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On the Matrix Classes (c0, c0) and (c0, c0; P) over Complete Ultrametric
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Abstract. Throughout this paper, K denotes a complete, non-trivially valued, ultrametric (or non-
archimedean) field. Sequences, infinite series and infinite matrices have entries in K. In this paper, we
record some interesting properties about the matrix classes (c0, c0) and (c0, c0; P).

1. Introduction

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean)
field. Sequences, infinite series and infinite matrices have entries in K.

c0 denotes the ultrametric (or non-archimedean) Banach space of all null sequences with entries in K. If
A = (ank), ank ∈ K, n, k = 0, 1, 2, . . . , is an infinite matrix, we write A ∈ (c0, c0) if

(Ax)n =

∞∑
k=0

ankxk,n = 0, 1, 2, . . .

is defined and the sequence A(x) = {(Ax)n} ∈ c0, whenever x = {xk} ∈ c0.
The following result is well-known (see [1]).

Theorem 1.1.
∞∑

k=0

xk converges if and only if lim
k→∞

xk = 0.

In view of Theorem 1.1, if {xn} ∈ c0, then
∞∑

k=0

xk converges and so that following is relevant. We write

A = (ank) ∈ (c0, c0; P) if A ∈ (c0, c0) and

∞∑
n=0

(Ax)n =

∞∑
k=0

xk, x = {xk} ∈ c0.

The following result can be easily proved.
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Theorem 1.2. A = (ank) ∈ (c0, c0) if and only if

sup
n,k
|ank| < ∞; (1)

and

lim
n→∞

ank = 0, k = 0, 1, 2, . . . . (2)

Further, A ∈ (c0, c0; P) if and only if (1) and (2) hold and

∞∑
n=0

ank = 1, k = 0, 1, 2, . . . . (3)

The matrix classes (c0, c0) and (c0, c0; P) were studied by the author in [5] in the context of Steinhaus type
theorems.

2. Main Results

In this section, we prove the main results of the paper.

Theorem 2.1. (c0, c0) is a Banach algebra, with identity, under the usual matrix product.

Proof. It is clear that (c0, c0) is a normed linear space under the norm

‖A‖ = sup
n,k
|ank|,A = (ank) ∈ (c0, c0). (4)

Let, now, A = (ank), B = (bnk) ∈ (c0, c0). Let, for convenience, C = (cnk) = AB and x = {xk} ∈ c0. Now,

(Cx)n =

∞∑
k=0

cnkxk

=

∞∑
k=0

 ∞∑
i=0

anibik

 xk.

Consider
∞∑

i=0

ani

 ∞∑
k=0

bikxk

. Note that (Bx)i =

∞∑
k=0

bikxk and {(Bx)i} ∈ c0, since B ∈ (c0, c0).

Since A ∈ (c0, c0),

∞∑
i=0

ani(Bx)i → 0,n→∞.

We know that, in ultrametric fields, unconditional convergence and convergence are equivalent (see [6])
and so

∞∑
k=0

 ∞∑
i=0

anibik

 xk

=

∞∑
i=0

ani

 ∞∑
k=0

bikxk

 .



P. N. Natarajan / Filomat 35:15 (2021), 5263–5270 5265

Thus

(Cx)n =

∞∑
i=0

ani

 ∞∑
k=0

bikxk


→ 0,n→∞,

as noted above. Hence C ∈ (c0, c0) and so (c0, c0) is closed under matrix product. Also

‖AB‖ = sup
n,k
|cnk|

= sup
n,k

∣∣∣∣∣∣∣
∞∑

i=0

anibik

∣∣∣∣∣∣∣
≤

sup
n,k
|ank|

 sup
n,k
|bnk|


= ‖A‖‖B‖.

We have proved above that

(AB)(x) = A(B(x)), x ∈ c0,

using which, we can prove the associative law

(AB)C = A(BC),A,B,C ∈ (c0, c0).

We can check the other algebraic laws to conclude that (c0, c0) is an algebra. The unit matrix I,

I =


1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
. . . . . . . . . . . . . . .

 ∈ (c0, c0)

is the identity element of the algebra (c0, c0). Finally, we conclude the proof by proving that (c0, c0) is
complete under the norm defined by (4). To this end, let {A(n)

} be a Cauchy sequence in (c0, c0), where

A(n) = (a(n)
i j ), i, j = 0, 1, 2, . . . ; n = 0, 1, 2, . . . .

Since {A(n)
} is Cauchy, for ε > 0, there exists a positive integer n0 such that

‖A(m)
− A(n)

‖ < ε,m,n ≥ n0,

i.e., sup
i, j
|a(m)

i j − a(n)
i j | < ε,m,n ≥ n0.

