Filomat 35:15 (2021), 5263–5270 https://doi.org/10.2298/FIL2115263N

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the Matrix Classes (*c*₀, *c*₀) **and** (*c*₀, *c*₀; *P*) **over Complete Ultrametric Fields**

P. N. Natarajan^a

^aOld No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India

Abstract. Throughout this paper, *K* denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Sequences, infinite series and infinite matrices have entries in *K*. In this paper, we record some interesting properties about the matrix classes (c_0, c_0) and $(c_0, c_0; P)$.

1. Introduction

Throughout the present paper, *K* denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Sequences, infinite series and infinite matrices have entries in *K*.

 c_0 denotes the ultrametric (or non-archimedean) Banach space of all null sequences with entries in *K*. If $A = (a_{nk}), a_{nk} \in K, n, k = 0, 1, 2, ...$, is an infinite matrix, we write $A \in (c_0, c_0)$ if

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k, n = 0, 1, 2, \dots$$

is defined and the sequence $A(x) = \{(Ax)_n\} \in c_0$, whenever $x = \{x_k\} \in c_0$. The following result is well-known (see [1]).

Theorem 1.1. $\sum_{k=0}^{\infty} x_k$ converges if and only if $\lim_{k \to \infty} x_k = 0$.

In view of Theorem 1.1, if $\{x_n\} \in c_0$, then $\sum_{k=0}^{\infty} x_k$ converges and so that following is relevant. We write $A = (a_{nk}) \in (c_0, c_0; P)$ if $A \in (c_0, c_0)$ and

$$a = (u_{nk}) \in (c_0, c_0; P) \text{ if } A \in (c_0, c_0) \text{ and}$$

$$\sum_{n=0}^{\infty} (Ax)_n = \sum_{k=0}^{\infty} x_k, x = \{x_k\} \in c_0.$$

The following result can be easily proved.

Communicated by Hemen Dutta

²⁰²⁰ Mathematics Subject Classification. Primary 40C05, 40D05, 40H05, 46S10

Keywords. Ultrametric (or non-archimedean) field, Banach algebra, unconditional convergence, K-convex set, convolution product Received: 10 January 2021; Revised: 26 March 2021; Accepted: 11 April 2021

Email address: pinnangudinatarajan@gmail.com (P. N. Natarajan)

Theorem 1.2. $A = (a_{nk}) \in (c_0, c_0)$ if and only if

$$\sup_{n,k} |a_{nk}| < \infty; \tag{1}$$

and

$$\lim_{n \to \infty} a_{nk} = 0, k = 0, 1, 2, \dots$$
(2)

Further, $A \in (c_0, c_0; P)$ *if and only if* (1) *and* (2) *hold and*

$$\sum_{n=0}^{\infty} a_{nk} = 1, k = 0, 1, 2, \dots$$
(3)

The matrix classes (c_0 , c_0) and (c_0 , c_0 ; P) were studied by the author in [5] in the context of Steinhaus type theorems.

2. Main Results

In this section, we prove the main results of the paper.

Theorem 2.1. (c_0, c_0) is a Banach algebra, with identity, under the usual matrix product.

Proof. It is clear that (c_0, c_0) is a normed linear space under the norm

$$||A|| = \sup_{n,k} |a_{nk}|, A = (a_{nk}) \in (c_0, c_0).$$
(4)

Let, now, $A = (a_{nk})$, $B = (b_{nk}) \in (c_0, c_0)$. Let, for convenience, $C = (c_{nk}) = AB$ and $x = \{x_k\} \in c_0$. Now,

$$(Cx)_{n} = \sum_{k=0}^{\infty} c_{nk} x_{k}$$
$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{\infty} a_{ni} b_{ik} \right) x_{k}.$$
nsider $\sum_{k=0}^{\infty} a_{ik} \left(\sum_{i=0}^{\infty} b_{ik} x_{i} \right)$ Note that $(Bx)_{ik} = \sum_{k=0}^{\infty} b_{ik} x_{k}$ and $\{(Bx)_{ik}\} \in c_{0}$, since B is

