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Abstract. Using the Kullback-Leibler distance between two density functions about a matrix T distribution
and a matrix normal distribution,we obtain a Berry-Esseen boundary for the T distribution. Further, we
give the condition under which a matrix T is uniformly asymptotically matrix normal distribution, and
point out the convergence rate.

1. Introduction

As an extension of the one-dimensional Student’s t distribution, the multivariate t distribution is closer
to the real data with respect to the normal distribution due to the tail characteristics, therefore, it has
been widely used in cluster analysis, discriminant analysis and regression analysis. To see Kotz (2004),
Roth (2013)[1, 3]. In recent years, Jiang et al. (2020)[8] have applied multivariate t distributions to causal
analysis. In the study of Bayes analysis, Dickey (1967)[5]introduced matrix T distributions and discussed
their properties, and since then matrix T distributions have received much attention from many researchers,
a variety of t distributions, see Chapters 4 and 5 in Kotz (2004)[1], were proposed and extend to related
fields. For example, studying spherically symmetric distributions, Fang (1990)[4] found that ellipsoidal
distributions are also closely related to matrix T distributions, see §3.5.3 in Fang (1990)[4]. Whether it is a
one-dimensional t distribution, a multivariate t distribution, or a matrix T distribution, the density function
form is much complicated than those of the normal distributions, and it is inconvenient to use. It has
been found that the density function of the one-dimensional t distribution approaches the one-dimensional
normal distribution with unlimited increasing degrees of freedom, see Kotz (2004)[1] page 2, and this
convergence is essentially an in distribution convergence. For a multivariate t distribution, a matrix T
distribution, one naturally asks whether it is converg to a normal distribution. Is it uniformly convergent?
What is its rate of convergence? In order to calculate probability integrals of multivariate t distributions,
a series of studies have been conducted by Fujikoshi (1989, 1997)[6, 7] and others. From the perspective
of the Kullback-Leibler distance. Akimoto (1994)[2] gave a results for the consistent convergence of the
Wishart distribution to a normal distribution, these are the motivation for this paper to study the consistent
asymptotic normality of the matrix T distribution, although so far we have found no results of this study.
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In this paper, after describing the relationship between the matrix Γ distribution and the matrix T
distribution in the section 2, we give the definition that a matrix T distribution is uniformly asymptotic
normality in the section 3. In the section 4, we intend to discuss the Berry-Esseen inequality of the matrix T
distribution, and thus give conclusions about consistent asymptotic normality of the matrix T distribution
and its convergence rate.

2. Overview of the matrix T distribution

In this paper, let A = (ai j) be a matrix of m × m order. A > 0 means that A is a positive definite matrix,
the determinant of A is represented by|A| . when A > 0, A

1
2 was defined by Muirhead (1982), page 588[9].

If A = (ai j)n×m is a random matrix, the joint distribution of the nm × 1 random vector

−→
A = (a11, a21, ..., an1, a12, a22, ..., an2, a13, a23, ..., an3, ..., a1m, ..., anm)>

is called the distribution of the random matrix A = (ai j). If A = (ai j) is a symmetric matrix with m×m order,
the joint distribution of the m(m+1)

2 × 1 dimension random vector

Ã = (a11, a12, ..., a1m, a22, a23, ..., a2m, a33, ..., amm)>

is regarded as the distribution of the random matrix A = (ai j).Where,
−→
A represents the straightening of the

whole matrix, and Ã is the straightening of the main diagonal of the symmetric matrix and the triangular
elements below the main diagonal.

In mathematical statistics, if x and y are mutually independent random variables, and x ∼ N(0, 1),
y ∼ χ2

(n), then

t =

√
nx
√

y
∼ t(n).

That is, t obeys the central t distribution whose degree of freedom is n. According to this way, a matrix T
distribution can be defined similarly. Therefore, we need the concepts of matrix normal distribution and
matrixχ2 distribution. It is well known that X has matrix normal distribution, denoted by X ∼ Nn×m(M,V,Σ),
if the density function of X = (xi j)n×m is

f (X) = (2π)−
nm
2 |V|−

n
2 |Σ|−

m
2 exp{−

1
2

tr(X −M)>Σ−1(X −M)V−1
}. (0)

On the other hands, following the Definition 2.1.10 of Muirhead (1982)[9], a matrix Γ distribution is a natural
generalization for χ2 distribution.

