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over R2

+
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Abstract. In this paper, we obtain one-sided and two-sided Tauberian conditions of Landau and Hardy
types for (C, 1, 0) and (C, 0, 1) summability methods for improper double integrals under which convergence
of improper double integrals follows from (C, 1, 0) and (C, 0, 1) summability of improper double integrals.
We give similar results for (C, 1, 1) summability method of improper double integrals. In general, we
obtain Tauberian conditions in terms of the concepts of slowly decreasing (resp. oscillating) and strong
slowly decreasing (resp. oscillating) functions in different senses for Cesàro summability methods of real
or complex-valued locally integrable functions on [0,∞) × [0,∞) in different senses.

1. Introduction

Cesàro summability for double sequences has been investigated by Móricz [3] and Totur [6]. Móricz
[3] obtained one-sided and two-sided Tauberian conditions for double sequences. Later, Totur [6] obtained
one-sided Tauberian conditions based on the difference between the double sequences and its means in
different senses under which convergence of double sequences follow from Cesàro summability of double
sequences. Moreover, Totur [6] proved the generalized Littlewood Tauberian theorem for double sequences.

Cesàro summability for double improper integrals was studied by Móricz [4] and he obtained one-
sided Tauberian conditions for real-valued functions and two-sided Tauberian conditions for complex-
valued functions under which convergence of improper double integral follows from Cesàro summability
of improper double integrals. Totur and Çanak [7] introduced (C, α, β) summability method where α > −1
and β > −1 and they proved that (C, α, β) summability implies (C, α + h, β + k) summability for all h > 0 and
k > 0. In addition to that, they obtained that (C, α, β) summability method is regular. Using the proving
techniques of Laforgia [2], they proved a Tauberian theorem for (C, 1, 1) summability method. Recently,
Fındık and Çanak [1] has introduced the weighted mean method of type (α, β) determined by two weighted
functions p(x) and q(x) and obtained analogous results as in [7] for this summability method.

In this paper, we obtain one-sided and two-sided Tauberian conditions of Landau and Hardy types
for (C, 1, 0) and (C, 0, 1) summability methods for improper double integrals under which convergence of
improper double integrals follows from (C, 1, 0) and (C, 0, 1) summability of improper double integrals.
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We give similar results for (C, 1, 1) summability method of improper double integrals. In general, we
obtain Tauberian conditions in terms of the concepts of slowly decreasing (resp. oscillating) and strong
slowly decreasing (resp. oscillating) functions in different senses for Cesàro summability methods of real
or complex-valued locally integrable functions on [0,∞) × [0,∞) in different senses.

2. Preliminaries

Suppose that f is a real or complex-valued locally integrable function on R2
+ := [0,∞) × [0,∞) and

s(u, v) =
∫ u

0

∫ v

0 f (x, y)dxdy for 0 < u, v < ∞. The mean (C, 1, 1) (or Cesàro mean in sense (1, 1)) of s(u, v) is
defined by

σ(s(u, v)) = σ11(s(u, v)) =
1

uv

∫ u

0

∫ v

0
s(x, y)dxdy

=

∫ u

0

∫ v

0

(
1 −

x
u

) (
1 −

y
v

)
f (x, y)dxdy (1)

for u, v > 0. The integral∫
∞

0

∫
∞

0
f (x, y)dxdy (2)

is said to be (C, 1, 1) summable (or Cesàro summable in sense (1, 1)) to a finite number L if

lim
u,v→∞

σ(s(u, v)) = L. (3)

Throughout this work, convergence is always used in Pringsheim’s sense for convergence of improper
double integral [5]. Namely, both u and v tend to∞ independently of each other in (3).

The mean (C, 1, 0) (or Cesàro mean in sense (1, 0)) of s(u, v) is defined by

σ10(s(u, v)) =
1
u

∫ u

0
s(x, v)dx =

∫ u

0

∫ v

0

(
1 −

x
u

)
f (x, y)dxdy (4)

for u, v > 0. The integral (2) is said to be (C, 1, 0) summable (or Cesàro summable in sense (1, 0)) to a finite
number L if

lim
u,v→∞

σ10(s(u, v)) = L.

