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Abstract. Let R be a ring, S a multiplicative subset of R and M a left R-module. We say M is a weakly S-
Artinian module if every descending chain N1 ⊇ N2 ⊇ N3 ⊇ · · · of submodules of M is weakly S-stationary,
i.e., there exists k ∈ N such that for each n ≥ k, snNk ⊆ Nn for some sn ∈ S. One aim of this paper is to
study the class of such modules. We show that over an integral domain, weakly S-Artinian forces S to be
R \ {0}, whenever S is a saturated multiplicative set. Also we investigate conditions under which weakly
S-Artinian implies Artinian. In the second part of this paper, we focus on multiplicative sets with no zero
divisors. We show that with such a multiplicative set, a semiprime ring with weakly S-Artinian on left
ideals and essential left socle is semisimple Artinian. Finally, we close the paper by showing that over a
perfect ring weakly S-Artinian and Artinian are equivalent.

1. introduction

Due to the importance of Noetherian and Artinian rings, there are several attempts to generalize these
concepts. Back in 1988, Hamann, Houston and Johnson ([11]) introduced the notion of almost principal
ideals over an integral domain. According to [11], an integral domain D is called almost principal if there
exists an s ∈ D \ {0} and an f ∈ I of positive degree such that sI ⊆ f D[X], for every ideal I ∈ D. The ring D[X]
is called an almost PID if each ideal of D[X] that extends to a proper ideal of K[X] (where K is the quotient
field of D) is almost principal. Note that if D is Noetherian or integrally closed, then D[X] is almost PID.
This notion was useful to answer several questions about the divisorial ideals of the ring of polynomials. A
few years later, Anderson, Kwak and Zafrullah called a domain D an agreeable domain if for each fractional
ideal F of D[X] with F ⊆ K[X], there exists an s ∈ D \ {0}with sF ⊆ D[X], ([3]). Also, they called an ideal I of
K[X] almost finitely generated when there is a finite subset { f1, f2, · · · , fn} of I and an element s ∈ D \ {0} such
that sI ⊆ 〈 f1, f2, · · · , fn〉. Later, Anderson and Dumitrescu generalized the concept of almost principal and
almost finitely generated ideals to modules over commutative rings ([1]). Let R be a (commutative) ring
and S ⊆ R be a multiplicative set. An R-module M is said to be S-finite (resp., S-principal) if sM ⊆ F for some
s ∈ S and some finitely generated (resp., principal) submodule F of M. Also, M is called S-Noetherian (resp.,
S-PIR) if each submodule of M is an S-finite (resp., S-principal) module.

In 2016, Ahmed and Sana ([10]) tried to characterize the concept of S-Noetherian modules via a suitable
chain condition and a special kind of maximality. An ascending chain N1 ⊆ N2 ⊆ N3 ⊆ · · · of submodules of
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M is called S-stationary if there exist a positive integer k and s ∈ S such that for each n ≥ k, sNn ⊆ Nk. Let F
be a set of submodules of M. A submodule N ofF is called S-maximal if there exists s ∈ S such that for every
L ∈ F with N ⊆ L, sL ⊆ N. They showed that if every nonempty set of ideals of R has an S-maximal element,
then R is S-Noetherian and the later implies that every increasing sequence of ideals of R is S-stationary.
In 2017, Bilgin , Reyes and Tekir ([4]) characterized S-Noetherian modules over noncommutative rings.
They called a family F of submodules of a right R-module M, S-saturated if for every submodule N of M,
whenever there exist s ∈ S and N0 ∈ F such that Ns ⊆ N0, then N ∈ F. They proved that M is S-Noetherian if
and only if every increasing sequence of submodules of M is S-stationary if and only if every nonempty set
of submodules of M has an S-maximal element if and only if every nonempty S-saturated set of submodules
of M has a maximal element. In [16], Sevim, Tekir and Koc studied the duality of the S-Noetherian concept.
They introduced the S-Artinian rings and finitely S-cogenerated rings. A ring R is called S-Artinian if for
each descending chain {In}n∈N of ideals of R, there exist s ∈ S and k ∈N such that sIk ⊆ In for all n ≥ k.

On the other hand, Ghorbani and colleagues’ studies on uniserial dimension and co-uniserial dimension
of modules ( [7] and [14]) were caused to the definitions of divisibility on chains, [5, 6]. These chain
conditions are related to endomorphism ring of the module. Considering a ring R as a module over itself,
endomorphisms are just the elements of R. So, divisibility on chains of ideals was defined as follows: a ring
R is said to satisfy divisibility on ascending (descending) chain of right ideals if, for every ascending (descending)
chain I1 ⊆ I2 ⊆ I3 ⊆ · · · (I1 ⊇ I2 ⊇ I3 ⊇ · · · ) of right ideals of R, there exists k ∈ N such that, for each i ≥ k,
Ii = xiIi+1 (Ii+1 = xiIi) for some xi ∈ R.

In this paper, we aim to generalize the concept of S-Artinian modules in a similar way. We call a
descending chain N1 ⊇ N2 ⊇ N3 ⊇ · · · of submodules of M weakly S-stationary if there exists k ∈N such that
for each n ≥ k, snNk ⊆ Nn for some sn ∈ S. We say that M is a weakly S-Artinian module whenever every
descending chain of submodules of M is weakly S-stationary. Let F be a set of submodules of M. We say
that N ∈ F is weakly S-minimal in F if for every L ∈ F with L ⊆ N, there exists s ∈ S such that sN ⊆ L. A
submodule N of M is called weakly S-minimal if it is weakly S-minimal in the set of all nonzero submodules
of M. In section 2 we present some necessary and preliminary results. Later, we show that over an integral
domain, weakly S-Artinian on ideals implies S-Noetherian. Moreover, We study conditions under which
weakly S-Artinian implies DCC. In section 3, we consider the case when S ⊆ R is a regular multiplicative set.
We obtain several results in this case. We show that if M satisfies weakly S-Artinian on submodules, then
M has finite uniform dimension. Moreover, for a commutative ring with weakly S-Artinian on ideals, N(R)
is nilpotent. We prove that a semiprime ring R with essential left socle which is a left weakly S-Artinian
ring must be semisimple Artinian. Further, we show that over a right perfect ring, weakly S-Artinian and
Artinian are equivalent.