Definition 2.1. If a m ×m symmetric random matrix X has a density function:

1(X|α,Σ) =


|X|α−

m+1
2

Γm(α)|Σ|α exp{−tr(Σ−1X)}, X > 0;

0, other,
(1)

where Σ = (σi j) > 0 , α > m−1
2 , Γm(α) is a multivariate Γ function, i.e. Γm(α) = πm(m−1)/4Πm

i=1Γ(α − (i − 1)/2), Then
it is said that X obeys the matrix Γ distribution, denoted as X ∼ Gam(α,Σ).

In Definition 2.1, let m = 1, α = n
2 ,Σ = 2, equation (1) is the density function of the central χ2 distribution

with degree of freedom n . On the other hand, the central Wishart distribution is also a special case of the
matrix Γ distribution, see the Theorem 3.2.1 in Muirhead (1982) page 85[9].
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Definition 2.2. Suppose the random matrix X ∼ Nn×m(O, Im, In), where O is the n × m order 0 matrix , Im and
In are unit matrices. W ∼ Gam(γ2 , 2Im), γ > 0. X and W are independent of each other, the distribution of the
random matrix T =

√
γXW−

1
2 is said to be a central matrix T distribution with degrees of freedom γ, denoted as

T ∼MT(m,n, γ).

In Definition 2.2, if n,m = 1, the matrix T distribution simplifies to a one-dimensional center t distribution
with the degree of freedom γ. Since the degrees of freedom γ of t distribution derives from the capacity of a
sampling, when discussing the limiting distribution of the matrix T distribution, In general, it is reasonable
to treat the limit process as γ→∞.

Lemma 2.3. Let T =
√
γXW−

1
2 be the random matrix given by definition 2.2, then the density function of the

center matrix T distribution MT(m,n, γ) is

1(T) = (πγ)−
nm
2

Γm(γ+n
2 )

Γm(γ2 )
|Im +

1
γ

T>T|−
n+γ

2 . (2)

Proof. Notice that X, W are independent, following the typical method to derive the density function of
a random variate, for each nonnegative Borel measurable function 1(·),

E1(T) =

∫
W>0,X

1(
√
γXW−

1
2 )(2π)−

nm
2

1

Γm(γ2 )2
mγ
2

|W|
γ
2−

m+1
2 exp{−

1
2

tr(W + X>X)}dXdW.

Set T =
√
γXW−

1
2 ,S = W, then X = 1

√
γTS

1
2 ,W = S, Using Theorem 2.1.5 in Muirhead (1982)[9], the

transformed Jacobian determinant is

J((X,W)→ (T,S)) = γ−
nm
2 |S|

n
2 ,

hence

E1(T) =

∫
T
[1(T)(2π)−

nm
2 γ−

nm
2

1

Γm(γ2 )2
mγ
2

∫
S>0
|S|

γ+n
2 −

m+1
2 exp{−

1
2

trS
1
2 (I +

1
γ

T>T)S
1
2 }dS]dT.

Using equation (1) to the inner integration, we get

E1(T) =

∫
T
1(T){(πγ)−

nm
2

Γm(γ+n
2 )

Γm(γ2 )
|Im +

1
γ

T>T|−
n+γ

2 }dT.

the density function of the central matrix T distribution is exactly equation (2).

Lemma 2.4. Let X =

[
X1
X2

]
∼ SS(ϕ), i.e., X obeys a spherically symmetric distribution whose eigenfunctions are

ϕ(·), if Xi is a random array of ni×m, i = 1, 2.when ni ≥ m, the random array T =
√

n2X1(X>2 X2)−
1
2 ∼MT(m,n1,n2).

A detailed proof of lemma 2.4 is given in Theorem 3.5.4 of Fang (1990)[4] page 113. This conclusion shows
that it is useful to study the matrix t distribution for applications of spherically symmetric distributions.
this is not the purpose of this paper, it will not be deeply studied . In the definition of one-dimensional
t distribution, when the normal distribution is not the standard normal, the concept of a non-central t
distribution also arises, so it is necessary to extend the central matrix T to the general matrix T distribution.