Consider $\sum_{i=0}^{\infty} a_{ni} \left(\sum_{k=0}^{\infty} b_{ik} x_k \right)$. Note that $(Bx)_i = \sum_{k=0}^{\infty} b_{ik} x_k$ and $\{(Bx)_i\} \in c_0$, since $B \in (c_0, c_0)$. Since $A \in (c_0, c_0)$,

$$\sum_{i=0}^{\infty} a_{ni}(Bx)_i \to 0, n \to \infty.$$

We know that, in ultrametric fields, unconditional convergence and convergence are equivalent (see [6]) and so

$$\sum_{k=0}^{\infty} \left(\sum_{i=0}^{\infty} a_{ni} b_{ik} \right) x_k$$
$$= \sum_{i=0}^{\infty} a_{ni} \left(\sum_{k=0}^{\infty} b_{ik} x_k \right).$$

Thus

$$(Cx)_n = \sum_{i=0}^{\infty} a_{ni} \left(\sum_{k=0}^{\infty} b_{ik} x_k \right)$$

$$\to 0, n \to \infty,$$

as noted above. Hence $C \in (c_0, c_0)$ and so (c_0, c_0) is closed under matrix product. Also

$$||AB|| = \sup_{n,k} |c_{nk}|$$
$$= \sup_{n,k} \left| \sum_{i=0}^{\infty} a_{ni} b_{ik} \right|$$
$$\leq \left(\sup_{n,k} |a_{nk}| \right) \left(\sup_{n,k} |b_{nk}| \right)$$
$$= ||A||||B||.$$

We have proved above that

$$(AB)(x) = A(B(x)), x \in c_0,$$

using which, we can prove the associative law

$$(AB)C = A(BC), A, B, C \in (c_0, c_0).$$

We can check the other algebraic laws to conclude that (c_0, c_0) is an algebra. The unit matrix I,

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \in (c_0, c_0)$$

is the identity element of the algebra (c_0, c_0) . Finally, we conclude the proof by proving that (c_0, c_0) is complete under the norm defined by (4). To this end, let $\{A^{(n)}\}\$ be a Cauchy sequence in (c_0, c_0) , where

$$A^{(n)} = (a_{ij}^{(n)}), i, j = 0, 1, 2, \dots; n = 0, 1, 2, \dots$$

Since $\{A^{(n)}\}$ is Cauchy, for $\epsilon > 0$, there exists a positive integer n_0 such that

$$\begin{split} \|A^{(m)} - A^{(n)}\| &< \epsilon, m, n \ge n_0, \\ i.e., \sup_{i,j} |a_{ij}^{(m)} - a_{ij}^{(n)}| < \epsilon, m, n \ge n_0. \end{split}$$

Thus, for all i, j = 0, 1, 2, ...,

$$|a_{ij}^{(m)} - a_{ij}^{(n)}| < \epsilon, m, n \ge n_0.$$
(5)

So $\{a_{ij}^{(n)}\}_{n=0}^{\infty}$ is a Cauchy sequence in *K*, *i*, *j* = 0, 1, 2, Since *K* is complete,

$$a_{ij}^{(n)} \rightarrow a_{ij}, n \rightarrow \infty$$
 in $K, i, j = 0, 1, 2, \dots$

Consider the infinite matrix $A = (a_{ij}), i, j = 0, 1, 2, ...$ Using (5), for all $n \ge n_0$, allowing $m \to \infty$, we get

$$\begin{aligned} |a_{ij} - a_{ij}^{(n)}| &\leq \epsilon, i, j = 0, 1, 2, \dots, \\ i.e., \sup_{i,j} |a_{ij} - a_{ij}^{(n)}| &\leq \epsilon, n \geq n_0, \\ i.e., ||A^{(n)} - A|| &\leq \epsilon, n \geq n_0, \\ i.e., A^{(n)} \to A, n \to \infty. \end{aligned}$$

$$(6)$$

We now claim that $A \in (c_0, c_0)$. Now, in view of (6),

$$|a_{ij} - a_{ij}^{(n_0)}| \le \epsilon, i, j = 0, 1, 2, \dots$$
(7)

Since $A = (a_{ij}^{(n_0)}) \in (c_0, c_0)$,

$$\sup_{i,j} |a_{ij}^{(n_0)}| = M < \infty.$$
(8)

