Filomat 35:15 (2021), 5209–5214 https://doi.org/10.2298/FIL2115209H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Points of Openness of Some Mappings

Ľubica Holá^a, Alireza Kamel Mirmostafaee^b

^aAcademy of Sciences, Institute of Mathematics, Štefánikova 49, 81473 Bratislava, Slovakia ^bDepartment of Pure Mathematics, The Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P.O.Box 1159, Mahhad 91775, Iran

Abstract. Let *X* and *Y* be topological spaces and $f : X \to Y$ be a continuous function. We are interested in finding points of *X* and *Y* at which *f* is open. We will show that if *X* is developable, the set of points of openness of *f* in *X* is a G_{δ} subset of *X*. If *X* is developable and *f* is closed, then the set of points of openness of *f* in *Y* is a G_{δ} subset of *Y*. These will extend some results of *S*. Levi.

1. Introduction

Let *X* and *Y* be topological spaces. Let us recall that $f : X \to Y$ is open at $x \in X$ if it maps neighborhoods of *x* into neighborhoods of f(x) and *f* is open at $y \in Y$ if for each open *A* in *X*, $y \in f(A)$ implies $y \in Intf(A)$. It follows from the definition that $f : X \to Y$ is open at $y \in f(X)$ if and only if it is open at each point of $f^{-1}(y)$.

A continuous mapping f from a topological space X to a topological space Y is called closed at $y \in Y$ [10] if for every open subset $W \subset X$ containing $f^{-1}(y)$, there is a neighborhood V of y such that $f^{-1}(V) \subset W$. f is closed if it is closed at every point of Y.

The investigation of the set of points of *Y* at which *f* is open for a continuous closed mapping $f : X \to Y$ has been studied by S. Levi in [7]. In fact, S. Levi [7] proved the following theorem.

Theorem 1.1. If $f : X \to Y$ is a continuous closed mapping on a metrizable space X, the set of points of Y at which *f* is open is a G_{δ} set in Y.

In this paper, we will generalize Theorem 1.1 for developable topological spaces. We will also prove that if *f* is a continuous function from a developable topological space *X* to a topological space *Y*, then the set of all points of *X* at which *f* is open is a G_{δ} set in *X* and we present an example of Professor Bouziad, which shows that this is not true if *X* is a topological space with a base of countable order. The example of Professor Bouziad also shows that Corollary 2.7 in [4] is wrong.

²⁰²⁰ Mathematics Subject Classification. Primary 54C10; Secondary 46T20

Keywords. Continuous function, open function, quasicontinuous function, closed function, developable space

Received: 03 January 2021; Revised: 14 April 2021; Accepted: 24 April 2021

Communicated by Ljubiša D.R. Kočinac

Ľ. Holá was supported by Vega 2/0048/21.

Email addresses: hola@mat.savba.sk (Ľubica Holá), mirmostafaei@um.ac.ir (Alireza Kamel Mirmostafaee)

2. Points of openness of mappings in domain

We quote [3] and [6] as basic references. First we remind some notions.

Definition 2.1. Let *X* and *Y* be topological spaces and $f : X \to Y$ be a function. The function *f* is called open (resp. feebly open) at $x \in X$ if $f(x) \in Int(f(U))$ (resp. f(U) has a nonempty interior) for each neighbourhood *U* of *x*. *f* is called open (resp. feebly open) if it is open (feebly open) at each point of *X*.

Let *X* be a topological space, $x \in X$ and *G* be a collection of subsets of *X*. Then $st(x, G) = \bigcup \{G \in G : x \in G\}$. Let \mathbb{N} be the set of positive integers and $\{G_n : n \in \mathbb{N}\}$ be a sequence of open covers of *X*.

(1) If for each $x \in X$, the set $\{st(x, \mathcal{G}_n : n \in \mathbb{N}\}\)$ is a base at x, we say that $\{\mathcal{G}_n : n \in \mathbb{N}\}\)$ is a development on X and that the space X is developable. A regular developable space is called a Moore space.