Definition 2.5. the random matrix X = (xi j)n×m is called to obey the matrix T distribution, noted as X ∼
Tn×m(M,B−1,A, γ), If the density function of X is

p(X) =(π)−
nm
2

Γm(γ+n+m−1
2 )

Γm(γ+m−1
2 )

|A|−
n
2 |B|

m
2 |Im +A−1(X −M)>B(X −M)|−

γ+n+m−1
2 . (3)

where, the constant γ > 0, M is a constant matrix, and A,B are two positive definite matrices.
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Remark 2.6. 1o: central matrix MT(m,n, γ) is a special case of the matrix Tn×m(M,B−1,A, γ).
2o: If T ∼MT(m,n, γ), then Y = M + γ−

1
2 B−

1
2 TA

1
2 ∼ Tn×m(M,B−1,A, γ −m + 1). where, M is a

constant matrix , A,B are positive constant matrices.

Indeed, 1o is obvious from the density function that Tn×m(O, In, γIm, γ − m + 1) is MT(m,n, γ). The proof
of the conclusion 2o can be derived by the following Lemma 2.7. Remark 2.6 specifies the relationship
between the matrix T distribution and the central matrix T, and it is clear that the properties of the central
matrix T distribution can be obtained as a special case deduction as long as the properties of the matrix T
distribution are studied.

Lemma 2.7. Set X ∼ Tn×m(M,B−1,A, γ) , and Pn×n, Qm×m are non-singular constant matrices, then

Z = PXQ ∼ Tn×m(PMQ,PB−1P>,Q>AQ, γ).

Proof. The Jacobian determinant of that the transformation Z → X is |J(Z → X)| = |P|m|Q|n, therefor, the
density function of Z

1(Z) = (π)−
nm
2

Γm(γ+n+m−1
2 )

Γm(γ+m−1
2 )

|B|
m
2 |A−1

|
n
2

×|Im + A−1(P−1ZQ−1
−M)>B(P−1ZQ−1

−M)|−
γ+n−m−1

2 |P−1
|
m
|Q−1
|
n

= (π)−
nm
2

Γm(γ+n+m−1
2 )

Γm(γ+m−1
2 )

|(P−1)>BP−1
|

m
2 |(Q>AQ)−1

|
n
2

×|Im + A−1(Q>)−1(Z − PMQ)>(P−1)>BP−1(Z − PMQ)Q−1
|
−
γ+n−m−1

2

= (π)−
nm
2

Γm(γ+n+m−1
2 )

Γm(γ+m−1
2 )

|(PB−1P>)−1
|

m
2 |(Q>AQ)−1

|
n
2

×|Im + (Q>AQ)−1(Z − PMQ)>(PB−1P>)−1(Z − PMQ)|−
γ+n−m−1

2 .

By definition, Z = PXQ ∼ Tn×m(PMQ,PB−1P>,Q>AQ, γ).

3. A conception for uniformly asymptotic normality and related results

A statement for uniformly asymptotic normality and some related lemmas are given in this section. In
the n-dimensional Euclidean space (Rn,Bn), let X,Y be a random vector of n × 1 dimensions. PX, PY is the
probability distribution of X,Y, f (x), 1(y) is the density of the distribution of X,Y, respectively, noting that
PX(E) =

∫
E dPX, E ∈ Bn.Let

D(X,Y) = sup
E∈Bn
|PX(E) − PY(E)|, I(X,Y) = EX[ ln

f (X)
1(X)

].

Obviously, D(X,Y) and I(X,Y) is the full variational distance and Kullback-Leibler distance between X and
Y respectively. The full variational distance and Kullback-Leibler distance are widely used in mathematical
statistics, information theory, and many other fields. There is an important conclusion between them.

Lemma 3.1. If X,Y are random vectors with the densities f (x) and 1(y), respectively, then the relational formula
between the full-variance distance and Kullback-Leibler distance of X,Y is

D(X,Y) ≤

√
I(X,Y)

2
.
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For proof, see the Proposition 4.3.7 in Whittaker (1990)[11].

Definition 3.2. Let X ∼ Tn×m(M,B−1,A, γ), Y ∼ Nn×m(O, Im, In), if there are nonsingular constant matrices
Pn×n, Qm×m, when Z = P(X −M)Q so that the following inequality holds

D(Z,Y) = sup
E∈Bnm

|PZ(E) − PY(E)| ≤ HLγ,

where, constant H is unrelated to γ but Lγ is related to γ, we call that the HLγ is a Berry-Esseen boundary of the
matrix T distribution. Further,when γ→∞, D(Z,Y)→ 0, we say that the matrix T distribution Tn×m(M,B−1,A, γ)
is uniformly asymptotic to a matrix normal distribution.