Now, for all i, j = 0, 1, 2, ...,

$$|a_{ij}| = \left| \left\{ a_{ij} - a_{ij}^{(n_0)} \right\} + a_{ij}^{(n_0)} \right|$$

$$\leq \max\left[\left| a_{ij} - a_{ij}^{(n_0)} \right|, \left| a_{ij}^{(n_0)} \right| \right]$$

$$< \max[\epsilon, M], \text{ using (7) and (8)}$$

$$< \infty,$$

so that

$$\sup_{i,j}|a_{ij}|<\infty.$$

Also,

$$\lim_{i\to\infty}a_{ij}^{(n_0)}=0, \, j=0,1,2,\ldots,$$

since $A = (a_{ij}^{(n_0)}) \in (c_0, c_0)$. For j = 0, 1, 2, ..., taking limit as $i \to \infty$ in (7), we get

$$\begin{split} & \left|\lim_{i \to \infty} a_{ij} - 0\right| \leq \epsilon, \\ i.e., \left|\lim_{i \to \infty} a_{ij}\right| \leq \epsilon, \text{ for every } \epsilon > 0, \\ i.e., \left|\lim_{i \to \infty} a_{ij} = 0, j = 0, 1, 2, \dots \right. \end{split}$$

Consequently

 $A\in (c_0,c_0),$

completing the proof of the theorem. \Box

Theorem 2.2. $(c_0, c_0; P)$, as a subset of (c_0, c_0) , is a closed K-convex semigroup with identity.

Proof. Let $A = (a_{nk}), B = (b_{nk}), C = (c_{nk}) \in (c_0, c_0; P)$. Let λ, μ, γ be such that $|\lambda|, |\mu|, |\gamma| \le 1$ and $\lambda + \mu + \gamma = 1$. Now,

 $(\lambda A + \mu B + \gamma C)_{nk} = \lambda a_{nk} + \mu b_{nk} + \gamma c_{nk},$

from which we have

$$\lim_{n \to \infty} (\lambda A + \mu B + \gamma C)_{nk} = 0, \text{ since } \lim_{n \to \infty} a_{nk} = \lim_{n \to \infty} b_{nk} = \lim_{n \to \infty} c_{nk} = 0,$$

$$A, B, C \in (c_0, c_0; P).$$

Also, since $|\lambda|, |\mu|, |\gamma| \le 1$ and $A, B, C \in (c_0, c_0; P)$,

$$\sup_{n,k} |\lambda A + \mu B + \gamma C|_{nk}$$

$$\leq \max \left[|\lambda| \sup_{n,k} |a_{nk}|, |\mu| \sup_{n,k} |b_{nk}|, |\gamma| \sup_{n,k} |c_{nk}| \right]$$

$$\leq \max \left[\sup_{n,k} |a_{nk}|, \sup_{n,k} |b_{nk}|, \sup_{n,k} |c_{nk}| \right]$$

$$< \infty.$$

So

 $\lambda A + \mu B + \gamma C \in (c_0, c_0),$

using Theorem 1.2. Also, since $A, B, C \in (c_0, c_0; P)$, for k = 0, 1, 2, ...,

$$\sum_{n=0}^{\infty} (\lambda A + \mu B + \gamma C)_{nk} = \lambda \sum_{n=0}^{\infty} a_{nk} + \mu \sum_{n=0}^{\infty} b_{nk} + \gamma \sum_{n=0}^{\infty} c_{nk}$$
$$= \lambda(1) + \mu(1) + \gamma(1)$$
$$= \lambda + \mu + \gamma$$
$$= 1.$$

Hence $\lambda A + \mu B + \gamma C \in (c_0, c_0; P)$, proving that $(c_0, c_0; P)$ is a *K*-convex subset of (c_0, c_0) (for the definition of *K*-convexity, one can refer to [5]).

