1$, then exactly one neighbors of u is of degree 2 and the other neighbors are pendant vertices. Hence without lose of generality, $u=v_{2}$ and $N(w)=\left\{v_{k-1}, v_{k}, v_{k+1}\right\}$ for $5 \leq k \leq d$, since G is a bicyclic graph. Therefore $d \geq 5, n \geq 9$ and G is the graph which is shown in Figure 8. Therefore $H(G)=\frac{d-5}{2}+\frac{2(n-d-1)}{n-d+1}+\frac{2}{n-d+2}+A$, where $A=\frac{11}{5}$ if $t=0$, and $A=\frac{31}{15}$ if $t=1$, and $A=\frac{32}{15}$, if $t \geq 2$. Hence

$$
H(G)-\mathfrak{B}(n, d) \geq \frac{(n-d)^{3}+6(n-d)^{2}+41(n-d)-84}{15(n-d+1)(n-d+2)(n-d+3)}>0
$$

If $\sum_{x \in N(u)} d(x)>n-d+1$.
It is easy to see that if $d \geq 4$ then $H(G)>\mathfrak{B}(n, d)$. Also if $d=3$ and $\sum_{x \in N(u)} d(x)>n-d+2$, then $H(G)>\mathfrak{B}(n, 3)$. Suppose $d=3$ and $\sum_{x \in N(u)} d(x)=n-d+2$. Hence u has either exactly two neighbors of degree 2 or one neighbor of degree 3 . Without lose of generality suppose $u=v_{2}$. If u has two neighbors of degree 2 , namely x, v_{3}, then $N(w) \subseteq\left\{x, v_{4}\right\}$ and G is unicycle, a contradiction. If $d\left(v_{3}\right)=3$, then $N(w) \subseteq\left\{v_{3}, v_{4}\right\}$ and G is unicycle, another contradiction.
Suppose now that $u \notin P$. If $v_{1} \in N(u)$ then $v_{d+1} \notin N(u)$, otherwise $\operatorname{diam}(G)=2$. So there exists a vertex of degree at least 3 and a vertex of degree 2 in $N(u)$. If the other neighbors of u are pendant vertices,

Figure 8: The graph related to Case (ii) of Theorem 3.2.
then G is a unicyclic graph, a contradiction. Hence there is another vertex of degree at least 2 in $N(u)$ and hence by Equation 1,

$$
\begin{aligned}
H(G) & \geq H(G-v)+\frac{2}{1+d(u)}-\frac{2(d(u)-4)}{d(u)(d(u)+1)}-\frac{4}{(d(u)+1)(d(u)+2)}-\frac{2}{(d(u)+2)(d(u)+3)} \\
& =H(G-v)+\frac{2\left(d(u)^{2}+13 d(u)+24\right)}{(d(u)+1) d(u)(d(u)+2)(d(u)+3)} .
\end{aligned}
$$

If $d=3$, then $d(u)=n-3$ and

$$
\begin{aligned}
H(G)-\mathfrak{B}(n, 3) & \geq \frac{4}{n-1}+\frac{2}{n+1}+\frac{2(n-6)}{n-2}-\frac{4}{n}-\frac{2}{n+2}-\frac{2(n-5)}{n-1}+\frac{2\left(n^{2}+7 n-6\right)}{n(n-3)(n-2)(n-1)} \\
& =\frac{12\left(2+5 n+7 n^{2}\right)}{n(n-3)\left(n^{2}-1\right)\left(n^{2}-4\right)}>0
\end{aligned}
$$

If $d=4$ then

$$
H(G)-\mathfrak{B}(n, 4) \geq \frac{8(n+2)}{(n-1)(n-2)(n-3)(n-4)}>0 .
$$

If $d \geq 5$ then

$$
H(G)-\mathfrak{B}(n, d) \geq \frac{8((n-d)+6)}{(n-d+1)(n-d)(n-d+2)(n-d+3)}>0 .
$$

(iii) $d(u)=n-d+1$.