If n = m = 1, then the inequality in definition 3.2 is actually a Berry-Esseen inequality, which based
on the full variation the distance between the standardized T distribution and the standardized normal
distribution. Obviously, the Berry-Essen boundary of T distribution is not unique. The following results
are also needed for future purposes.

Lemma 3.3. 1o : lnΓ(x) = 1
2 ln2π + (x − 1

2 ) lnx − x − R(x),
where : 0 < R(x) < 1

64x2(x+1) , x > 0.
2o:

lnΓ(
γ

2
) +

1
2

ln
γ − 2

2
− lnΓ(

γ + 1
2

) <
1

2γ
, γ > 2.

3o : Set

c(m,n, γ) =
Γm(γ+m−1

2 )(γ−2
2 )

nm
2

Γm(γ+n+m−1
2 )

, then lnc(m,n, γ) <
nm
2γ
.

Proof. A proof of 1o to see Matsunawa (1976)[10].
The following to proof 2o, when γ > 2, using 1o, there is

lnΓ(
γ

2
) +

1
2

ln
γ − 2

2
− lnΓ(

γ + 1
2

) =

γ − 1
2

ln
γ

2
−
γ

2
− R(

γ

2
) +

1
2

ln
γ − 2

2
−
γ

2
ln
γ + 1

2
+
γ + 1

2
+ R(

γ + 1
2

) =

γ

2
( ln

γ

2
− ln

γ + 1
2

) +
1
2

( ln
γ − 2

2
− ln

γ

2
) +

1
2

+ R(
γ + 1

2
) − R(

γ

2
) =

γ

2
ln(1 −

1
γ + 1

) +
1
2

ln(
γ − 2
γ

) +
1
2

+ R(
γ + 1

2
) − R(

γ

2
),

since x > −1, ln(1 + x) ≤ x, and R(x) are bounded,

lnΓ(
γ

2
) +

1
2

ln
γ − 2

2
− lnΓ(

γ + 1
2

) <
γ

2
ln(1 −

1
γ + 1

) +
1
2

+ R(
γ + 1

2
)

<
γ

2
(−

1
γ + 1

) +
1
2

+
1

64(γ+1
2 )2(γ+3

2 )
<

1
2(γ + 1)

+
1

8(γ + 1)2(γ + 3)
<

1
2γ
.

3o By the expression Γm(·) in definition 2.1,

lnc(m,n, γ) = lnΓm(
γ + m − 1

2
) +

nm
2

ln(
γ − 2

2
) − lnΓm(

γ + n + m − 1
2

)

= ln[Πm
i=1Γ(

γ + i − 1
2

)] − ln[Πm
i=1Γ(

γ + n + i − 1
2

)] +
nm
2

ln(
γ − 2

2
)
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=

m∑
i=1

[ lnΓ(
γ + i − 1

2
) − lnΓ(

γ + n + i − 1
2

)] +
nm
2

ln(
γ − 2

2
)

=

m∑
i=1

[ lnΓ(
γ + i − 1

2
) +

n
2

ln(
γ − 2

2
) − lnΓ(

γ + n + i − 1
2

)]

=

m∑
i=1

{

n∑
j=1

[ lnΓ(
γ + i + j − 2

2
) +

1
2

ln(
γ − 2

2
) − lnΓ(

γ + j + i − 1
2

)]},

according to the result of 2o,

lnc(m,n, γ) <
m∑

i=1

{

n∑
j=1

[
1

2(γ + i + j − 2)
] <

nm
2γ
.

Lemma 3.4. Sppose the f (x) to be a non-negative Borel measurable function on R1, then∫
Rm

f (x2
1 + x2

2 + · · · + x2
m)dx1dx2 · · · dxm =

π
m
2

Γ( m
2 )

∫ +∞

0
y

m
2 −1 f (y)dy.

Detailed proof to see example 2.4.1 in Fang (1990)[4] page 52.

4. A Berry-Esseen boundary for matrix T distributions and its applications

In this section we shall give a Berry-Esseen bounds for the matrix T distribution. As an application,
we give the proof that a matrix T distribution is uniformly asymptotic a normal distribution , also give a
convergence rate.