We next claim that $(c_0, c_0; P)$ is closed. Let

$$A = (a_{nk}) \in (c_0, c_0; P).$$

There exist $A^{(m)} = (a_{nk}^{(m)}) \in (c_0, c_0; P), m = 0, 1, 2, ...$ such that $A^{(m)} \to A, m \to \infty$. So, given $\epsilon > 0$, there exists a positive integer N such that

$$\|A^{(m)} - A\| < \epsilon, m \ge N. \tag{9}$$

Now, for n, k = 0, 1, 2, ...,

$$|a_{nk}| = \left| \left\{ a_{nk} - a_{nk}^{(N)} \right\} + a_{nk}^{(N)} \right|$$

$$\leq \max \left[\left| a_{nk} - a_{nk}^{(N)} \right|, \left| a_{nk}^{(N)} \right| \right]$$

$$\leq \max \left[\sup_{n,k} \left| a_{nk} - a_{nk}^{(N)} \right|, \sup_{n,k} \left| a_{nk}^{(N)} \right| \right]$$

$$= \max [||A^{(N)} - A||, ||A^{(N)}||]$$

$$< \max [\epsilon, ||A^{(N)}||], \text{ using (9),}$$
(10)

and thus

$$\sup_{n,k}|a_{nk}|<\infty.$$

From (10), for k = 0, 1, 2, ...,

$$|a_{nk}| \le \max\left[\left\| A^{(N)} - A \right\|, \left| a_{nk}^{(N)} \right| \right].$$
(11)

Since $\lim_{n\to\infty} a_{nk}^{(N)} = 0$, there exists a positive integer N' such that

$$\left|a_{nk}^{(N)}\right| < \epsilon, n \ge N'. \tag{12}$$

Using (9) and (12) in (11), we get, for k = 0, 1, 2, ...,

$$\begin{aligned} |a_{nk}| &\leq \max[\epsilon, \epsilon] \\ &= \epsilon, n \geq N', \\ i.e., \lim_{n \to \infty} a_{nk} &= 0, k = 0, 1, 2, \dots. \end{aligned}$$

Thus $A \in (c_0, c_0)$. Again, for k = 0, 1, 2, ...,

$$\left|\sum_{n=0}^{\infty} a_{nk} - 1\right| = \left|\sum_{n=0}^{\infty} a_{nk} - \sum_{n=0}^{\infty} a_{nk}^{(N)}\right|, \text{ since}$$

$$A^{(N)} \in (c_0, c_0; P)$$

$$= \left|\sum_{n=0}^{\infty} (a_{nk} - a_{nk}^{(N)})\right|$$

$$\leq \sup_{n,k} \left|a_{nk} - a_{nk}^{(N)}\right|$$

$$= \left||A - A^{(N)}\right||$$

$$< \epsilon, \text{ using (9), for every } \epsilon > 0.$$

It now follows that

$$\sum_{n=0}^{\infty} a_{nk} = 1, k = 0, 1, 2, \dots$$

Consequently, $A \in (c_0, c_0; P)$ and hence $(c_0, c_0; P)$ is closed. It remains to check closure under matrix product. Let $A = (a_{nk}), B = (b_{nk}) \in (c_0, c_0; P)$. We have already proved that $AB \in (c_0, c_0)$. Since $\sum_{n=0}^{\infty} a_{nk} = \sum_{n=0}^{\infty} b_{nk} = 1$, k = 0, 1, 2, ... and using the fact that convergence and unconditional convergence are equivalent in K (see [6]), for k = 0, 1, 2, ...,

$$\sum_{n=0}^{\infty} (AB)_{nk} = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} a_{ni} b_{ik} \right)$$
$$= \sum_{i=0}^{\infty} b_{ik} \left(\sum_{n=0}^{\infty} a_{ni} \right)$$
$$= \sum_{i=0}^{\infty} b_{ik}$$
$$= 1,$$

5268

proving that $A \in (c_0, c_0; P)$. The identity of the semi-group $(c_0, c_0; P)$ is the unit matrix I,

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \in (c_0, c_0; P),$$

completing the proof of the theorem. \Box

Note 2.3. In the context of Theorem 2.2, we can check that $(c_0, c_0; P)$ is not a group. We can give an example of a matrix in $(c_0, c_0; P)$, which does not have an inverse.

In the classical set up, the author defined the convolution product \circ in [4]. We retain the same definition in the ultrametric set up too.