Throughout this paper, R denotes a unitary ring with 0R , 1R and modules are unitary left modules.
For any undefined notion, we refer the reader to [12].

2. Weakly descending chain condition

Let M be a left R-module and S ⊆ R a multiplicative set. In this section we generalize the notion of
weakly Artinian modules by introducing the concept of weakly S-Artinian modules. We start this section
by introducing the following definitions in order to generalize some known results about weakly Artinian
modules.

Definition 2.1. Let M be a left R-module and S a multiplicative subset of R such that ann(M) ∩ S = ∅. We call a
descending chain N1 ⊇ N2 ⊇ N3 ⊇ · · · of submodules of M weakly S-stationary if there exists k ∈ N such that for
each n ≥ k, snNk ⊆ Nn for some sn ∈ S.

We say that M is a weakly S-Artinian module (or satisfies weakly S-Artinian on submodules) if every
descending chain of submodules of M is weakly S-stationary.

Definition 2.2. According to [16], a commutative ring R is said to be an S-Artinian ring if for every descending
chain of ideals of the form I1 ⊇ I2 ⊇ I3 ⊇ · · · of R, there exist s ∈ S and k ∈N such that sIk ⊆ In for all n ≥ k. We can
generalize this definition to noncommutative setting in a natural way as above.
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Let M be a left R-module and S a multiplicative subset of R. It is clear that

Artinian⇒ S-Artinian⇒weakly S-Artinian.

Our next Examples (2.3, 2.6 and 2.7) prove that the reverse is not true in general.

Example 2.3. Let F be a field, let D be an integral Noetherian domain which is not a field and let R = D × F. Let
0 , a ∈ D be an element of D which is not a unit. As D is an integral domain, by the Krull Intersection Theorem we
have: ⋂

n∈N

anD = 0.

Thus
aD × {0} ⊃ a2D × {0} ⊃ · · · ⊃ anD × {0} ⊃ · · ·

is a strictly descending chain of ideals of R. Thus, R is not an Artinian ring. Let S = {(r, t)| r ∈ D, 0 , t ∈ F}. S is a
multiplicative subset of R. Put s = (0, 1) then for any descending chain of ideals (In)n∈N of R, there exists n0 such that

sIn0 ⊆ In

for all n ≥ n0. Hence, R is S-Artinian ring.

Definition 2.4. Let F be a set of submodules of M and S a multiplicative subset of R such that ann(M)∩ S = ∅.We
say that N ∈ F is weakly S-minimal in F if for every L ∈ F with L ⊆ N, there exists s ∈ S such that sN ⊆ L.

A submodule N of M is called weakly S-minimal if it is weakly S-minimal in the set of all nonzero submodules
of M.

Proposition 2.5. Let M be a uniserial left R-module and S ⊆ R a multiplicative subset of R such that ann(M)∩S = ∅.

Assume that
⋂
s∈S

RsM = 0. Then every submodule of M is weakly S-minimal. In particular M is a weakly S-Artinian

module.

Proof. Let A be a submodule of M. We show that A is weakly S-minimal. Let B be a submodule of M such
that 0 ( B ⊆ A. Since B , 0, there exists s ∈ S such that B * RsM; so sA ⊆ RsM ⊆ B. This shows that every
submodule of M is weakly S-minimal, and hence M is a weakly S-Artinian module.

Example 2.6. Let D be an integral domain and S = D\{0}. Since for each ideals 0 ( I ⊆ J of D, bJ ⊆ I, for some
0 , b ∈ I, every ideal of D is weakly S-minimal. Therefore D is a weakly S-Artinian domain.

Note that the ring Z does not satisfy the S-Artinian property, where S = Z\{0}. Indeed, the chain 2Z ⊇ 22Z ⊇
23Z ⊇ · · · is not S-stationary.

Example 2.7. Let D be a PID, p a prime element of D and S = {pn
| n ∈ Z,n ≥ 0}. Then S is a multiplicative subset

of Dp. We show that ∩n≥0pnDp = (0). Assume that ∩n≥0pnDp , (0) and let x ∈ ∩n≥0pnDp. Then for each n ≥ 0,
x ∈ pnDp which implies that for each n ≥ 0, pnDp = pn+1Dp; so pn

∈ pn+1Dp. Write pn = pn+1 a
s for some a ∈ D and

s ∈ D\pD. This implies that s = pa ∈ pD, a contradiction. Hence ∩n≥0pnDp = (0).
Now, since D is a Prüfer domain, Dp is a valuation domain; so by Proposition 2.5, Dp is a weakly S-Artinian

domain. But Dp does not satisfy the S-Artinian property, because the chain Dp ⊇ pDp ⊇ p2Dp ⊇ · · · is not
S-stationary.

Proposition 2.8. Let S be a multplicative subset of R such that ann(M) ∩ S = ∅. If M is a weakly S-minimal left
R-module, then M is indecomposable. In particular, if M is faithful, then M is indecomposable.

Proof. Assume M = M1 ⊕M2 such that M1 , 0 and M2 , 0. Since M1 ⊆ M1 ⊕M2, there exists s1 ∈ S such
that s1(M1 ⊕M2) ⊆ M1. Then s1M2 ⊆ M2 ∩M1 = 0, and so s1M2 = 0. Similarly, there exists s2 ∈ S such that
s2M1 = 0. Set s := s1s2. Then s1s2(M1 ⊕M2) ⊆ s1s2M1 + s1s2M2 = 0. This implies that s1s2 ∈ S ∩ annR(M), a
contradiction. Hence M is indecomposable.
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Let R be a ring and S a multiplicative subset of R. It is well known that if R is an S-Artinian ring, then
S−1R is an Artinian ring ([16]). Our next Proposition is obtained by relaxing the S-Artinian property.