Theorem 4.1. If T ∼ Tn×m(M,B−1,A, γ), S ∼ Nn×m(M,A, [(γ − 2)B]−1), then when γ > 2.

I(S,T) <
mn(m + n + 2)

2(γ − 2)
.

Proof. Assume f (X) and 1(X) are the densities of the random matrices T,S respectively, then

f (X) =(π)−
nm
2

Γm(γ+n+m−1
2 )

Γm(γ+m−1
2 )

|A|−
n
2 |B|

m
2 |Im

+ A−1(X −M)>B(X −M)|−
γ+n+m−1

2 ,

1(X) = (2π)−
nm
2 |A|−

n
2 |(γ − 2)B|

m
2 exp{−

γ − 2
2

tr[(X −M)>B(X −M)A−1]}

= (
2

γ − 2
π)−

nm
2 |A|−

n
2 |B|

m
2 exp{−

γ − 2
2

tr[(X −M)>B(X −M)A−1]}.

Note that

c(m,n, γ) =
Γm(γ+m−1

2 )(γ−2
2 )

nm
2

Γm(γ+n+m−1
2 )

,



K. C. Li et al. / Filomat 35:15 (2021), 5253–5261 5259

according to the definition of Kullback-Leibler distance, we have

I(S,T) =

∫
Rnm

ln
1(X)
f (X)
1(X)dX = ln c(m,n, γ)+∫

Rnm

(
ln|Im + A−1(X −M)>B(X −M)|

γ+n+m−1
2

−
γ − 2

2
tr[(X −M)>B(X −M)A−1]

)
1(X)dX

= lnc(m,n, γ) +

∫
Rnm

(
ln|Im + A−1(X −M)>B(X −M)|

γ+n+m−1
2

−
γ − 2

2
tr[(X −M)>B(X −M)A−1]

)
× (

2
γ − 2

π)−
nm
2 |A|−

n
2 |B|

m
2

× exp{−
γ − 2

2
tr[(X −M)>B(X −M)A−1]}dX. (4)

Taking an integral transformation in formula (4), Y = B
1
2 (X −M)A−

1
2 , using theorem 2.1.5 in Muirhead

(1982)[9], the Jacobian determinant of the transformation is

J(X→ Y) = |A|
n
2 |B|−

m
2 ,

also note that in formula (4)

|Im + A−1(X −M)>B(X −M)|
γ+n+m−1

2 = |(Im + Y>Y)|
γ+n+m−1

2 .

Using the matrix singular value decomposition theorem, there exist n order and m order orthogonal matrices
P, Q such that

Y = P
[

Λ 0
0 0

]
Q,

where Λ = dia1(λ1, λ2, · · · , λr),λi > 0, i = 1, 2, ....r. λ2
1, λ

2
2, · · · , λ

2
r are non-zero eigenvalues of Y>Y. Thus

|(Im + Y>Y)|
γ+n+m−1

2 = |Q>(Im +

[
Λ2 0
0 0

]
)Q|

γ+n+m−1
2

=
[
(1 + λ2

1)(1 + λ2
2) · · · (1 + λ2

r )
] γ+n+m−1

2 .

and because ln(1 + λ2
i ) ≤ λ2

i , i = 1, 2, ...r. so that

ln|(Im + Y>Y)|
γ+n+m−1

2 =
γ + n + m − 1

2
[

r∑
i=1

ln(1 + λ2
i )]

≤
γ + n + m − 1

2
[λ2

1 + λ2
2 + · · · + λ2

r ] =
γ + n + m − 1

2
tr(Y>Y).

On the other hand, in equation (4),

tr[(X −M)>B(X −M)A−1] = tr[A−
1
2 (X −M)>B(X −M)A−

1
2 ] = tr(Y>Y).

Substituting both the above equation and inequality into the equation (4) yields

I(S,T) = lnc(m,n, γ) +

∫
Rnm

(
γ + n + m − 1

2
ln|Im + Y>Y| −

γ − 2
2

tr(Y>Y)
)
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×(
2

γ − 2
π)−

nm
2 |A|−

n
2 |B|

m
2 exp{−

γ − 2
2

tr(Y>Y)}|A|
n
2 |B|−

m
2 dY

≤ lnc(m,n, γ) +

∫
Rnm

(
γ + n + m − 1

2
tr(Y>Y) −

γ − 2
2

tr(Y>Y)
)

×(
2

γ − 2
π)−

nm
2 exp{−

γ − 2
2

tr(Y>Y)}dY.