Similarly, the mean (C, 0, 1) (or Cesàro mean in sense (0, 1)) of s(u, v) is defined by

σ01(s(u, v)) =
1
v

∫ v

0
s(u, y)dy =

∫ u

0

∫ v

0

(
1 −

y
v

)
f (x, y)dxdy (5)

for u, v > 0. The integral (2) is said to be (C, 0, 1) summable (or Cesàro summable in sense (0, 1)) to a finite
number L if

lim
u,v→∞

σ01(s(u, v)) = L.

A function s(u, v) is bounded if there exists a real number H > 0 such that |s(u, v)| ≤ H for all u, v > 0. In
this case, we write s(u, v) = O(1). Moreover, a real-valued function s(u, v) is said to be one-sided bounded
if there exists a real number H > 0 such that s(u, v) ≥ −H for all u, v > 0.

It is clear from the definition of s(u, v) that

su(u, v) =
∂s(u, v)
∂u

=

∫ v

0
f (u, y)dy

sv(u, v) =
∂s(u, v)
∂v

=

∫ u

0
f (x, v)dx

suv(u, v) =
∂2s(u, v)
∂u∂v

= f (u, v)
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for u, v > 0.
The Kronecker identities for double integrals take the following forms. For u, v > 0, we have

s(u, v) − σ10(s(u, v)) − σ01(s(u, v)) + σ11(s(u, v)) = V11(suv(u, v)) (6)

where V11(suv(u, v)) =
1

uv

∫ u

0

∫ v

0 xy f (x, y)dxdy. We note that V11(suv(u, v)) is the (C, 1, 1) mean of uvsuv(u, v).
Moreover, in analogy to the Kronecker identity for double sequences, we have

s(u, v) − σ10(s(u, v)) = V10(su(u, v)) (7)

where V10(su(u, v)) =
1
u

∫ u

0

∫ v

0 x f (x, y)dxdy and

s(u, v) − σ01(s(u, v)) = V01(sv(u, v))

where V01(sv(u, v)) =
1
v

∫ u

0

∫ v

0 y f (x, y)dxdy. We note that V10(su(u, v)) and V01(sv(u, v)) are the (C, 1, 0) mean
of usu(u, v) and the (C, 0, 1) mean of vsv(u, v), respectively.

The generalized de la Vallée Poussin mean of a real or complex-valued function s(u, v) defined on R2
+

are given as follows:

τ>(s(u, v), λ) =
1

(λu − u)(λv − v)

∫ λu

u

∫ λv

v
s(x, y)dxdy

for λ > 1 and

τ<(s(u, v), λ) =
1

(u − λu)(v − λv)

∫ u

λu

∫ v

λv
s(x, y)dxdy

for 0 < λ < 1.
Assume that s(u, v) is bounded on R2

+. If the limit

lim
u,v→∞

s(u, v) = L (8)

exists, then the limit (3) also exists. The converse of this implication is not true in general, even if s(u, v)
is bounded on R2

+. We may get the converse implication if we add some suitable condition(s) imposed on
s(u, v), which is called a Tauberian condition. Any theorem which states that convergence of the improper
double integral follows from its Cesàro summability in sense (1, 1) and some Tauberian condition is said to
be a Tauberian theorem for Cesàro summability in sense (1, 1). Similar situations are valid for the (C, 1, 0)
and (C, 0, 1) summability methods.

3. Auxiliary Results

We need the following auxiliary results for the proofs of our main results.

Lemma 3.1. ([4]) If (2) is (C, 1, 1) summable to a finite number L, then

lim
u,v→∞

τ>(s(u, v), λ) = L

and
lim

u,v→∞
τ<(s(u, v), λ) = L.
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Lemma 3.2. Let s(u, v) be a double integral over the rectangle [0,u] × [0, v]. For sufficiently large u and v,
(i) If λ > 1,

s(u, v) − σ11(s(u, v)) =
(
λ

λ − 1

)2

(σ11(s(λu, λv)) − σ11(s(u, v))) +
λ

(λ − 1)2
(σ11(s(u, v)) − σ11(s(λu, v)))

+
λ

(λ − 1)2
(σ11(s(u, v)) − σ11(s(u, λv))) −

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
s(x, y) − s(u, v)

)
dxdy.

(ii) If 0 < λ < 1,

s(u, v) − σ11(s(u, v)) =
(
λ

1 − λ

)2

(σ11(s(λu, λv)) − σ11(s(u, v))) +
λ

(1 − λ)2
(σ11(s(u, v)) − σ11(s(λu, v)))

+
λ

(1 − λ)2
(σ11(s(u, v)) − σ11(s(u, λv))) +

1
(u − λu)(v − λv)

∫ u

λu

∫ v

λv

(
s(u, v) − s(x, y)

)
dxdy.