Proposition 2.9. Let R be a ring and S a multiplicative subset of R. If R is a weakly S-Artinian ring, then S−1R is
Artinian.

Proof. Let S−1I1 ⊇ S−1I2 ⊇ S−1I3 ⊇ · · · be a descending sequence of ideals of S−1R. For each n ≥ 1, put
J = I1 ∩ I2 ∩ · · · ∩ In. Then J1 ⊇ J2 ⊇ J3 ⊇ · · · is a descending sequence of ideals of R. Since R is a weakly
S-Artinian ring, there exists a k ∈N such that for each n ≥ k, sn Jk ⊆ Jn for some sn ∈ S; so

S−1(sn Jk) = S−1 Jk ⊆ S−1 Jn ⊆ S−1 Jk,

which implies that for each n ≥ k, S−1 Jn = S−1 Jk. But

S−1 Jn = S−1(I1 ∩ I2 ∩ · · · ∩ In) = S−1I1 ∩ S−1I2 ∩ · · · ∩ S−1In = S−1In,

since the sequence (S−1In)n is descending. Hence for each n ≥ k, S−1In = S−1Ik, which indicate that S−1R is
an Artinian ring.

Since every S-Artinian ring is a weakly S-Artinian ring, we regain the following result

Corollary 2.10. Let R be a ring and S a multiplicative subset of R. If R is an S-Artinian ring, then S−1R is an
Artinian ring

The next proposition collects some properties of the weakly S-Artinian concept.

Proposition 2.11. Let M be a left R-module. Then the following statements hold.

1. Let S1 ⊆ S2 be tow multiplicative subsets of R. If M is a weakly S1-Artinian module, then M is also a weakly
S2-Artinian module.

2. Let S be the saturation of S. Then M is a weakly S-Artinian module if and only if M is weakly S-Artinian.
3. Let S be a finite regular multiplicative subset of R (This is also the case if S ⊆ U(R)). Then M is a weakly

S-Artinian module if and only if M is an Artinian module.

Proof. (1). This assertion is clear.
(2). The only if part is obvious. For if part, let N1 ⊇ N2 ⊇ N3 ⊇ · · · be a chain of submodules of M. Since

M is weakly S-Artinian, there exists k ∈N such that for each n ≥ k, tnNk ⊆ Nn for some tn ∈ S. Let n ≥ k and
let sn ∈ S be a multiple of tn. Thus

snNk ⊆ tnNk ⊆ Nn.

Hence M is a weakly S-Artinian module.
(3). Follows from [10, Example 3.2].

Proposition 2.12. Let M and M′ be left R-modules, S a multiplicative subset of R and f : M → M′ a surjective
module homomorphism. Suppose that ann(M′

) ∩ S = ∅. If M is a weakly S-Artinian module, then M′ is a weakly
S-Artinian module.

Proof. Since ann(M′

) ∩ S = ∅ and f is an epimorphism, then ann(M) ∩ S = ∅. Consider a descending chain
of submodules N′

1 ⊇ N′

2 ⊇ · · · ⊇ N′

n ⊇ · · · of M′

, then f−1(N′

1) ⊇ f−1(N′

2) ⊇ · · · ⊇ f−1(N′

n) ⊇ . . . is a descending
chain of submodules of M. Since M is a weakly S-Artinian module, there exists k ∈ N such that for each
n ≥ k, sn f−1(N′

k) ⊆ f−1(N′

n). Now, since f is an epimorphism, f (sn f−1(N′

k)) = sn( f ( f−1(N′

k))) = snN′

k. Hence
snN′

k ⊆ N′

n for all n ≥ k, therefore M′

is a weakly S-Artinian module.

Corollary 2.13. Let M be a left R-module, S a multiplicative subset of R and N a proper submodule of M. Suppose
that S ∩ (N :R M) = ∅. If M is a weakly S-Artinian module, then the quotient module M/N is a weakly S-Artinian
module.
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Proof. Consider the canonical epimorphism Π : M→M/N. Since S∩(N :R M) = ∅,we obtain S∩ann(M/N) =
∅. Hence, by Proposition 2.12, M/N is a weakly S-Artinian module.

Theorem 2.14. Let M be a left R-module, N a proper submodule of M and S a multiplicative subset of R. Suppose
that S ∩ (N :R M) = ∅ and S ∩ ann(N) = ∅. Then the following assertions are equivalent.

1. M is a weakly S-Artinian module.
2. N and M/N are both a weakly S-Artinian modules.

Proof. (1)⇒ (2) Follows from Corollary 2.13 and the fact that any descending chain of submodules of N is
a descending chain of submodules of M.

(2)⇒ (1) Let L1 ⊇ L2 ⊇ L3 ⊇ · · · be a chain in M. By assumption, there exists k ∈ N such that for each
n ≥ k, sn(Lk + N)/N ⊆ (Ln + N)/N and s′n(N ∩ Lk) ⊆ N ∩ Ln for some sn, s

′

n ∈ S. We show that for each n ≥ k,
s′nsnLk ⊆ Ln. Since Lk ⊆ Lk + N, snLk ⊆ sn(Lk + N) ⊆ Ln + N. Let x ∈ Lk. Then snx ∈ Ln + N and so there exists
l ∈ Ln and y ∈ N such that snx = l + y. Hence snx − l ∈ N ∩ Lk and then s′n(snx − l) ∈ N ∩ Ln. Thus s′nsnx ∈ Ln,
as we wanted.

