On the Matrix Classes $\left(c_{0}, c_{0}\right)$ and $\left(c_{0}, c_{0} ; P\right)$ over Complete Ultrametric Fields

P. N. Natarajan ${ }^{\text {a }}$
${ }^{a}$ Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India

Abstract

Throughout this paper, K denotes a complete, non-trivially valued, ultrametric (or nonarchimedean) field. Sequences, infinite series and infinite matrices have entries in K. In this paper, we record some interesting properties about the matrix classes $\left(c_{0}, c_{0}\right)$ and $\left(c_{0}, c_{0} ; P\right)$.

1. Introduction

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Sequences, infinite series and infinite matrices have entries in K.
c_{0} denotes the ultrametric (or non-archimedean) Banach space of all null sequences with entries in K. If $A=\left(a_{n k}\right), a_{n k} \in K, n, k=0,1,2, \ldots$, is an infinite matrix, we write $A \in\left(c_{0}, c_{0}\right)$ if

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, n=0,1,2, \ldots
$$

is defined and the sequence $A(x)=\left\{(A x)_{n}\right\} \in c_{0}$, whenever $x=\left\{x_{k}\right\} \in c_{0}$.
The following result is well-known (see [1]).
Theorem 1.1. $\sum_{k=0}^{\infty} x_{k}$ converges if and only if $\lim _{k \rightarrow \infty} x_{k}=0$.
In view of Theorem 1.1, if $\left\{x_{n}\right\} \in c_{0}$, then $\sum_{k=0}^{\infty} x_{k}$ converges and so that following is relevant. We write $A=\left(a_{n k}\right) \in\left(c_{0}, c_{0} ; P\right)$ if $A \in\left(c_{0}, c_{0}\right)$ and

$$
\sum_{n=0}^{\infty}(A x)_{n}=\sum_{k=0}^{\infty} x_{k}, x=\left\{x_{k}\right\} \in c_{0}
$$

The following result can be easily proved.

[^0]Theorem 1.2. $A=\left(a_{n k}\right) \in\left(c_{0}, c_{0}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k}\left|a_{n k}\right|<\infty ; \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=0, k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

Further, $A \in\left(c_{0}, c_{0} ; P\right)$ if and only if (1) and (2) hold and

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n k}=1, k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

The matrix classes $\left(c_{0}, c_{0}\right)$ and $\left(c_{0}, c_{0} ; P\right)$ were studied by the author in [5] in the context of Steinhaus type theorems.

2. Main Results

In this section, we prove the main results of the paper.
Theorem 2.1. $\left(c_{0}, c_{0}\right)$ is a Banach algebra, with identity, under the usual matrix product.
Proof. It is clear that $\left(c_{0}, c_{0}\right)$ is a normed linear space under the norm

$$
\begin{equation*}
\|A\|=\sup _{n, k}\left|a_{n k}\right|, A=\left(a_{n k}\right) \in\left(c_{0}, c_{0}\right) \tag{4}
\end{equation*}
$$

Let, now, $A=\left(a_{n k}\right), B=\left(b_{n k}\right) \in\left(c_{0}, c_{0}\right)$. Let, for convenience, $C=\left(c_{n k}\right)=A B$ and $x=\left\{x_{k}\right\} \in c_{0}$. Now,

$$
\begin{aligned}
(C x)_{n} & =\sum_{k=0}^{\infty} c_{n k} x_{k} \\
& =\sum_{k=0}^{\infty}\left(\sum_{i=0}^{\infty} a_{n i} b_{i k}\right) x_{k} .
\end{aligned}
$$

Consider $\sum_{i=0}^{\infty} a_{n i}\left(\sum_{k=0}^{\infty} b_{i k} x_{k}\right)$. Note that $(B x)_{i}=\sum_{k=0}^{\infty} b_{i k} x_{k}$ and $\left\{(B x)_{i}\right\} \in c_{0}$, since $B \in\left(c_{0}, c_{0}\right)$.
Since $A \in\left(c_{0}, c_{0}\right)$,

$$
\sum_{i=0}^{\infty} a_{n i}(B x)_{i} \rightarrow 0, n \rightarrow \infty
$$

We know that, in ultrametric fields, unconditional convergence and convergence are equivalent (see [6]) and so