Proof. For λ > 1, we have

s(u, v) − σ11(s(u, v)) = τ>(s(u, v), λ) − σ11(s(u, v)) − (τ>(s(u, v), λ) − s(u, v)) . (9)

From the expression of the generalized de la Vallée Poussin mean of s(u, v), we have

τ>(s(u, v), λ) =
1

(λu − u)(λv − v)

∫ λu

u

∫ λv

v
s(x, y)dxdy

=
1

(λ − 1)2uv

(∫ λu

0
−

∫ u

0

) (∫ λv

0
−

∫ v

0

)
s(x, y)dxdy

=
(
λ

λ − 1

)2

σ11(s(λu, λv)) −
λ

(λ − 1)2 σ11(s(λu, v))

−
λ

(λ − 1)2 σ11(s(u, λv)) +
1

(λ − 1)2 σ11(s(u, v))

=
(
λ

λ − 1

)2

(σ11(s(λu, λv)) − σ11(s(u, v)))

+
λ

(λ − 1)2
(σ11(s(u, v)) − σ11(s(λu, v)))

+
λ

(λ − 1)2
(σ11(s(u, v)) − σ11(s(u, λv)))

+ σ11(s(u, v)).

From the identity above, we get

τ>(s(u, v), λ) − σ11(s(u, v)) =
(
λ

λ − 1

)2

(σ11(s(λu, λv)) − σ11(s(u, v)))

+
λ

(λ − 1)2
(σ11(s(u, v)) − σ11(s(λu, v)))

+
λ

(λ − 1)2
(σ11(s(u, v)) − σ11(s(u, λv))) . (10)

We obtain the identity (i) from (10).
The identity (ii) can be shown in a similar way.

The following Lemma represents some relations between (C, 1, 0), (C, 0, 1) and (C, 1, 1) means of s(u, v).
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Lemma 3.3. Let s(u, v) be a double integral over the rectangle [0,u] × [0, v]. Then we have

σ10(σ01(s(u, v))) = σ01(σ10(s(u, v))) = σ11(s(u, v)) (11)

σ10(σ11(s(u, v))) = σ11(σ10(s(u, v))) (12)

σ01(σ11(s(u, v))) = σ11(σ01(s(u, v))) (13)

for u, v > 0.

Proof. First, we prove the identity (11). By (4) and (5), we have

σ10(σ01(s(u, v))) =

∫ u

0

∫ v

0

(
1 −

x
u

) (
1 −

y
v

)
f (x, y)dxdy

=

∫ u

0

∫ v

0

(
1 −

y
v

) (
1 −

x
u

)
f (x, y)dxdy

= σ01(σ10(s(u, v))).

By (1), we get

σ10(σ01(s(u, v))) =

∫ u

0

∫ v

0

(
1 −

x
u

) (
1 −

y
v

)
f (x, y)dxdy

= σ11(s(u, v)).

Now, we prove the identity (12). By (1) and (4), we have

σ10(σ11(s(u, v))) =

∫ u

0

∫ v

0

(
1 −

x
u

) (
1 −

x
u

) (
1 −

y
v

)
f (x, y)dxdy

=

∫ u

0

∫ v

0

(
1 −

x
u

) (
1 −

y
v

) (
1 −

x
u

)
f (x, y)dxdy

= σ11(σ10(s(u, v))).

The identity (13) can be shown similarly.

4. Tauberian theorems for Cesàro summability methods of real-valued continuous functions on R2
+

We need the following definitions for the real-valued functions defined on R2
+:

A real-valued function s(u, v) defined on R2
+ is said to be slowly decreasing in sense (1, 0) [4] if

lim
λ→1+

lim inf
u,v→∞

min
u≤x≤λu

[s(x, v) − s(u, v)] ≥ 0

or equivalently

lim
λ→1−

lim inf
u,v→∞

min
λu≤x≤u

[s(u, v) − s(x, v)] ≥ 0.