Corollary 2.15. Let S be a multiplicative subset of R. Then R is a weakly S-Artinian ring if and only if for each
n ∈N∗, Rn is a weakly S-Artinian module.

Proof. Assume that R is a weakly S-Artinian ring. We will show this via induction. Let P(n) be the property
that Rn is a weakly S-Artinian module. For n = 1, R is a weakly S-Artinian module if and only if R is a
weakly S-Artinian ring. Suppose that the property holds for 1 ≤ n. Let’s prove P(n + 1). The module Rn

is isomorphic to the submodule N = Rn
× {0}. Hence, by the induction hypothesis and Proposition 2.12, N

is weakly S-Artinian. Clearly Rn+1/N ' R. Moreover, (N :R Rn+1) = {0}. Hence, by Corollary 2.13, Rn+1/N
is weakly S-Artinian. Thus by Theorem 2.14, Rn+1 is a weakly S-Artinian module. The other implication is
obvious.

Corollary 2.16. Let R be a ring, S a mutiplicative subset of R and M a finitely generated left R-module. Suppose
that ann(M) ∩ S = ∅. If R is a weakly S-Artinian ring, then M is weakly S-Artinian.

Proof. As M is a finitely generated R-module, there exist n ∈ N∗ and a surjective module homomorphism
f : Rn

−→M, such that Rn/Ker( f ) 'M. Since ann(M)∩ S = ∅ and f is an epimorphism, S∩ (ker( f ) : Rn) = ∅.
Hence by Corollary 2.13, Rn/Ker( f ) is a weakly S-Artinian module. Therefore M is weakly S-Artinian.

Definition 2.17. Let M be a left R-module and s ∈ R. We say that s is a nonzero divisor for M, if for each m ∈ M,
sm = 0 implies that m = 0. A regular multiplicative set S over M is a multiplicative subset of R such that for every
s ∈ S, s is a nonzero divisor for M.

Corollary 2.18. Let R be a weakly S-Artinian commutative ring, S a mutiplicative subset of R and M an S-finite
R-module. Suppose that S is regular over M. Then M is a weakly S-Artinian module.

Proof. Since M is S-finite, there exist an s ∈ S and a finitely generated submodule F of M such that sM ⊆ F.
Regularity of S implies that M � sM ⊆ F; so M is a weakly S-Artinian module.

In the next proposition we give an equivalent condition for a module to satisfy weakly S-Artinian on
submodules.

Proposition 2.19. Let R be a ring, S a mutiplicative subset of R and M a left R-module such that ann(M) ∩ S = ∅.
Then the following assertions are equivalent:

1. M is a weakly S-Artinian module.
2. Every nonempty set of submodules of M has a weakly S-minimal element.
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Proof. (1) ⇒ (2) Let F be a nonempty set of submodules of M with no weakly S-minimal element. Let
N1 ∈ F . Since N1 is not weakly S-minimal in F , there exists N2 ∈ F such that N2 ⊆ N1 and for each s ∈ S,
sN1 * N2. Again N2 ∈ F is not weakly S-minimal; so there exists N3 ∈ F such that N3 ⊆ N2 and for each
s ∈ S, sN2 * N3. By continuing this way, we obtain a chain N1 ⊇ N2 ⊇ N3 ⊇ · · · which is not weakly
S-stationary. This shows that M does not satisfy weakly S-Artinian on submodules.

(2)⇒ (1) Let N1 ⊇ N2 ⊇ N3 ⊇ · · · be a chain of submodules of M. SetF = {Ni|i ∈N∗}. By the assumption,
F has a weakly S-minimal element, say Nk for some k ∈N. Clearly for every n ≥ k, there exists sn ∈ S such
that snNk ⊆ Nn, as we wanted.

Corollary 2.20. Let M be a left R-module and S be a multiplicative subset of R such that ann(M) ∩ S = ∅. If M
is a weakly S-Artinian module, then M contains an essential submodule which is a direct sum of weakly S-minimal
submodules.

Proof. Let M , 0. By Proposition 2.19, M contains a weakly S-minimal submodule. Let F be the set of all
independent set of weakly S-minimal submodules of M with ⊆ as an order relation. Clearly F , 0 and
by Zorn’s Lemma, we can find a maximal independent family of weakly S-minimal submodules of M, say
{Mα}α∈Λ. Consider the submodule

⊕
α∈Λ Mα. Let N be a nonzero submodule of M. Then by Proposition

2.19, N contains a weakly S-minimal submodule, say K. By maximality of {Mα}α∈Λ, {Mα}α∈Λ ∪ {K} is not
independent; so K ∩ (

⊕
α∈Λ Mα) , 0. Hence N ∩ (

⊕
α∈Λ Mα) , 0. This shows that

⊕
α∈Λ Mα is essential in

M.

According to [4], a proper right ideal P of R is a completely prime right ideal if for any a, b ∈ R satisfying
aP ⊆ P and ab ∈ P we have a ∈ P or b ∈ P.

Lemma 2.21. [4, Theorem 2.7] Let S be a multiplicative subset of a ring R, and let M be a nonzero S-Noetherian
left R-module. If every element of S is a non-zero-divisor for M, then M has a point annihilator that is a completely
prime left ideal. In particular, if R is commutative, then R has an associated prime.

Corollary 2.22. Let M be a left R-module satisfying weakly S-Artinian on submodules, where S is a regular mul-
tiplicative subset of R. Then M has a point annihilator that is a completely prime left ideal. In particular, if R is
commutative, then R has an associated prime.

Proof. By Proposition 2.19, M that is a completely prime left ideal contains a nonzero submodule K such
that every submodule of K is S-principal. Thus K is S-Noetherian and whence by Lemma 2.21, K has a point
annihilator.

Theorem 2.23. Let S ⊆ R be a multiplicative set. Consider T = Matn(R) and S′ = {sIn | s ∈ S} (In is the identity
matrix). Then S′ is a multiplicative subset of T and R is a weakly S-Artinian ring if and only if T is a left weakly
S′ -Artinian ring.