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left(\sum_{i=0}^{\infty} a_{n i} b_{i k}\right) & x_{k} \\
& =\sum_{i=0}^{\infty} a_{n i}\left(\sum_{k=0}^{\infty} b_{i k} x_{k}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
(C x)_{n} & =\sum_{i=0}^{\infty} a_{n i}\left(\sum_{k=0}^{\infty} b_{i k} x_{k}\right) \\
& \rightarrow 0, n \rightarrow \infty
\end{aligned}
$$

as noted above. Hence $C \in\left(c_{0}, c_{0}\right)$ and so $\left(c_{0}, c_{0}\right)$ is closed under matrix product. Also

$$
\begin{aligned}
\|A B\| & =\sup _{n, k}\left|c_{n k}\right| \\
& =\sup _{n, k}\left|\sum_{i=0}^{\infty} a_{n i} b_{i k}\right| \\
& \leq\left(\sup _{n, k}\left|a_{n k}\right|\right)\left(\sup _{n, k}\left|b_{n k}\right|\right) \\
& =\|A\|\|B\| .
\end{aligned}
$$

We have proved above that

$$
(A B)(x)=A(B(x)), x \in c_{0}
$$

using which, we can prove the associative law

$$
(A B) C=A(B C), A, B, C \in\left(c_{0}, c_{0}\right)
$$

We can check the other algebraic laws to conclude that $\left(c_{0}, c_{0}\right)$ is an algebra. The unit matrix I,

$$
I=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right) \in\left(c_{0}, c_{0}\right)
$$

is the identity element of the algebra $\left(c_{0}, c_{0}\right)$. Finally, we conclude the proof by proving that $\left(c_{0}, c_{0}\right)$ is complete under the norm defined by (4). To this end, let $\left\{A^{(n)}\right\}$ be a Cauchy sequence in $\left(c_{0}, c_{0}\right)$, where

$$
A^{(n)}=\left(a_{i j}^{(n)}\right), i, j=0,1,2, \ldots ; n=0,1,2, \ldots
$$

Since $\left\{A^{(n)}\right\}$ is Cauchy, for $\epsilon>0$, there exists a positive integer n_{0} such that

$$
\begin{gathered}
\left\|A^{(m)}-A^{(n)}\right\|<\epsilon, m, n \geq n_{0} \\
\text { i.e., } \sup _{i, j}\left|a_{i j}^{(m)}-a_{i j}^{(n)}\right|<\epsilon, m, n \geq n_{0} .
\end{gathered}
$$

Thus, for all $i, j=0,1,2, \ldots$,

$$
\begin{equation*}
\left|a_{i j}^{(m)}-a_{i j}^{(n)}\right|<\epsilon, m, n \geq n_{0} \tag{5}
\end{equation*}
$$

So $\left\{a_{i j}^{(n)}\right\}_{n=0}^{\infty}$ is a Cauchy sequence in $K, i, j=0,1,2, \ldots$. Since K is complete,

$$
a_{i j}^{(n)} \rightarrow a_{i j}, n \rightarrow \infty \text { in } K, i, j=0,1,2, \ldots
$$

Consider the infinite matrix $A=\left(a_{i j}\right), i, j=0,1,2, \ldots$ Using (5), for all $n \geq n_{0}$, allowing $m \rightarrow \infty$, we get

$$
\begin{align*}
& \quad\left|a_{i j}-a_{i j}^{(n)}\right| \leq \epsilon, i, j=0,1,2, \ldots, \\
& \text { i.e., } \sup _{i, j}\left|a_{i j}-a_{i j}^{(n)}\right| \leq \epsilon, n \geq n_{0}, \tag{6}\\
& \text { i.e., }\left\|A^{(n)}-A\right\| \leq \epsilon, n \geq n_{0}, \\
& \text { i.e., } A^{(n)} \rightarrow A, n \rightarrow \infty \text {. }
\end{align*}
$$