If $u \notin P$ then u is adjacent to at least three vertices of P. Since $\operatorname{diam}(G)>2, u$ is not adjacent to both v_{1}, v_{d+1}. Hence there exist two vertices of degree at least 3 and a vertex of degree at least 2 in $N(u)$. By a similar argument as in Case (ii), $H(G)>\mathfrak{B}(n, d)$.
If $u \in P$, then $G-P \subset N(u)$ and $|N(u) \cap P|=2$. So $u \neq v_{1}, v_{d+1}$. Suppose $u=v_{i}$, where $2 \leq i \leq d$ and $x \in N(u)-P$. Then $N(x) \cap P \subseteq\left\{v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}\right\}$. Also if $v_{k}, v_{k^{\prime}} \in N(x)$, then $k-k^{\prime} \leq 2$. Therefore $|N(x) \cap P| \leq 3$. If $d(x) \geq 4$, then $|N(x) \cap N(u)-P| \geq 1$. So if $d \geq 4$, then u has a neighbor of degree at least 4 and two neighbors of degree at least 2. Therefore Equation 1 implies that $H(G)>\mathfrak{B}(n, d)$. If $d=3$, then x should be adjacent to at least three neighbors of u and hence u has at least two neighbors of degree at least 2 , one neighbor of degree at least 3 and one neighbor of degree at least 4 . Therefore Equation 1 implies,

$$
\begin{aligned}
H(G) & \geq H(G-v)+\frac{2}{1+d(u)}-\frac{4}{(d(u)+1)(d(u)+2)}-\frac{2}{(d(u)+2)(d(u)+3)}-\frac{2}{(d(u)+3)(d(u)+4)} \\
& -\frac{2(d(u)-5)}{d(u)(d(u)+1)}=H(G-v)+\frac{2\left(d(u)^{2}+20 d(u)+40\right)}{(d(u)+1) d(u)(d(u)+2)(d(u)+4)}
\end{aligned}
$$

and

$$
H(G)-\mathfrak{B}(n, d) \geq \frac{4(2 n-1)}{(n-2) n\left(n^{2}-1\right)}>0 .
$$

Suppose $d(x) \leq 3$ for every $x \in N(u)-P$. If $d(x)=1$ for every $x \in G-P$, then G is a tree, a contradiction. If there exists only one vertex in $G-P$ such that $d(x)=2$, then G is a unicyclic graph, a contradiction too. So either there is a vertex x in $G-P$ such that $d(x) \geq 3$ or there exist two vertices z, y in $G-P$ such that $\operatorname{deg}(z), d(y) \geq 2$. Since $E(G)=n+1$, counting the degrees of vertices, implies that either there is a vertex x in $G-P$ such that $d(x)=3$ and $d(w)=1$ for every $w \in G-(P \cup N(x))$ or there are two vertices z, y in $G-P$ such that $\operatorname{deg}(z), d(y)=2$ and $d(w)=1$ for every $w \in G-(P \cup N(y) \cup N(z))$.
If $u \in P-\left\{v_{2}, v_{d}\right\}$ then $d \geq 4$ and there exist at least two vertex in $P \cap N(u)$ of degree more than 1 and $H(G) \geq \mathfrak{B}(n, d)$, by a similar argument as in Case (ii). Also if $u=v_{2}$ (or $u=v_{d}$) and $d\left(v_{1}\right) \geq 2$ (or $d\left(v_{d+1}\right) \geq 2$), then there exist at least two vertices in $P \cap N(u)$ of degree more than 1 and $H(G) \geq \mathfrak{B}(n, d)$. So without lose of generality suppose $u=v_{2}$ and $d\left(v_{1}\right)=1$. Then u can only have a common neighbor with v_{3} or v_{4}. Hence there are two possibilities.
(a) There exists a vertex $x \in N(u)-P$ such that $d(x)=3$ and $d(w)=1$ for every $w \in G-(P \cup N(x))$. If $x \in N\left(v_{3}\right) \cap N\left(v_{4}\right)$, then $G=V_{1, r}$, which is shown in Figure 7, and $H(G)>\mathfrak{B}(n, d)$. If $x \in N\left(v_{3}\right)$ and $x \notin N\left(v_{4}\right)$, then u has a neighbor of degree 2 and two neighbors of degree 3 . One may easily see that $H(G)>\mathfrak{B}(n, d)$. If $x \notin N\left(v_{3}\right) \cup N\left(v_{4}\right)$, then u has three neighbors of degree 2 and a neighbor of degree 3 and $H(G)>\mathfrak{B}(n, d)$.
(b) There exist two vertices z, y in $G-P$ such that $d(z), d(y)=2$ and $d(w)=1$ for every $w \in G-(P \cup N(y) \cup N(z))$. If $y, z \in N\left(v_{3}\right)$ and $d=3$, then $G=\mathrm{B}_{n, 3}^{1}$ and $H(G)=\mathfrak{B}(n, 3)$. If $y, z \in N\left(v_{3}\right)$ and $d \geq 4$, then