Proof. Suppose that TT( T as a left T-module) is a weakly S′ -Artinian module. Let A1 ⊇ A2 ⊇ · · · be a chain
in R(n) as a left R-module. By R(n) we mean the direct sum of n copies of R. Then A(n)

1 ⊇ A(n)
2 ⊇ · · · is a chain

in TT and so there exists k ∈ N such that, for each j ≥ k there exists s j ∈ S with s jInA(n)
k ⊆ A(n)

j . Hence, for

each j ≥ k, s jAk ⊆ A j. Thus RR(n) is a weakly S-Artinian module and so does RR.
Conversely, assume RR is a weakly S-Artinian module. Let A1 ⊇ A2 ⊇ · · · be a chain in TT. For

each i ∈ {1, · · · ,n}, RR(n)
⊇ A1Eii ⊇ A2Eii ⊇ · · · . We can find k ∈ N such that, for each i ∈ {1, · · · ,n} and

for each j ≥ k there exists si j ∈ S with si jAkEii ⊆ A jEii. Let j ≥ k. Then s1 jAkE11 ⊆ A jE11 and similarly
s2 jAkE22 ⊆ A jE22, · · · , snjAkEnn ⊆ A jEnn. Set s j = s1 js2 j · · · snj. Thus, for each i ∈ {1, · · · ,n}, s jAkEii ⊆ A jEii.
Hence

s jInAk = s jAkIn =

n∑
i=1

s jAkEii ⊆

n∑
i=1

A jEii = A jIn = A j.

This shows that TT is a weakly S′ -Artinian module.
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Proposition 2.24. Let A and B be two rings with two multiplicative subsets S ⊆ A and T ⊆ B such that annA(A ⊕

M)∩ S = ∅ where M is an (A,B)-bimodule and A⊕M is a left A-module. Consider the triangular ring R =

(
A M
0 B

)
and the multiplicative set U =

(
S 0
0 T

)
⊆ R. Then R is a left weakly U-Artinian ring if and only if A⊕M is a weakly

S-Artinian module and B is a left weakly T-Artinian ring.

Proof. Suppose RR is a weakly U-Artinian module. Let I1 ⊇ I2 ⊇ · · · be a chain of submodules of A ⊕M.
Then I1 ⊕ 0 ⊇ I2 ⊕ 0 ⊇ · · · is a chain in RR. So, there exists k ∈ N such that for each n ≥ k, un(Ik ⊕ 0) ⊆ In ⊕ 0

for some un =

(
sn 0
0 tn

)
∈ U. Hence for every n ≥ k, snIk ⊆ In. Now, let J1 ⊇ J2 ⊇ · · · be a chain in BB. Then(

0 M
0 J1

)
⊇

(
0 M
0 J2

)
⊇ · · · is a chain in RR. So there exists k ∈N such that for each n ≥ k, un

(
0 M
0 Jk

)
⊆

(
0 M
0 Jn

)
for some un =

(
sn 0
0 tn

)
∈ U. Thus for each n ≥ k, tn Jk ⊆ Jn.

Conversely, suppose that A ⊕M is a weakly S-Artinian module and BB is a weakly T-Artinian module. Let
I1 ⊇ I2 ⊇ · · · be a chain of submodules of RR. For each i ∈ N, Ii = I(1)

i ⊕ I(2)
i , where I(1)

i ≤ A ⊕M and I(2)
i ≤ BB

with MI(2)
i ≤ I(1)

i . So I(1)
1 ⊇ I(1)

2 ⊇ · · · is a chain in A ⊕M and I(2)
1 ⊇ I(2)

2 ⊇ · · · is a chain in BB. By assumption,
there exists k ∈ N such that for each n ≥ k, snI(1)

k ⊆ I(1)
n and tnI(2)

k ⊆ I(2)
n for some sn ∈ S and tn ∈ T. Hence for

each n ≥ k,
(
sn 0
0 tn

)
Ik ⊆ In, as we wanted.

In the following, we investigate weakly S-Artinian on ideals for direct product of rings.

Proposition 2.25. Let S1,S2, · · · ,Sn be multiplicative subsets of rings R1,R2, · · · ,Rn, respectively. Set R =
∏n

i=1 Ri
and S =

∏n
i=1 Si. Then the following conditions are equivalent.

1. R is a weakly S-Artinian ring.
2. For each i ∈ {1, · · · ,n}, Ri is a weakly Si-Artinian ring.

Proof. (1)⇒ (2) It is straight forward.
(2) ⇒ (1) Let I1 ⊇ I2 ⊇ I3 ⊇ · · · be a chain of ideals of R. Since each Ii = J(i)

1 × J(i)
2 × · · · × J(i)

n we get a chain
J(1)
i ⊇ J(2)

i ⊇ · · · ⊇ J(n)
i . By assumption Ri is an Si-Artinian ring. So there exist ki such that for all m ≥ ki there

exist ski ∈ Si such that ski J
(ki)
i ⊆ J(m)

i . Put k = max{k1, k2, · · · , kn} and sk = (sk1 , sk2 , · · · , skn ). Then for all m ≥ k,
skIk ⊆ Im for some sk ∈ S and R is weakly S-Artinian.

Example 2.26. Let R =
∏
∞

i=1 Ri, where Ri = Z for all i ∈ N. Also let S =
∏
∞

i=1(Ri \ {0}) which is a multiplicative
set in R. Consider the following chain of left ideals of R

∞⊕
i=1

Ri ⊇

∞⊕
i=2

Ri ⊇

∞⊕
i=3

Ri ⊇ · · ·

If there exist k ∈N and (sn)∞n=1 ∈ S with (sn)∞n=1(
⊕
∞

i=k Ri) ⊆
⊕
∞

i=k+1 Ri, then

skRk ⊆ Rk ∩ (
∞⊕

i=k+1

Ri) = 0

and whence skZ = 0 which is a contradiction. So R does not satisfy weakly S-Artinian on ideals.