We now claim that $A \in\left(c_{0}, c_{0}\right)$. Now, in view of (6),

$$
\begin{equation*}
\left|a_{i j}-a_{i j}^{\left(n_{0}\right)}\right| \leq \epsilon, i, j=0,1,2, \ldots \tag{7}
\end{equation*}
$$

Since $A=\left(a_{i j}^{\left(n_{0}\right)}\right) \in\left(c_{0}, c_{0}\right)$,

$$
\begin{equation*}
\sup _{i, j}\left|a_{i j}^{\left(n_{0}\right)}\right|=M<\infty . \tag{8}
\end{equation*}
$$

Now, for all $i, j=0,1,2, \ldots$,

$$
\begin{aligned}
\left|a_{i j}\right| & =\left|\left\{a_{i j}-a_{i j}^{\left(n_{0}\right)}\right\}+a_{i j}^{\left(n_{0}\right)}\right| \\
& \leq \max \left[\left|a_{i j}-a_{i j}^{\left(n_{0}\right)}\right|,\left|a_{i j}^{\left(n_{0}\right)}\right|\right] \\
& <\max [\epsilon, M], \text { using (7) and (8) } \\
& <\infty,
\end{aligned}
$$

so that

$$
\sup _{i, j}\left|a_{i j}\right|<\infty .
$$

Also,

$$
\lim _{i \rightarrow \infty} a_{i j}^{\left(n_{0}\right)}=0, j=0,1,2, \ldots
$$

since $A=\left(a_{i j}^{\left(n_{0}\right)}\right) \in\left(c_{0}, c_{0}\right)$. For $j=0,1,2, \ldots$, taking limit as $i \rightarrow \infty$ in (7), we get

$$
\begin{aligned}
& \quad\left|\lim _{i \rightarrow \infty} a_{i j}-0\right| \leq \epsilon, \\
& \text { i.e., }\left|\lim _{i \rightarrow \infty} a_{i j}\right| \leq \epsilon, \text { for every } \epsilon>0, \\
& \text { i.e., } \lim _{i \rightarrow \infty} a_{i j}=0, j=0,1,2, \ldots
\end{aligned}
$$

Consequently

$$
A \in\left(c_{0}, c_{0}\right),
$$

completing the proof of the theorem.
Theorem 2.2. $\left(c_{0}, c_{0} ; P\right)$, as a subset of $\left(c_{0}, c_{0}\right)$, is a closed K-convex semigroup with identity.

Proof. Let $A=\left(a_{n k}\right), B=\left(b_{n k}\right), C=\left(c_{n k}\right) \in\left(c_{0}, c_{0} ; P\right)$. Let λ, μ, γ be such that $|\lambda|,|\mu|,|\gamma| \leq 1$ and $\lambda+\mu+\gamma=1$.
Now,

$$
(\lambda A+\mu B+\gamma C)_{n k}=\lambda a_{n k}+\mu b_{n k}+\gamma c_{n k}
$$

from which we have

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}(\lambda A+\mu B+\gamma C)_{n k}=0, \text { since } \lim _{n \rightarrow \infty} a_{n k}=\lim _{n \rightarrow \infty} b_{n k}=\lim _{n \rightarrow \infty} c_{n k}=0, \\
A, B, C \in\left(c_{0}, c_{0} ; P\right) .
\end{array}
$$

Also, since $|\lambda|,|\mu|,|\gamma| \leq 1$ and $A, B, C \in\left(c_{0}, c_{0} ; P\right)$,

$$
\begin{aligned}
\sup _{n, k} \mid \lambda A+\mu B & +\left.\gamma C\right|_{n k} \\
& \leq \max \left[|\lambda| \sup _{n, k}\left|a_{n k}\right|,|\mu| \sup _{n, k}\left|b_{n k}\right|,|\gamma| \sup _{n, k}\left|c_{n k}\right|\right] \\
& \leq \max \left[\sup _{n, k}\left|a_{n k}\right|, \sup _{n, k}\left|b_{n k}\right|, \sup _{n, k}\left|c_{n k}\right|\right] \\
& <\infty .
\end{aligned}
$$