Definition 2.4. For $A = (a_{nk})$, $B = (b_{nk})$, define

$$(A \circ B)_{nk} = \sum_{i=0}^{n} a_{ik} b_{n-i,k}, n, k = 0, 1, 2, \dots$$

 $A \circ B = ((A \circ B)_{nk})$ is called the convolution product of A and B.

We keep the usual norm structure in (c_0, c_0) so that (c_0, c_0) is a Banach space. We replace the usual matrix product by the convolution product \circ and prove the next result.

Theorem 2.5. (c_0, c_0) is a commutative Banach algebra with identity under the convolution product \circ .

Proof. We will prove closure under the convolution product \circ . Let $A = (a_{nk}), B = (b_{nk}) \in (c_0, c_0)$. Since $\lim_{n\to\infty} a_{nk} = \lim_{n\to\infty} b_{nk} = 0, k = 0, 1, 2, \dots$, using Theorem 1 of [3],

$$(A \circ B)_{nk} = \sum_{i=0}^{n} a_{ik} b_{n-i,k}$$

= $a_{0k} b_{n,k} + a_{1k} b_{n-1,k} + \dots + a_{nk} b_{0,k}$
 $\rightarrow 0, n \rightarrow \infty.$

Now, since $A, B \in (c_0, c_0)$,

$$\sup_{n,k} |(A \circ B)_{nk}| = \sup_{n,k} \left| \sum_{i=0}^{n} a_{ik} b_{n-i,k} \right|$$

$$\leq \left(\sup_{n,k} |a_{nk}| \right) \left(\sup_{n,k} |b_{nk}| \right)$$

$$< \infty.$$
(13)

Thus $A \circ B \in (c_0, c_0)$. Also,

 $||A \circ B|| \le ||A||||B||$, using (13).

It is clear that \circ is commutative. The identity element of (c_0, c_0) under the convolution product \circ is the matrix $E = (e_{nk})$, whose first row consists of 1's and which has 0's elsewhere, i.e.,

$$e_{0k} = 1, k = 0, 1, 2, \dots;$$

 $e_{nk} = 0, n = 1, 2, \dots; k = 0, 1, 2, \dots$

Note also that ||E|| = 1 and $E \in (c_0, c_0; P)$. It remains to prove that $(c_0, c_0; P)$ is closed under the convolution product \circ . Let $A = (a_{nk}), B = (b_{nk}) \in (c_0, c_0; P)$. Since $\sum_{n=0}^{\infty} a_{nk} = \sum_{n=0}^{\infty} b_{nk} = 1, k = 0, 1, 2, \dots$,

$$\sum_{n=0}^{\infty} (A \circ B)_{nk} = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_{ik} b_{n-i,k} \right)$$
$$= \left(\sum_{n=0}^{\infty} b_{nk} \right) \left(\sum_{n=0}^{\infty} a_{nk} \right)$$
$$= 1, k = 0, 1, 2, \dots$$

Hence $A \circ B \in (c_0, c_0; P)$. This completes the proof of the theorem. \Box

Corollary 2.6. $(c_0, c_0; P)$, as a subset of the algebra (c_0, c_0) under the convolution product \circ , is a semigroup without *identity.*

The classical analogous of the above results for conservative and regular matrices were studied by Maddox in [2] and those for (ℓ_1, ℓ_1) and $(\ell_1, \ell_1; P)$ matrices were studied by the author in [4].

References

- [1] G. Bachman, Introduction to p-adic numbers and valuation theory, Academic Press, 1964.
- [2] I.J. Maddox, Elements of Functional Analysis, Cambridge, 1977.
- [3] P.N. Natarajan, Multiplication of series with terms in a non-archimedean field, Simon Stevin, 52 (1978), 157-160.
- [4] P.N. Natarajan, On the algebra (ℓ_1 , ℓ_1) of infinite matrices, Analysis (München), 20 (2000), 353-357.
- [5] P.N. Natarajan, Sequence spaces and summability over valued fields, Taylor and Francis, 2019.
- [6] A.C.M. Van Rooij and W.H. Schikhof, Non-archimedean analysis, Nieuw Arch. Wisk., 19 (1971), 121–160.