Thus, for all i, j = 0, 1, 2, . . . ,

|a(m)
i j − a(n)

i j | < ε,m,n ≥ n0. (5)

So {a(n)
i j }
∞

n=0 is a Cauchy sequence in K, i, j = 0, 1, 2, . . . . Since K is complete,

a(n)
i j → ai j,n→∞ in K, i, j = 0, 1, 2, . . . .
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Consider the infinite matrix A = (ai j), i, j = 0, 1, 2, . . . . Using (5), for all n ≥ n0, allowing m→∞, we get

|ai j − a(n)
i j | ≤ ε, i, j = 0, 1, 2, . . . ,

i.e., sup
i, j
|ai j − a(n)

i j | ≤ ε,n ≥ n0, (6)

i.e., ‖A(n)
− A‖ ≤ ε,n ≥ n0,

i.e., A(n)
→ A,n→∞.

We now claim that A ∈ (c0, c0). Now, in view of (6),

|ai j − a(n0)
i j | ≤ ε, i, j = 0, 1, 2, . . . . (7)

Since A = (a(n0)
i j ) ∈ (c0, c0),

sup
i, j
|a(n0)

i j | =M < ∞. (8)

Now, for all i, j = 0, 1, 2, . . . ,

|ai j| =
∣∣∣∣{ai j − a(n0)

i j

}
+ a(n0)

i j

∣∣∣∣
≤ max

[∣∣∣∣ai j − a(n0)
i j

∣∣∣∣ , ∣∣∣∣a(n0)
i j

∣∣∣∣]
< max[ε,M], using (7) and (8)
< ∞,

so that

sup
i, j
|ai j| < ∞.

Also,

lim
i→∞

a(n0)
i j = 0, j = 0, 1, 2, . . . ,

since A = (a(n0)
i j ) ∈ (c0, c0). For j = 0, 1, 2, . . . , taking limit as i→∞ in (7), we get∣∣∣∣∣limi→∞

ai j − 0
∣∣∣∣∣ ≤ ε,

i.e.,
∣∣∣∣∣limi→∞

ai j

∣∣∣∣∣ ≤ ε, for every ε > 0,

i.e., lim
i→∞

ai j = 0, j = 0, 1, 2, . . . .

Consequently

A ∈ (c0, c0),

completing the proof of the theorem.

Theorem 2.2. (c0, c0; P), as a subset of (c0, c0), is a closed K-convex semigroup with identity.
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Proof. Let A = (ank),B = (bnk),C = (cnk) ∈ (c0, c0; P). Let λ, µ, γ be such that |λ|, |µ|, |γ| ≤ 1 and λ + µ + γ = 1.
Now,

(λA + µB + γC)nk = λank + µbnk + γcnk,

from which we have

lim
n→∞

(λA + µB + γC)nk = 0, since lim
n→∞

ank = lim
n→∞

bnk = lim
n→∞

cnk = 0,

A,B,C ∈ (c0, c0; P).

Also, since |λ|, |µ|, |γ| ≤ 1 and A,B,C ∈ (c0, c0; P),

sup
n,k
|λA + µB + γC|nk

≤ max

|λ| sup
n,k
|ank|, |µ| sup

n,k
|bnk|, |γ| sup

n,k
|cnk|


≤ max

sup
n,k
|ank|, sup

n,k
|bnk|, sup

n,k
|cnk|


< ∞.

So

λA + µB + γC ∈ (c0, c0),

using Theorem 1.2.
Also, since A,B,C ∈ (c0, c0; P), for k = 0, 1, 2, . . . ,

∞∑
n=0

(λA + µB + γC)nk = λ
∞∑

n=0

ank + µ
∞∑

n=0

bnk + γ
∞∑

n=0

cnk

= λ(1) + µ(1) + γ(1)
= λ + µ + γ

= 1.

Hence λA + µB + γC ∈ (c0, c0; P), proving that (c0, c0; P) is a K-convex subset of (c0, c0) (for the definition of
K-convexity, one can refer to [5]).

We next claim that (c0, c0; P) is closed. Let

A = (ank) ∈ (c0, c0; P).

There exist A(m) = (a(m)
nk ) ∈ (c0, c0; P), m = 0, 1, 2, . . . such that A(m)

→ A, m→ ∞. So, given ε > 0, there exists
a positive integer N such that

‖A(m)
− A‖ < ε,m ≥ N. (9)

Now, for n, k = 0, 1, 2, . . . ,

|ank| =
∣∣∣∣{ank − a(N)

nk

}
+ a(N)

nk

∣∣∣∣
≤ max

[∣∣∣ank − a(N)
nk

∣∣∣ , ∣∣∣a(N)
nk

∣∣∣] (10)

≤ max

sup
n,k

∣∣∣ank − a(N)
nk

∣∣∣ , sup
n,k

∣∣∣a(N)
nk

∣∣∣
= max[‖A(N)

− A‖, ‖A(N)
‖]

< max[ε, ‖A(N)
‖], using (9),
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and thus

sup
n,k
|ank| < ∞.

From (10), for k = 0, 1, 2, . . . ,

|ank| ≤ max
[∥∥∥A(N)

− A
∥∥∥ , ∣∣∣a(N)

nk

∣∣∣] . (11)

Since lim
n→∞

a(N)
nk = 0, there exists a positive integer N′ such that∣∣∣a(N)

nk

∣∣∣ < ε,n ≥ N′. (12)

Using (9) and (12) in (11), we get, for k = 0, 1, 2, . . . ,

|ank| ≤ max[ε, ε]
= ε,n ≥ N′,

i.e., lim
n→∞

ank = 0, k = 0, 1, 2, . . . .