So

$$
\lambda A+\mu B+\gamma C \in\left(c_{0}, c_{0}\right)
$$

using Theorem 1.2.
Also, since $A, B, C \in\left(c_{0}, c_{0} ; P\right)$, for $k=0,1,2, \ldots$,

$$
\begin{aligned}
\sum_{n=0}^{\infty}(\lambda A+\mu B+\gamma C)_{n k} & =\lambda \sum_{n=0}^{\infty} a_{n k}+\mu \sum_{n=0}^{\infty} b_{n k}+\gamma \sum_{n=0}^{\infty} c_{n k} \\
& =\lambda(1)+\mu(1)+\gamma(1) \\
& =\lambda+\mu+\gamma \\
& =1
\end{aligned}
$$

Hence $\lambda A+\mu B+\gamma C \in\left(c_{0}, c_{0} ; P\right)$, proving that $\left(c_{0}, c_{0} ; P\right)$ is a K-convex subset of $\left(c_{0}, c_{0}\right)$ (for the definition of K-convexity, one can refer to [5]).

We next claim that $\left(c_{0}, c_{0} ; P\right)$ is closed. Let

$$
A=\left(a_{n k}\right) \in \overline{\left(c_{0}, c_{0} ; P\right)}
$$

There exist $A^{(m)}=\left(a_{n k}^{(m)}\right) \in\left(c_{0}, c_{0} ; P\right), m=0,1,2, \ldots$ such that $A^{(m)} \rightarrow A, m \rightarrow \infty$. So, given $\epsilon>0$, there exists a positive integer N such that

$$
\begin{equation*}
\left\|A^{(m)}-A\right\|<\epsilon, m \geq N \tag{9}
\end{equation*}
$$

Now, for $n, k=0,1,2, \ldots$,

$$
\begin{align*}
\left|a_{n k}\right| & =\left|\left\{a_{n k}-a_{n k}^{(\mathrm{N})}\right\}+a_{n k}^{(\mathrm{N})}\right| \\
& \leq \max \left[\left|a_{n k}-a_{n k}^{(\mathrm{N})}\right|,\left|a_{n k}^{(\mathrm{N})}\right|\right] \tag{10}\\
& \left.\leq \max \left[\sup _{n, k}\left|a_{n k}-a_{n k}^{(N)}\right|, \sup _{n, k}\left|a_{n k}^{(\mathrm{N})}\right|\right]\right] \\
& =\max \left[\left\|A^{(\mathrm{N})}-A\right\|,\left\|A^{(\mathrm{N})}\right\|\right] \\
& <\max \left[\epsilon,\left\|A^{(\mathrm{N})}\right\|\right], \operatorname{using}(9),
\end{align*}
$$

and thus

$$
\sup _{n, k}\left|a_{n k}\right|<\infty .
$$

From (10), for $k=0,1,2, \ldots$,

$$
\begin{equation*}
\left|a_{n k}\right| \leq \max \left[\left\|A^{(N)}-A\right\|,\left|a_{n k}^{(N)}\right|\right] \tag{11}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} a_{n k}^{(N)}=0$, there exists a positive integer N^{\prime} such that

$$
\begin{equation*}
\left|a_{n k}^{(N)}\right|<\epsilon, n \geq N^{\prime} \tag{12}
\end{equation*}
$$

Using (9) and (12) in (11), we get, for $k=0,1,2, \ldots$,

$$
\begin{aligned}
& \begin{aligned}
\left|a_{n k}\right| & \leq \max [\epsilon, \epsilon] \\
& =\epsilon, n \geq N^{\prime} \\
\text { i.e., } & \lim _{n \rightarrow \infty} a_{n k}=0, k=0,1,2, \ldots .
\end{aligned}
\end{aligned}
$$