Analogously, a real-valued function s(u, v) defined on R2
+ is said to be slowly decreasing in sense (0, 1)

[4] if

lim
λ→1+

lim inf
u,v→∞

min
v≤y≤λv

[s(u, y) − s(u, v)] ≥ 0

or equivalently

lim
λ→1−

lim inf
u,v→∞

min
λv≤y≤v

[s(u, v) − s(u, y)] ≥ 0.
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A real-valued function s(u, v) defined on R2
+ is said to be strong slowly decreasing in sense (1, 0) if

lim
λ→1+

lim inf
u,v→∞

min
u≤x≤λu
v≤y≤λv

[s(x, y) − s(u, y)] ≥ 0

or equivalently

lim
λ→1−

lim inf
u,v→∞

min
λu≤x≤u
λv≤y≤v

[s(u, y) − s(x, y)] ≥ 0.

Analogously, a real-valued function s(u, v) defined onR2
+ is said to be strong slowly decreasing in sense

(0, 1) if

lim
λ→1+

lim inf
u,v→∞

min
u≤x≤λu
v≤y≤λv

[s(x, y) − s(x, v)] ≥ 0

or equivalently

lim
λ→1−

lim inf
u,v→∞

min
λu≤x≤u
λv≤y≤v

[s(x, v) − s(x, y)] ≥ 0.

In the following theorem, we give one-sided Tauberian conditions of Landau type for improper double
integrals under which convergence follows from (C, 1, 0) and (C, 0, 1) summability of (2).

Theorem 4.1. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 0) and (C, 0, 1) summable to a finite number
L and there exist constants H > 0 and x0 ≥ 0 such that conditions

uV11u (suv(u, v)) ≥ −H (14)

and

vV11v (suv(u, v)) ≥ −H (15)

are satisfied for all (u, v) ∈ R2
+ with u, v > x0, then s(u, v) is convergent to L.

The following two theorems are Tauberian theorems of Landau type for (C, 1, 1) summability of improper
double integrals.

Theorem 4.2. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 1) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that conditions

usu(u, v) ≥ −H (16)

and

vsv(u, v) ≥ −H (17)

are satisfied for all (u, v) ∈ R2
+ with u, v > x0, then s(u, v) is convergent to L.

Theorem 4.3. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 1) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that conditions

uV11u (suv(u, v)) ≥ −H, vV11v (suv(u, v)) ≥ −H, (18)

uV10u (su(u, v)) ≥ −H, vV10v (su(u, v)) ≥ −H, (19)

uV01u (sv(u, v)) ≥ −H, vV01v (sv(u, v)) ≥ −H (20)

are satisfied for all (u, v) ∈ R2
+ with u, v > x0, then s(u, v) is convergent to L.
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In the next three theorems, Tauberian conditions are given in terms of slow decreasing and strong slow
decreasing in different senses for Cesàro summability methods in different senses.

Theorem 4.4. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 0) and (C, 0, 1) summable to a finite number
L and V11(suv(u, v)) slowly decreasing in sense (0, 1) and strong slowly decreasing in sense (1, 0) or slowly decreasing
in sense (1, 0) and strong slowly decreasing in sense (0, 1), then s(u, v) is convergent to L.

Theorem 4.5. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 1) summable to a finite number L and s(u, v)
is slowly decreasing in sense (0, 1) and strong slowly decreasing in sense (1, 0) or slowly decreasing in sense (1, 0)
and strong slowly decreasing in sense (0, 1), then s(u, v) is convergent to L.

Theorem 4.6. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 1) summable to a finite number L and
V11(suv(u, v)), V10(su(u, v)) and V01(sv(u, v)) are slowly decreasing in sense (0, 1) and strong slowly decreasing in
sense (1, 0) or slowly decreasing in sense (1, 0) and strong slowly decreasing in sense (0, 1), then s(u, v) is convergent
to L.

5. Proofs

Proof of Theorem 4.1 Suppose that a bounded double integral s(u, v) is (C, 1, 0) and (C, 0, 1) summable
to L and conditions (14) and (15) hold. It can be easily verified that (C, 1, 0) and (C, 0, 1) summability
of (2) implies (C, 1, 1) summability of (2) by Lemma 3.3. Since (C, 1, 1) summable method is regular and
lim

u,v→∞
σ11(s(u, v)) = L, σ11(s(u, v)) is (C, 1, 1) summable to L. Analogously, σ10(s(u, v)) and σ01(s(u, v)) are (C, 1, 1)

summable to L. Hence it follows from Kronecker identity (6) that V11(suv(u, v)) is (C, 1, 1) summable to 0.
For λ > 1, if we replace s(u, v) by V11(suv(u, v)) in (9), we have