Theorem 2.27. Let D be an integral domain and S ⊆ D be a saturated multiplicative set. Then the following
assertions are equivalent.
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1. D is a weakly S-Artinian ring.
2. S = D \ {0}.

Proof. (1)⇒ (2) Consider the chain aD ⊇ a2D ⊇ a3D · · · of ideals of D, where a ∈ D \ {0}. Since D is a
weakly S-Artinian ring, there exists k ∈ N such that for each n > k, snakD ⊆ anD for some sn ∈ S. Specially
sk+1akD ⊆ ak+1D. Then there exists d ∈ D such that sk+1ak = ak+1d. Thus ak(sk+1 − ad) = 0; so sk+1 = ad, and
then ad ∈ S. By assumption S is saturated which implies that a ∈ S. Therefore S = D \ {0}.

(2)⇒ (1) Follows from Example 2.6.

Corollary 2.28. Let D be an integral domain and S be a saturated multiplicative subset of D. If D is a weakly
S-Artinian domain, then D is an S-Noetherian domain.

Proof. By Theorem 2.27, S = D \ {0} and it is the same idea as Example 2.5, so D is S-Noetherian.

The following example shows that the converse of Corollary 2.28 is not true in general.

Example 2.29. Let D = Z and S = {2n
|n ∈ N}. Then D does not satisfy weakly S-Artinian on ideals, since the

chain 3Z ⊇ 32Z ⊇ 33Z ⊇ · · · is not weakly S-stationary. But D is Noetherian, and so it is S-Noetherian for all
multiplicative subset S ⊆ D, specially for S = {2n

|n ∈N}.

Proposition 2.30. Let R be a weakly S-Artinian ring, where S is a multiplicative subset of R. If every left ideal I of
R contains a left regular element, then RR is weakly S-minimal.

Proof. Let 0 , I ≤ RR. Then I contains a left regular element, say x. Consider the chain I ⊇ Rx ⊇ Ix ⊇ Rx2
⊇

Ix2
⊇ · · · . By assumption there exists k ∈ N such that sRxk

⊆ Ixk for some s ∈ S. Let r ∈ R. Then srxk
∈ Ixk

and so there exists a ∈ I such that srxk = axk. Thus sr = a ∈ I. So sR ⊆ I. This shows that RR is weakly
S-minimal.

In Example 2.7 we show that a ring with weakly S-Artinian on ideals need not be S-Artinian. Here we
provide conditions under which weakly S-Artinian and S-Artinian are equivalent.

Proposition 2.31. Let S ⊆ R be a finite multiplicative set and M be a left R-module such that ann(M)∩S = ∅. Then
M satisfies weakly S-Artinian on submodules if and only if M is S-Artinian.

Proof. (⇐) Is clear.
(⇒) Let S = {s1, s2, s3, · · · , st} and set s = s1s2 · · · st. Let N1 ⊇ N2 ⊇ N3 ⊇ · · · be a chain of submodules of

M. Put A = {Ni | i ∈N}. A is nonempty; so by assumption, it contains a weakly S-minimal element, say Nk.
For each n ≥ k, there exists sn ∈ S such that snNk ⊆ Nn which implies sNk ⊆ Nn. So M is S-Artinian.

In the following, we investigate the relationship between Artinian and weakly S-Artinian properties.
First we need the following Lemma.

Lemma 2.32. Let S ⊆ R be a multiplicative set. If I is a weakly S-minimal left ideal of R, then every left ideal of R
contained in I is weakly S-minimal.

Proof. Let K ⊆ J ⊆ I be a chain of left ideals of R. Since I is weakly S-minimal, there exists s ∈ S such that
sI ⊆ K, and whence sJ ⊆ sI ⊆ K. Therefore, J is weakly S-minimal.

Theorem 2.33. Let M be a left R-module and S a multiplicative subset of R such that ann(M) ∩ S = ∅. Then the
following assertions are equivalent.

1. M is an Artinian module.
2. M is weakly S-Artinian and every descending chain of weakly S-minimal submodules stops.

Proof. (1)⇒ (2) This implication is clear.
(2) ⇒ (1) Suppose that A is a nonempty set of submodules of M which has no minimal element. By

assumption,A has a weakly S-minimal element, say N0. Since N0 is not minimal, there exists N1 ∈ A with
N0 % N1 and clearly N1 is not minimal. By continuing this way, we have a chain N0 % N1 % N2 % · · · which
is not stationary. Since N0 is weakly S-minimal, by Lemma 2.32, all submodules in this chain are weakly
S-minimal and this is a contradiction. Therefore M is Artinian.
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3. Weakly S-Artinian with regular multiplicative set

In this section we focus on modules with weakly S-Artinian on submodules, where S ⊆ R is a regular
multiplicative set over M.

Definition 3.1. Let M be an R-module. We say that f ∈ EndR(M) is essential in M if the intersection of all
submodules of M with f (M) is nonzero.

Proposition 3.2. Let S be a regular multiplicative subset of R and M be a weakly S-minimal left R-module. Then
the following holds.

1. M is uniform.
2. Every nonzero endomorphism of M is an essential monomorphism.
3. If M contains a minimal submodule and S ⊆ cent(R), then M is simple. (cent(R) denotes the center of the ring

R.)

Proof. (1). Let A and B be two nonzero submodules of M. Then there exists s ∈ S such that sM ⊆ A and so
sB ⊆ A. Since sB , 0 and sB ⊆ A ∩ B, we have A ∩ B , 0. Hence M is an uniform R-module.

(2). Let 0 , f ∈ EndR(M). If Ker( f ) , 0, then there exist s ∈ S such that sM ≤ Ker( f ). So s f (M) = f (sM) = 0.
By regularity of S, f (M) = 0, a contradiction. Hence Ker( f ) = 0. Now, by (i), RM is uniform and so f (M) is
essential in M.