Thus $A \in\left(c_{0}, c_{0}\right)$. Again, for $k=0,1,2, \ldots$,

$$
\begin{aligned}
\left|\sum_{n=0}^{\infty} a_{n k}-1\right| & =\left|\sum_{n=0}^{\infty} a_{n k}-\sum_{n=0}^{\infty} a_{n k}^{(N)}\right|, \text { since } \\
& =\mid \sum_{n=0}^{\infty}\left(a_{n k}-a_{n k}^{(N)} \in\left(c_{0}, c_{0} ; P\right)\right. \\
& \leq \sup _{n, k}\left|a_{n k}-a_{n k}^{(N)}\right| \\
& =\left\|A-A^{(N)}\right\| \\
& <\epsilon, \text { using (9), for every } \epsilon>0
\end{aligned}
$$

It now follows that

$$
\sum_{n=0}^{\infty} a_{n k}=1, k=0,1,2, \ldots .
$$

Consequently, $A \in\left(c_{0}, c_{0} ; P\right)$ and hence $\left(c_{0}, c_{0} ; P\right)$ is closed. It remains to check closure under matrix product.
Let $A=\left(a_{n k}\right), B=\left(b_{n k}\right) \in\left(c_{0}, c_{0} ; P\right)$. We have already proved that $A B \in\left(c_{0}, c_{0}\right)$. Since $\sum_{n=0}^{\infty} a_{n k}=\sum_{n=0}^{\infty} b_{n k}=1$, $k=0,1,2, \ldots$ and using the fact that convergence and unconditional convergence are equivalent in K (see [6]), for $k=0,1,2, \ldots$,

$$
\begin{aligned}
\sum_{n=0}^{\infty}(A B)_{n k} & =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{\infty} a_{n i} b_{i k}\right) \\
& =\sum_{i=0}^{\infty} b_{i k}\left(\sum_{n=0}^{\infty} a_{n i}\right) \\
& =\sum_{i=0}^{\infty} b_{i k} \\
& =1
\end{aligned}
$$

proving that $A \in\left(c_{0}, c_{0} ; P\right)$. The identity of the semi-group $\left(c_{0}, c_{0} ; P\right)$ is the unit matrix I,

$$
I=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right) \in\left(c_{0}, c_{0} ; P\right)
$$

completing the proof of the theorem.
Note 2.3. In the context of Theorem 2.2, we can check that $\left(c_{0}, c_{0} ; P\right)$ is not a group. We can give an example of a matrix in $\left(c_{0}, c_{0} ; P\right)$, which does not have an inverse.

In the classical set up, the author defined the convolution product \circ in [4]. We retain the same definition in the ultrametric set up too.

Definition 2.4. For $A=\left(a_{n k}\right), B=\left(b_{n k}\right)$, define

$$
(A \circ B)_{n k}=\sum_{i=0}^{n} a_{i k} b_{n-i, k}, n, k=0,1,2, \ldots .
$$

$A \circ B=\left((A \circ B)_{n k}\right)$ is called the convolution product of A and B.
We keep the usual norm structure in $\left(c_{0}, c_{0}\right)$ so that $\left(c_{0}, c_{0}\right)$ is a Banach space. We replace the usual matrix product by the convolution product \circ and prove the next result.

Theorem 2.5. $\left(c_{0}, c_{0}\right)$ is a commutative Banach algebra with identity under the convolution product 0.
Proof. We will prove closure under the convolution product \circ. Let $A=\left(a_{n k}\right), B=\left(b_{n k}\right) \in\left(c_{0}, c_{0}\right)$. Since $\lim _{n \rightarrow \infty} a_{n k}=\lim _{n \rightarrow \infty} b_{n k}=0, k=0,1,2, \ldots$, using Theorem 1 of [3],

$$
\begin{aligned}
(A \circ B)_{n k} & =\sum_{i=0}^{n} a_{i k} b_{n-i, k} \\
& =a_{0 k} b_{n, k}+a_{1 k} b_{n-1, k}+\cdots+a_{n k} b_{0, k} \\
& \rightarrow 0, n \rightarrow \infty
\end{aligned}
$$