V11(suv(u, v)) − σ11 (V11(suv(u, v))) = (τ> (V11(suv(u, v)), λ) − σ11 (V11(suv(u, v))))

−
1

(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy. (21)

Taking the lim sup of both sides of the previous equation as u, v→∞, we get

lim sup
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v)))) ≤ lim sup
u,v→∞

(τ> (V11(suv(u, v))) , λ) − σ11 (V11(suv(u, v))))

+ lim sup
u,v→∞

(
−

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

)
. (22)

The first term on the right-hand side of the previous inequality is vanished by Lemma 3.1 and we have

lim sup
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v))))

≤ lim sup
u,v→∞

(
−

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

)
. (23)

In addition, we obtain by (14) and (15) that

V11(sxy(x, y)) − V11(suv(u, v)) =

∫ x

u
V11r (sry(r, y))dr +

∫ y

v
V11t (sut(u, t))dt (24)

≥ −H
(∫ x

u

dr
r

+

∫ y

v

dt
t

)
(25)

= −H
(
ln

(x
u

)
+ ln

( y
v

))
(26)
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for some H > 0. From (23) and (24), we have

lim sup
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v)))) ≤ H lim sup
u,v→∞

(
ln

(
λu
u

)
+ ln

(
λv
v

))
.

Taking the limit of both sides of the previous inequality as λ→ 1+, we get

lim sup
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v)))) ≤ lim
λ→1+

2H lnλ

and we obtain

lim sup
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v)))) ≤ 0. (27)

For 0 < λ < 1, in a similar way from Lemma 3.2 (ii) we have

lim inf
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v)))) ≥ 0. (28)

By (27) and (28), we obtain limu,v→∞ V11(suv(u, v)) = 0. Thus, s(u, v) is convergent to L by Kronecker identity
(6).

Proof of Theorem 4.2 Assume that bounded double integral s(u, v) is (C, 1, 1) summable to L and conditions
(16) and (17) hold. By (C, 1, 1) summability of s(u, v), we write lim

u,v→∞
σ(s(u, v)) = L.

For λ > 1, using the identity (9) we have

s(u, v) − σ11(s(u, v)) = τ>(s(u, v), λ) − σ11(s(u, v)) −
1

(λu − u)(λv − v)

∫ λu

u

∫ λv

v
(s(x, y) − s(u, v))dxdy.

Taking the lim sup of both sides of the previous equation as u, v→∞, we get

lim sup
u,v→∞

(s(u, v) − σ11(s(u, v))) ≤ lim sup
u,v→∞

(τ>(s(u, v), λ) − σ11(s(u, v)))

+ lim sup
u,v→∞

(
−

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v
(s(x, y) − s(u, v))dxdy

)
.

The first term on the right-hand side of the previous inequality vanishes by Lemma 3.1, and we have

lim sup
u,v→∞

(s(u, v) − σ11(s(u, v))) ≤ lim sup
u,v→∞

(
−

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v
(s(x, y) − s(u, v))dxdy

)
. (29)

In addition, we obtain by (16) and (17) that

s(x, y) − s(u, v) = s(x, y) − s(u, y) + s(u, y) − s(u, v)

=

∫ x

u

∫ y

0
f (r, t)dtdr +

∫ u

0

∫ y

v
f (r, t)dtdr

≥ −H
(∫ x

u

dr
r

+

∫ y

v

dt
t

)
≥ −2H lnλ (30)

for some H > 0. Taking (30) into consideration, we obtain from (29)

lim sup
u,v→∞

(s(u, v) − σ11(s(u, v))) ≤ 2H lnλ.

Hence taking the limit of both sides of the last inequality as λ→ 1+, we have

lim sup
u,v→∞

(s(u, v) − σ11(s(u, v))) ≤ 0. (31)
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For 0 < λ < 1, we have

lim inf
u,v→∞

(s(u, v) − σ11(s(u, v))) ≥ 0. (32)

By the inequalities (31) and (32), we obtain s(u, v) is convergent to L.
Proof of Theorem 4.3 Assume that bounded double integral s(u, v) is (C, 1, 1) summable to L and conditions

(18)-(20) hold. By (C, 1, 1) summability of s(u, v), we have lim
u,v→∞

σ(s(u, v)) = L.