So,

I(S,T) = lnc(m,n, γ) +
n + m + 1

2
(
γ − 2

2π
)

nm
2

∫
Rnm

tr(Y>Y)exp{−
γ − 2

2
tr(Y>Y)}dY. (5)

Remember Y = (yi j)n×m in equation (5), then Y>Y = (
∑n

k=1 ykiykj)m×m, therefore

tr(Y>Y) =

m∑
i=1

n∑
k=1

ykiyki =

m∑
i=1

n∑
k=1

y2
ki.

By lemma 3.4 ∫
Rnm

tr(Y>Y)exp{−
γ − 2

2
tr(Y>Y)}dY

=
π

mn
2

Γ( mn
2 )

∫ +∞

0
y

mn
2 −1exp{−

γ − 2
2

y}dy,

putting t =
γ−2

2 y, then
π

mn
2

Γ( mn
2 )

∫ +∞

0
y

mn
2 −1exp{−

γ − 2
2

y}dy

=
π

mn
2

Γ( mn
2 )

(
2

γ − 2
)

mn
2 +1

∫ +∞

0
t

mn
2 exp{−t}dt

=
π

mn
2

Γ( mn
2 )

(
2

γ − 2
)

mn
2 +1Γ(

mn
2

+ 1)

=
mn
2

(
2

γ − 2
)

mn
2 +1π

mn
2 ,

therefor ∫
Rnm

tr(Y>Y)exp{−
γ − 2

2
tr(Y>Y)}dY =

mn
2

(
2

γ − 2
)

mn
2 +1π

mn
2 . (6)

Taking the conclusion 3o from lemma 3.3 and equation (6) into equation (5) yields

I(S,T) ≤
nm
2γ

+
n + m + 1

2
(
γ − 2

2π
)

nm
2

mn
2

(
2

γ − 2
)

mn
2 +1π

mn
2

=
nm
2γ

+
(n + m + 1)nm

2(γ − 2)

<
(n + m + 2)nm

2(γ − 2)
.

Theorem 4.2. Set T ∼ Tn×m(M,B−1,A, γ), then when γ > 2.

L =

√
mn(m + n + 2)

2

√
1

γ − 2
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is a Berry-Esseen boundary of the matrix distribution T.

Proof. Without loss of generality, it can be assumed that T ∼ Tn×m(O,B−1, A, γ), since when M , O, one
make T1 = T −M, and take n × n order non-singular matrix P =

√
γ − 2B

1
2 and m × m order nonsingular

matrix Q = A−
1
2 , then by Lemma 2.7 Z = PTQ ∼ Tn×m(O, (γ − 2)In, Im, γ), pair matrix normal distribution

S ∼ Nn×m(O, Im, In), by Theorem 4.1,

I(S,Z) <
mn(m + n + 2)

2(γ − 2)
,

D(Z,S) = D(S,Z) ≤

√
I(S,Z)

2
≤

√
mn(m + n + 2)

2

√
1

γ − 2
= L.

By Definition 3.2, L must be a Berry-Esseen boundary of the distributed Tn×m(M,B−1,A, γ).

Corollary 4.3. When γ→∞, the matrix T distributes Tn×m(M,B−1,A, γ), is uniformly asymptotic to the matrix
normal distribution Nn×m(M,A, [(γ − 2)B]−1), whose rate of convergence is O(γ−

1
2 ).

The proof is the direct result of Theorem 4.2.

Corollary 4.4. The central matrix T distribution MTn×m(m,n, γ) is uniformly asymptotic to the normal distribu-
tion Nn×m(O, γIm, 1

γ+m−1 In) when γ→∞, its convergence rate is equal to O(γ−
1
2 ).

The proof of corollary 4.4 holds using corollary 4.3 and the preceding conclusion 10 in Remark 2.6.
From the conclusion that a matrix T distribution is uniformly asymptotically the matrix normal distribu-

tion, we can be sure that a one-dimensional t distribution or a multivariate t distribution is also uniformly
asymptotically normal distribution.

In fact, it makes sense to study uniformly asymptotic normal distribution for the various forms of t
distributions, which are described in Chapter 4 and Chapter 5 of Kotz (2004)[1], we will do not to discuss
this topic here.
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