Now, since $A, B \in\left(c_{0}, c_{0}\right)$,

$$
\begin{align*}
\sup _{n, k}\left|(A \circ B)_{n k}\right| & =\sup _{n, k}\left|\sum_{i=0}^{n} a_{i k} b_{n-i, k}\right| \\
& \leq\left(\sup _{n, k}\left|a_{n k}\right|\right)\left(\sup _{n, k}\left|b_{n k}\right|\right) \tag{13}\\
& <\infty
\end{align*}
$$

Thus $A \circ B \in\left(c_{0}, c_{0}\right)$. Also,

$$
\|A \circ B\| \leq\|A\|\|B\|, \text { using }(13) .
$$

It is clear that \circ is commutative. The identity element of $\left(c_{0}, c_{0}\right)$ under the convolution product \circ is the matrix $E=\left(e_{n k}\right)$, whose first row consists of 1 's and which has 0 's elsewhere, i.e.,

$$
\begin{aligned}
& e_{0 k}=1, k=0,1,2, \ldots ; \\
& e_{n k}=0, n=1,2, \ldots ; k=0,1,2, \ldots .
\end{aligned}
$$

Note also that $\|E\|=1$ and $E \in\left(c_{0}, c_{0} ; P\right)$. It remains to prove that $\left(c_{0}, c_{0} ; P\right)$ is closed under the convolution product o . Let $A=\left(a_{n k}\right), B=\left(b_{n k}\right) \in\left(c_{0}, c_{0} ; P\right)$. Since $\sum_{n=0}^{\infty} a_{n k}=\sum_{n=0}^{\infty} b_{n k}=1, k=0,1,2, \ldots$,

$$
\begin{aligned}
\sum_{n=0}^{\infty}(A \circ B)_{n k} & =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i k} b_{n-i, k}\right) \\
& =\left(\sum_{n=0}^{\infty} b_{n k}\right)\left(\sum_{n=0}^{\infty} a_{n k}\right) \\
& =1, k=0,1,2, \ldots
\end{aligned}
$$

Hence $A \circ B \in\left(c_{0}, c_{0} ; P\right)$. This completes the proof of the theorem.
Corollary 2.6. $\left(c_{0}, c_{0} ; P\right)$, as a subset of the algebra $\left(c_{0}, c_{0}\right)$ under the convolution product 0 , is a semigroup without identity.

The classical analogous of the above results for conservative and regular matrices were studied by Maddox in [2] and those for $\left(\ell_{1}, \ell_{1}\right)$ and $\left(\ell_{1}, \ell_{1} ; P\right)$ matrices were studied by the author in [4].

References

[1] G. Bachman, Introduction to p-adic numbers and valuation theory, Academic Press, 1964.
[2] I.J. Maddox, Elements of Functional Analysis, Cambridge, 1977.
[3] P.N. Natarajan, Multiplication of series with terms in a non-archimedean field, Simon Stevin, 52 (1978), 157-160.
[4] P.N. Natarajan, On the algebra $\left(\ell_{1}, \ell_{1}\right)$ of infinite matrices, Analysis (München), 20 (2000), 353-357.
[5] P.N. Natarajan, Sequence spaces and summability over valued fields, Taylor and Francis, 2019.
[6] A.C.M. Van Rooij and W.H. Schikhof, Non-archimedean analysis, Nieuw Arch. Wisk., 19 (1971), 121-160.

[^0]: 2020 Mathematics Subject Classification. Primary 40C05, 40D05, 40H05, 46 S10
 Keywords. Ultrametric (or non-archimedean) field, Banach algebra, unconditional convergence, K-convex set, convolution product Received: 10 January 2021; Revised: 26 March 2021; Accepted: 11 April 2021
 Communicated by Hemen Dutta
 Email address: pinnangudinatarajan@gmail.com (P. N. Natarajan)