Taking (C,1,1) means of the Kronecker equality (7), we get

σ11(s(u, v)) − σ10(σ11(s(u, v))) = σ11(V10(su(u, v))) (33)

by Lemma 3.3. Since (C, 1, 0) summability method is regular under the boundedness condition, we obtain
that V10(su(u, v)) is (C, 1, 1) summable to 0 by taking (33) into consideration. Similarly, it can be easily seen
that V01(sv(u, v)) is (C, 1, 1) summable to 0.

From Kronecker equality (6), we get

(s(u, v) − σ10(s(u, v))) + (s(u, v) − σ01(s(u, v))) − (s(u, v) − σ11(s(u, v)))
= V11(suv(u, v)).

From the previous identity and Kronecker identity, we have

s(u, v) − σ11(s(u, v)) = V10(su(u, v)) + V01(sv(u, v)) − V11(suv(u, v)). (34)

Since V10(su(u, v)) and V01(sv(u, v)) are (C, 1, 1) summable to 0, taking (C, 1, 1) means of the previous equality
we obtain that V11(suv(u, v)) is (C, 1, 1) summable to 0. If we replace s(u, v) by V11(suv(u, v)), V10(su(u, v))
and V01(sv(u, v)) in Theorem 4.2 respectively, we obtain that V11(suv(u, v)), V10(su(u, v)) and V01(sv(u, v)) are
convergent to 0. Hence taking the limit of both sides of (34) as u, v→∞we obtain that s(u, v) is convergent
to L.

Proof of Theorem 4.4 In the same way as in the proof of Theorem 4.1, we can show that V11(suv(u, v)) is
(C, 1, 1) summable to 0.

For λ > 1, if we replace s(u, v) by V11(suv(u, v)) in (9), we have . Taking the lim sup of both sides of (21)
as u, v→∞, we get (22). The first term on the right-hand side of (22) vanishes by Lemma 3.1 and we have

lim sup
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v))))

≤ − lim inf
u,v→∞

(
1

(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

)
. (35)

Moreover, we have

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

≥ min
u≤x≤λu
v≤y≤λv

(
V11(sxy(x, y)) − V11(suv(u, v))

)
. (36)

Taking the lim inf of both sides of (36) as u, v→∞, we get

lim inf
u,v→∞

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

≥ lim inf
u,v→∞

min
u≤x≤λu
v≤y≤λv

(
V11(sxy(x, y)) − V11(suy(u, y))

)
+ lim inf

u,v→∞
min

v≤y≤λv

(
V11(suy(u, y)) − V11(suv(u, v))

)
.
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Since V11(suv(u, v)) is slowly decreasing in sense (0, 1) and strong slowly decreasing in sense (1, 0), we get

lim inf
u,v→∞

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy ≥ 0 (37)

by taking the limit of both sides of the last inequality as λ→ 1+. Hence from (35) and (37), we obtain

lim sup
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v)))) ≤ 0. (38)

For 0 < λ < 1, in a similar way from Lemma 3.2 (ii) we have

lim inf
u,v→∞

(V11(suv(u, v)) − σ11 (V11(suv(u, v)))) ≥ 0. (39)

By (38) and (39), we obtain limu,v→∞ V11(suv(u, v)) = 0. Thus, s(u, v) is convergent to L by the Kronecker
identity (6).

Proof of Theorem 4.5 Assume that bounded double integral s(u, v) is (C, 1, 1) summable to L and slowly
decreasing in sense (0, 1) and strong slowly decreasing in sense (1, 0). If we apply a similar calculation for
V11(suv(u, v)) as in the proof of Theorem 4.4 to s(u, v), we obtain that s(u, v) is convergent to L.

Proof of Theorem 4.6 In the same way as in the proof of Theorem 4.3, we can show that V11(suv(u, v)),
V10(su(u, v)) and V01(sv(u, v)) are (C, 1, 1) summable to 0. If we replace s(u, v) by V11(suv(u, v)), V10(su(u, v))
and V01(sv(u, v)) in Theorem 4.5 respectively, we obtain that V11(suv(u, v)), V10(su(u, v)) and V01(sv(u, v)) are
convergent to 0. Hence taking the limit of both sides of (34) in Theorem 4.3 as u, v → ∞, we obtain that
s(u, v) is convergent to L.