Thus A ∈ (c0, c0). Again, for k = 0, 1, 2, . . . ,∣∣∣∣∣∣∣
∞∑

n=0

ank − 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
∞∑

n=0

ank −

∞∑
n=0

a(N)
nk

∣∣∣∣∣∣∣ , since

A(N)
∈ (c0, c0; P)

=

∣∣∣∣∣∣∣
∞∑

n=0

(ank − a(N)
nk )

∣∣∣∣∣∣∣
≤ sup

n,k

∣∣∣ank − a(N)
nk

∣∣∣
= ‖A − A(N)

‖

< ε, using (9), for every ε > 0.

It now follows that
∞∑

n=0

ank = 1, k = 0, 1, 2, . . . .

Consequently, A ∈ (c0, c0; P) and hence (c0, c0; P) is closed. It remains to check closure under matrix product.

Let A = (ank), B = (bnk) ∈ (c0, c0; P). We have already proved that AB ∈ (c0, c0). Since
∞∑

n=0

ank =

∞∑
n=0

bnk = 1,

k = 0, 1, 2, . . . and using the fact that convergence and unconditional convergence are equivalent in K (see
[6]), for k = 0, 1, 2, . . . ,

∞∑
n=0

(AB)nk =

∞∑
n=0

 ∞∑
i=0

anibik


=

∞∑
i=0

bik

 ∞∑
n=0

ani


=

∞∑
i=0

bik

= 1,
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proving that A ∈ (c0, c0; P). The identity of the semi-group (c0, c0; P) is the unit matrix I,

I =


1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
. . . . . . . . . . . . . . .

 ∈ (c0, c0; P),

completing the proof of the theorem.

Note 2.3. In the context of Theorem 2.2, we can check that (c0, c0; P) is not a group. We can give an example of a
matrix in (c0, c0; P), which does not have an inverse.

In the classical set up, the author defined the convolution product ◦ in [4]. We retain the same definition
in the ultrametric set up too.

Definition 2.4. For A = (ank), B = (bnk), define

(A ◦ B)nk =

n∑
i=0

aikbn−i,k,n, k = 0, 1, 2, . . . .

A ◦ B = ((A ◦ B)nk) is called the convolution product of A and B.

We keep the usual norm structure in (c0, c0) so that (c0, c0) is a Banach space. We replace the usual matrix
product by the convolution product ◦ and prove the next result.

Theorem 2.5. (c0, c0) is a commutative Banach algebra with identity under the convolution product ◦.

Proof. We will prove closure under the convolution product ◦. Let A = (ank), B = (bnk) ∈ (c0, c0). Since
limn→∞ ank = limn→∞ bnk = 0, k = 0, 1, 2, . . . , using Theorem 1 of [3],

(A ◦ B)nk =

n∑
i=0

aikbn−i,k

= a0kbn,k + a1kbn−1,k + · · · + ankb0,k

→ 0,n→∞.

Now, since A,B ∈ (c0, c0),

sup
n,k
|(A ◦ B)nk| = sup

n,k

∣∣∣∣∣∣∣
n∑

i=0

aikbn−i,k

∣∣∣∣∣∣∣
≤

sup
n,k
|ank|

 sup
n,k
|bnk|

 (13)

< ∞.

Thus A ◦ B ∈ (c0, c0). Also,

‖A ◦ B‖ ≤ ‖A‖‖B‖, using (13).

It is clear that ◦ is commutative. The identity element of (c0, c0) under the convolution product ◦ is the
matrix E = (enk), whose first row consists of 1’s and which has 0’s elsewhere, i.e.,

e0k = 1, k = 0, 1, 2, . . . ;
enk = 0,n = 1, 2, . . . ; k = 0, 1, 2, . . . .
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Note also that ‖E‖ = 1 and E ∈ (c0, c0; P). It remains to prove that (c0, c0; P) is closed under the convolution

product ◦. Let A = (ank), B = (bnk) ∈ (c0, c0; P). Since
∞∑

n=0

ank =

∞∑
n=0

bnk = 1, k = 0, 1, 2, . . . ,

∞∑
n=0

(A ◦ B)nk =

∞∑
n=0

 n∑
i=0

aikbn−i,k


=

 ∞∑
n=0

bnk


 ∞∑

n=0

ank


= 1, k = 0, 1, 2, . . . .

Hence A ◦ B ∈ (c0, c0; P). This completes the proof of the theorem.

Corollary 2.6. (c0, c0; P), as a subset of the algebra (c0, c0) under the convolution product ◦, is a semigroup without
identity.

The classical analogous of the above results for conservative and regular matrices were studied by
Maddox in [2] and those for (`1, `1) and (`1, `1; P) matrices were studied by the author in [4].
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