(3). If A is a minimal submodule of M, then there exists s ∈ S such that sM ⊆ A, and so M � sM = A.

Corollary 3.3. Let S be a regular multiplicative subset of R and M be a weakly S-minimal R-module. If S ⊆ cent(R)
and M is injective, then M is simple.

Proof. Let A be a nonzero submodule of M. Then there exists s ∈ S such that sM ⊆ A and whence
M � sM ⊆ A. Since M is injective, sM is a direct summand of A. By Proposition 3.2, M is uniform. So
sM = A. Thus A is injective and then A is a direct summand of M. Again, Proposition 3.2 implies that
A = M.

The following example shows that if S is a non-regular multiplicative set in R, then weakly S-Artinian
on left ideals does not imply finite uniform dimension for RR.

Example 3.4. Let T = F[x1, x2, · · · ] and I = 〈xix j | i , j〉, where F is an arbitrary field. Consider the ring R = T/I
and the multiplicative subset S = {x1

i
| i ∈ N ∪ {0}} ⊆ R. Set Ai = Rxi for every i ∈ N. Let A =

∑
∞

i=2 Rxi.
With attention to the structure of Ai’s we can conclude that A =

⊕
∞

i=2 Ai. Now, x1A = 0 and whence A is weakly
S-minimal.

But for a regular multiplicative set over M we have following Proposition.

Proposition 3.5. Let M be a left R-module with weakly S-Artinian on submodules, where S ⊆ R is a regular
multiplicative set. Then M has finite uniform dimension.

Proof. Suppose to the contrary that M does not have finite uniform dimension. Then there exists a family of
independent nonzero submodules of M, say {N1,N2,N3, · · · }. Consider the following chain of submodules
of M:

∞⊕
i=1

Ni ⊇

∞⊕
i=2

Ni ⊇

∞⊕
i=3

Ni ⊇ · · ·

Since M satisfies weakly S-Artinian on submodules, there exists k ∈N such that for each n ≥ k, sn(
⊕
∞

i=k Ni) ⊆⊕
∞

i=n Ni for some sn ∈ S. So

sk+1Nk ⊆ Nk ∩ (
∞⊕

i=k+1

Ni) = 0

Since S is regular over M, we must have Nk = 0, a contradiction. So M has finite uniform dimension.
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According to [12], an R-module M is said to be co-hopfian if every injective endomorphism of M is an
isomorphism. It is well-known that Artinian modules are co-hopfian. A module with weakly S-Artinian
on submodules need not to be co-hopfian. Indeed, Let D = Z and S = D \ {0}, then S is a multiplicative
subset of D. By Example 2.6, D is a weakly S-Artinian ring. But, clearly D is not co-hopfian. The following
corollary shows that in the case when M is quasi-injective, weakly S-Artinian on submodules then that M
is co-hopfian.

Corollary 3.6. Let M be a quasi-injective module with weakly S-Artinian on submodules, where S ⊆ R is a regular
multiplicative set. Then M is co-hopfian.

Proof. By Proposition 3.5, M has finite uniform dimension and By [9, Example 1.8], every R-module with
finite uniform dimension is weakly co-hopfian. On the other hand by [9, Proposition 1.4], a quasi-injective
weakly co-hopfian module is co-hopfian. Hence M is co-hopfian.

Theorem 3.7. Let R be a commutative ring and S be a regular multiplicative subset of R. If R is a weakly S-Artinian
ring, then N(R) is nilpotent.

Proof. Put N = N(R), consider the chain N ⊇ N2
⊇ N3

⊇ · · · . Since R is a weakly S-Artinian ring, there exists
k ∈ N such that for each n ≥ k, snNk

⊆ Nn for some sn ∈ S. We show that Nk = 0. Suppose that Nk , 0.
Consider the set A = {I ⊆ R | INk , 0} of ideals of R. R ∈ A, so A is a nonempty set. By assumption, A
contains a weakly S-minimal element, say C. Then CNk , 0; so there exists x ∈ C such that xNk = (xR)Nk , 0.
Also, (xN)Nk = xNk+1. On the other hand sk+1Nk

⊆ Nk+1 and so sk+1xNk
⊆ xNk+1. If sk+1xNk = 0, then by

regularity of S we have xNk = 0 and this is a contradiction. So sk+1xNk , 0 and whence xNk+1 , 0. Thus
xN ∈ A. We have xN ⊆ xR ⊆ C. Since C is weakly S-minimal, by Lemma 2.32, xR is weakly S-minimal
too. So there exists t ∈ S such that txR ⊆ xN. Then there exists a ∈ N such that tx = xa. Since a ∈ N, there
exist m ∈ N such that am = 0. Therefore txa = xa2, and so txa2 = xa3, ..., txam−1 = xam = 0. So txam−1 = 0. By
regularity of S, xam−1 = 0 which implies that txam−2 = 0. By continuing this way we have tx = 0, and then
x = 0, a contradiction. So the result follows.

Theorem 3.8. Let R be a ring with weakly S-Artinian on left ideals, where S ⊆ R is a multiplicative set. Assume
N(R) = 0 and R has essential left socle. Then R is semisimple Artinian.