6. Tauberian theorems for Cesàro summability methods for complex-valued functions on R2
+

We need the following definitions for the complex-valued functions defined on R2
+:

A complex-valued function s(u, v) defined on R2
+ is said to be slowly oscillating in sense (1, 0) [4] if

lim
λ→1+

lim sup
u,v→∞

max
u≤x≤λu

|s(x, v) − s(u, v)| = 0

or equivalently

lim
λ→1−

lim sup
u,v→∞

max
λu≤x≤u

|s(u, v) − s(x, v)| = 0.

Analogously, a complex-valued function s(u, v) defined on R2
+ is said to be slowly oscillating in sense

(0, 1) [4] if

lim
λ→1+

lim sup
u,v→∞

max
v≤y≤λv

∣∣∣s(u, y) − s(u, v)
∣∣∣ = 0

or equivalently

lim
λ→1+

lim sup
u,v→∞

max
λv≤y≤v

∣∣∣s(u, v) − s(u, y)
∣∣∣ = 0.

A complex-valued function s(u, v) defined on R2
+ is said to be strong slowly oscillating in sense (1, 0) if

lim
λ→1+

lim sup
u,v→∞

max
u≤x≤λu
v≤y≤λv

|s(x, y) − s(u, y)| = 0

or equivalently

lim
λ→1−

lim sup
u,v→∞

max
λu≤x≤u
λv≤y≤v

|s(u, y) − s(x, y)| = 0.
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Analogously, a complex-valued function s(u, v) defined on R2
+ is said to be strong slowly oscillating in

sense (0, 1) if

lim
λ→1+

lim sup
u,v→∞

max
u≤x≤λu
v≤y≤λv

|s(x, y) − s(x, v)| = 0

or equivalently

lim
λ→1−

lim sup
u,v→∞

max
λu≤x≤u
λv≤y≤v

|s(x, v) − s(x, y)| = 0.

As a corollary of Theorem 4.1, we give two-sided Tauberian conditions of Hardy type for improper
double integrals under which convergence follows from (C, 1, 0) and (C, 0, 1) summability of double integrals.

Theorem 6.1. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 0) and (C, 0, 1) summable to a finite number
L and there exist constants H > 0 and x0 ≥ 0 such that conditions

uV11u (suv(u, v)) = O(1) (40)

and

vV11v (suv(u, v)) = O(1) (41)

are satisfied for all (u, v) ∈ R2
+ with u, v > x0, then s(u, v) is convergent to L.

As a corollary of Theorem 4.2, we give Hardy type Tauberian theorem for (C, 1, 1) summability of
improper double integrals.

Theorem 6.2. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 1) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that conditions

usu(u, v) = O(1) (42)

and

vsv(u, v) = O(1) (43)

are satisfied for all (u, v) ∈ R2
+ with u, v > x0, then s(u, v) is convergent to L.

As a corollary of Theorem 4.3, we give Hardy type Tauberian theorem for (C, 1, 1) summability of (2).

Theorem 6.3. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 1) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that conditions

uV11u (suv(u, v)) = O(1), vV11v (suv(u, v)) = O(1), (44)

uV10u (su(u, v)) = O(1), vV10v (su(u, v)) = O(1), (45)

uV01u (sv(u, v)) = O(1), vV01v (sv(u, v)) = O(1) (46)

are satisfied for all (u, v) ∈ R2
+ with u, v > x0, then s(u, v) is convergent to L.

In the next three theorems, Tauberian conditions are given in terms of slow oscillating and strong slow
oscillating in different senses for Cesàro summability methods in different senses.

Theorem 6.4. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 0) and (C, 0, 1) summable to a finite number
L and V11(suv(u, v)) slowly oscillating in sense (0, 1) and strong slowly oscillating in sense (1, 0) or slowly oscillating
in sense (1, 0) and strong slowly oscillating in sense (0, 1), then s(u, v) is convergent to L.

Theorem 6.5. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 1) summable to a finite number L and s(u, v)
is slowly oscillating in sense (0, 1) and strong slowly oscillating in sense (1, 0) or slowly oscillating in sense (1, 0) and
strong slowly oscillating in sense (0, 1), then s(u, v) is convergent to L.