$$
\begin{aligned}
H(G) & \geq H(G-v)+\frac{2}{1+d(u)}-\frac{2(d(u)-4)}{d(u)(d(u)+1)}-\frac{4}{(d(u)+1)(d(u)+2)}-\frac{2}{(d(u)+3)(d(u)+4)} \\
& =H(G-v)+\frac{2\left(d(u)^{3}+19 d(u)^{2}+78 d(u)+96\right)}{(1+d(u))(d(u)+2)(d(u)+4)(d(u)+3) d(u)}
\end{aligned}
$$

and it is easy to see that $H(G)-\mathfrak{B}(n, d)>0$. If $y, z \in N\left(v_{4}\right)$, then $G=B_{n, d}$. So if $d=3$ then $G=B_{n, 3}$ and $H(G)=1+\frac{6}{n}+\frac{2(n-5)}{n-1}$. Hence $H(G)-\mathfrak{B}(n, 3)=\frac{4\left(n^{2}+2 n+15\right)}{n(n+2)}>0$. If $d \geq 4$ then $G=B_{n, d}$ and $H(G)=\mathfrak{B}(n, d)$. If $z, y \notin N\left(v_{3}\right) \cup N\left(v_{4}\right)$, then u has at least five neighbors of degree 1 and $H(G)>\mathfrak{B}(n, d)$. If without lose of generality, $y \in N\left(v_{3}\right)$ and $z \notin N\left(v_{3}\right) \cup N\left(v_{4}\right)$, then u has three neighbors of degree 2 and a neighbor of degree 3 and $H(G)>\mathfrak{B}(n, d)$.
Now the proof is complete.

References

[1] A. Abdolghafourian, M.A. Iranmanesh, On Harmonic index and diameter of quasi-tree graphs, J. Math. 2021 (2021), Article ID 6650407, 9 pages.
[2] N. Akhterm, I. Tomescu, Bycylic graphs with minimum general sum-connectivity index for $-1 \leq \alpha<0$, Publ. Roman. Acad. A. 16 (2015) 484-489.
[3] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) 249-311.
[4] M. Arshad, I. Tomescu, Maximum general sum-connectivity index with $-1 \leq \alpha<0$ for bicyclic graphs, Math. Rep. 19 (2017) 93-96.
[5] Z. Du, B. Zhou, On sum-connectivity index of bicyclic graphs, Bull. Malays. Math. Sci. Soc. 35 (2012) 101-117.
[6] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. 60 (1987) 187-197.
[7] M.A. Iranmanesh, M. Saheli, On the harmonic index and harmonic polynomial of Caterpillars with diameter four, Iranian J. Math. Chem. 6 (2015) 35-43.
[8] J.A. Jerline, B.A. Michaelraj, On a conjecture of harmonic index and diameter of graphs, Kragujevac J. Math. 40 (2016) 73-78.
[9] J. Liu, On harmonic index and diameter of graphs, J. Appl. Math. Phys. 1 (2013) 5-6.
[10] I. Tomescu, Extremal results concerning the general sum-connectivity index in some classes of connected graphs, ROMAI J. 10 (2014) 45-51.
[11] D.B. West, Introduction to Graph Theory,(2nd edition), Prentice hall Upper Saddle River, 2001.
[12] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561-566.
[13] L. Zhong, The minimum harmonic index for unicyclic graphs with given diameter, Discuss. Math. Graph Theory 38 (2018) 429-442.
[14] L. Zhong, Q. Cui, The harmonic index for unicyclic graphs with given girth, Filomat 29 (2015) 673-686.
[15] L. Zhong, K. Xu, The harmonic index for bicyclic graphs, Util. Math. 90 (2013) 23-32.
[16] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.

[^0]: 2020 Mathematics Subject Classification. Primary: 05C50; Secondary: 05C09, 05C35
 Keywords. Harmonic index, bicyclic graph, diameter
 Received: 14 January 2021; Revised: 02 May 2021; Accepted: 31 May 2021
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: abdolghafourian@yazd.ac.ir (Adeleh Abdolghafourian), iranmanesh@yazd.ac.ir (Mohammad A. Iranmanesh)