Proof. We show that every left ideal I of R is generated by an idempotent. Let I be a nonzero left ideal of R.
Then I contains a minimal left ideal A and since N(R) = 0, A2 , 0. By [17, Proposition 2.7], every minimal
left ideal is either nilpotent or generated by an idempotent. So there exists a nonzero idempotent in I and
the following set is nonempty

F = {annl(e) | e2 = e ∈ I \ {0}}

By assumption F has a weakly S-minimal element, say annl( f ) with f 2 = f ∈ I \ {0}. Suppose that
I ∩ annl( f ) , 0. Then there is a minimal left ideal in this intersection which again is generated by an
idempotent 1, i.e. 0 , 1 ∈ I ∩ annl( f ). Putting h = f + 1 − f1 we get h2 = h ∈ I \ {0} and h f = f . This
means annl(h) ⊆ annl( f ). By weakly S-minimality of annl( f ), there is an s ∈ S such that s(annl( f )) ⊆ annl(h).
Then s1 ∈ annl(h) and so s1h = 0. Since S is right regular, we have 1h = 0 which is a contradiction. So
I ∩ annl( f ) = 0. Now, for every a ∈ I, we have (a − a f ) f = 0 and then a − a f ∈ I ∩ annl( f ) = 0, which means
I = R f .

The following example shows that “weakly S-Artinian” is necessary in Theorem 3.8.

Example 3.9. Consider the ring R =
∏
∞

i=1 Fi, where Fi is a field for all i ∈ N. Then R is a semiprime ring with
essential socle which is not semisimple Artinian. Using an argument similar to Example 2.26, we can show that R
does not satisfy weakly S-Artinian on ideals for the multiplicative set S =

∏
∞

i=1(Fi \ {0}) ⊆ R.

Lemma 3.10. Let S ⊆ R be a regular multiplicative set. Assume R satisfies weakly S-Artinian on left ideals. Then
R satisfies ACC on right annihilators.
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Proof. Let I1 ⊇ I2 ⊇ I3 ⊇ · · · be a chain in R such that for every j ∈ N, I j = annl(A j) for some A j ⊆ R. Since
R is a weakly S-Artinian ring, there exists k ∈ N such that for each n ≥ k, snIk ⊆ In for some sn ∈ S. Let
n ≥ k. Then snIkAn = 0, and by regularity of S, we have IkAn = 0 which implies Ik ⊆ In. Therefore In = Ik.
Thus R satisfies DCC on left annihilators. But according to [13, Remark 6.57], DCC on left annihilators is
equivalent to ACC on right annihilators. Thus R satisfies ACC on right annihilators.

According to [12], a ring is called left Goldie if it has finite uniform dimension as a left module and
satisfies ACC on left annihilators.

Corollary 3.11. Let S be a regular multiplicative subset of R. If R satisfies weakly S-Artinian on left and right ideals,
then R is left and right Goldie.

Proof. Since R satisfies weakly S-Artinian on left and right ideals, in the situation of Lemma 3.10, we get
that R satisfies ACC on left and right annihilators. Then by Proposition 3.5, R is left and right Goldie.

The following example shows that the converse of Corollary 3.11 does not true in general.

Example 3.12. By Theorem 2.27, every integral domain D with a saturated multiplicative subset S , D \ {0} does
not satisfy weakly S-Artinian on ideals. But, D is a Goldie ring.

Corollary 3.13. Assume that R is a weakly S-Artinian ring, where S ⊆ R is a regular multiplicative set. Then Z(RR)
is a nilpotent ideal. (Z(RR) is the right singular ideal of R.)

Proof. By Lemma 3.10, R satisfies ACC on right annihilators and by [13, Theorem 7.15], in a ring with ACC
on right annihilators, the right singular ideal is nilpotent.

Corollary 3.14. Let R be a semiprime ring with weakly S-Artinian on left and right ideals, where S is a multiplicative
subset of R. Then the maximal right quotient ring of R is semisimple Artinian.

Proof. By Corollary 3.13, R is a right nonsingular ring and by Proposition 3.5, RR has finite uniform dimen-
sion. Now, by [8, Theorem 3.17], the maximal right quotient ring of finite dimensional right nonsingular
ring is semisimple Artinian.

Recall from [15] that a ring R is quasi-Frobenius if it is left and right Artinian and left and right self-injective.

Corollary 3.15. Let R be a left self-injective ring with weakly S-Artinian on left ideals, where S is a regular
multiplicative subset of R. Then R is quasi-Frobenius.

Proof. By Lemma 3.10, R satisfies ACC on right annihilators. But by [15, Theorem 1.50], every right or left
self-injective ring with ACC on right or left annihilators is quasi-Frobinius.

Recall from [12] that a ring R is called right perfect if R/J(R) is semisimple Artinian and J(R) is a right
T-nilpotent ideal (a T-nilpotent ideal I, is an ideal where for any sequence of elements {a1, a2, a3, ...} ⊆ I, there
exists an integer n ≥ 1 such that an · · · a2a1 = 0).

Lemma 3.16. [2, Proposition 29.1] Let R have the maximum condition for right annihilators. If I is a right
T-nilpotent one sided ideal, then I is nilpotent.

Theorem 3.17. Let R be a right perfect ring and S ⊆ R be a regular multiplicative set. The following assertions are
equivalent.

1. R is a left weakly S-Artinian ring.
2. R is left Artinian.
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Proof. (2)⇒ (1) Obvious.
(1) ⇒ (2) Lemma 3.10 implies that R satisfies ACC on right annihilators. By Lemma 3.16, J := J(R) is

nilpotent; so there exists n ∈N such that Jn = 0. Consider the chain

R ⊇ J ⊇ J2
⊇ · · · ⊇ Jn−1

⊇ Jn = 0

Let i ∈ {0, 1, 2, · · · ,n − 1}. Then R
Ji+1 is a left R-module with weakly S-Artinian on submodules. Hence

by Proposition 3.5, R
Ji+1 has finite uniform dimension as an R-module. Ji

Ji+1 is an R
J −module. Thus Ji

Ji+1 is

a semisimple R
J −module and so a semisimple R-module. We conclude that Ji

Ji+1 is a finitely generated

semisimple R-module, since R
Ji+1 has finite uniform dimension. Therefore Ji

Ji+1 is an Artinian left R-module.
Now, going above in the chain we get that R/J is Artinian and since J is nilpotent, R is left Artinian.
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