Theorem 6.6. Let the double integral s(u, v) be bounded. If (2) is (C, 1, 1) summable to a finite number L and
V11(suv(u, v)), V10(su(u, v)) and V01(sv(u, v)) are slowly oscillating in sense (0, 1) and strong slowly oscillating in
sense (1, 0) or slowly oscillating in sense (1, 0) and strong slowly oscillating in sense (0, 1), then s(u, v) is convergent
to L.
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7. Proofs

Proof of Theorem 6.1 It is clear that conditions (40) and (41) imply (14) and (15) in Theorem 4.1, respectively.
Proof of Theorem 6.2 It is clear that conditions (42) and (43) imply (16) and (17) in Theorem 4.2, respectively.
Proof of Theorem 6.3 It is clear that conditions (44), (45) and (46) imply (18), (19) and (20) in Theorem 4.3,

respectively.
Proof of Theorem 6.4 In the same way as in the proof of Theorem 4.1, we can show that V11(suv(u, v)) is

(C, 1, 1) summable to 0.
For λ > 1, if we replace s(u, v) by V11(suv(u, v)) in (9), we have

V11(suv(u, v)) − σ11 (V11(suv(u, v))) = (τ> (V11(suv(u, v)), λ) − σ11 (V11(suv(u, v))))

−
1

(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy.

From above equality, we get

|V11(suv(u, v)) − σ11 (V11(suv(u, v)))| ≤
∣∣∣τ> (V11(suv(u, v)), λ) − σ11 (V11(suv(u, v)))

∣∣∣
+

∣∣∣∣∣∣− 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

∣∣∣∣∣∣ .
Taking the lim sup of both sides of the previous equation as u, v→∞, we get

lim sup
u,v→∞

|V11(suv(u, v)) − σ11 (V11(suv(u, v)))| ≤ lim sup
u,v→∞

∣∣∣τ> (V11(suv(u, v)), λ) − σ11 (V11(suv(u, v)))
∣∣∣

+ lim sup
u,v→∞

∣∣∣∣∣∣ 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

∣∣∣∣∣∣ . (47)

The first term on the right-hand side of (47) is vanished by Lemma 3.1. Moreover,∣∣∣∣∣∣ 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

∣∣∣∣∣∣
≤ max

u≤x≤λu
v≤y≤λv

∣∣∣V11(sxy(x, y)) − V11(suv(u, v))
∣∣∣ (48)

Taking lim sup of both sides of (48) as u, v→∞, we have

lim sup
u,v→∞

∣∣∣∣∣∣ 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

∣∣∣∣∣∣
≤ lim sup

u,v→∞
max

u≤x≤λu
v≤y≤λv

∣∣∣V11(sxy(x, y)) − V11(suy(u, y))
∣∣∣

+ lim sup
u,v→∞

max
v≤y≤λv

∣∣∣V11(suy(u, y)) − V11(suv(u, v))
∣∣∣ .

Since V11(suv(u, v)) is slowly oscillating in sense (0, 1) and strong slowly oscillating in sense (1, 0), we get

lim sup
u,v→∞

∣∣∣∣∣∣ 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V11(sxy(x, y)) − V11(suv(u, v))

)
dxdy

∣∣∣∣∣∣ ≤ 0 (49)

by taking the limit of both sides of the last inequality as λ→ 1+. From (47) and (49), we obtain

lim sup
u,v→∞

|V11(suv(u, v)) − σ11 (V11(suv(u, v)))| ≤ 0.



G. Fındık, İ. Çanak / Filomat 35:15 (2021), 5279–5291 5291

Hence lim
u,v→∞

V11(suv(u, v)) = σ11 (V11(suv(u, v))) = 0 and the proof is completed by the Kronecker identity

(6).
Proof of Theorem 6.5 Assume that bounded double integral s(u, v) is (C, 1, 1) summable to L and slowly

oscillating in sense (0, 1) and strong slowly oscillating in sense (1, 0). If we apply a similar calculation for
V11(suv(u, v)) as in the proof of Theorem 6.4 to s(u, v), we obtain that s(u, v) is convergent to L.

Proof of Theorem 6.6 In the same way as in the proof of Theorem 4.3, we can show that the integral
V11(suv(u, v)), V10(su(u, v)) and V01(sv(u, v)) are (C, 1, 1) summable to 0. If we replace s(u, v) by V11(suv(u, v)),
V10(su(u, v)) and V01(sv(u, v)) in Theorem 6.5 respectively, we obtain that V11(suv(u, v)), V10(su(u, v)) and
V01(sv(u, v)) are convergent to 0. Hence taking the limit of both sides of (34) in Theorem 4.3 as u, v→∞we
obtain that s(u, v) is convergent to L.
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