(2) If for every sequence $\{\mathcal{G}_n : n \in \mathbb{N}\}$ such that $G_n \in \mathcal{G}_n$ for every $n \in \mathbb{N}$ and for every $x \in \bigcap G_n$, the sequence $\{\bigcap_{i \leq n} G_i : n \in \mathbb{N}\}$ is a base at x, we say that $\{\mathcal{G}_n : n \in \mathbb{N}\}$ is a weak development on X and that the space X is weakly developable.

The notion of a weak development was introduced by B. Alleche and J. Calbrix in [2].

Let *X* be a developable topological space, *Y* be a topological space and $f : X \to Y$ be a function. Let $\{G_n : n \in \mathbb{N}\}$ be a development of *X*. Of course, without loss of generality, we can suppose that the sequence $\{G_n : n \in \mathbb{N}\}$ is such that

$$\mathcal{G}_{n+1} \prec \mathcal{G}_n$$
 for every $n \in \mathbb{N}$.

 $(\mathcal{G}_{n+1} \prec \mathcal{G}_n \text{ means that for every } U \in \mathcal{G}_{n+1}, \text{ there is } V \in \mathcal{G}_n \text{ such that } U \subset V.)$

For every $n \in \mathbb{N}$ we will define sets

(*) $A_n = \{x \in X : \exists O, \exists G \in \mathcal{G}_n, x \in O \subset G, f(O) \text{ is open}\}$ and

 $B_n = \{x \in X : \exists \text{ open } O, \exists G \in \mathcal{G}_n, x \in O \subset G, Int f(O) \neq \emptyset \}.$

In the definition of sets A_n we used some ideas of Professor Bouziad (private communication).

In what follows, $\{G_n : n \in \mathbb{N}\}$ is a development of *X*.

Lemma 2.2. Let X and Y be topological spaces and let X be developable. Let $f : X \to Y$ be a function. Then f is open at $x \in X$ if and only if $x \in \bigcap \{A_n : n \in \mathbb{N}\}$.

Proof. Let $x \in X$. Suppose that f is open at x. Let $n \in \mathbb{N}$ and let $G \in \mathcal{G}_n$ be such that $x \in G$. Then $f(x) \in Intf(G)$. Put U = Intf(G) and put $O = f^{-1}(U) \cap G$. Then $x \in O, O \subset G$ and f(O) is open. Hence $x \in A_n$. Suppose now that $x \in \bigcap \{A_n : n \in \mathbb{N}\}$. To prove that f is open at x, let U be a neighbourhood of x. There is $n \in \mathbb{N}$ such that

$$st(x, \mathcal{G}_n) \subset U.$$

Since $x \in A_n$, there are a subset *O* of *X* and $G \in \mathcal{G}_n$ such that $x \in O \subset G$ and $f(O)$ is open. Thus we have $x \in O \subset st(x, \mathcal{G}_n) \subset U$ and $f(x) \in f(O) \subset Intf(U).$

Lemma 2.3. Let X and Y be topological spaces and let X be developable. Let $f : X \to Y$ be a function. Then f is feebly open at $x \in X$ if and only if $x \in \bigcap \{B_n : n \in \mathbb{N}\}$.

Proof. Let $x \in X$. If f is feebly open at x, then of course $x \in B_n$ for every $n \in \mathbb{N}$. Suppose now that $x \in \bigcap \{B_n : n \in \mathbb{N}\}$. To prove that f is feebly open at x, let U be a neighbourhood of x. There is $n \in \mathbb{N}$ such that

$$st(x, \mathcal{G}_n) \subset U$$

Since $x \in B_n$, there is an open set O in X and an open set $G \in G_n$ such that $x \in O \subset G$ and $Intf(O) \neq \emptyset$. Thus we have

$$x \in O \subset st(x, \mathcal{G}_n) \subset U \text{ and } \emptyset \neq Intf(O) \subset Intf(U)$$

Corollary 2.4. Let X and Y be topological spaces and let X be developable. Let $f : X \to Y$ be a function. The set of all points of X at which f is feebly open is a G_{δ} set in X.

Proof. It is easy to verify that the set B_n as defined in (*) is open for every $n \in \mathbb{N}$. \Box

The following example shows that the condition of developability of X in Corollary 2.4 cannot be replaced by the condition of weak developability.

Example 2.5. Let X be Gruenhage's space. We need to remind the definition of this space. Let *B* be a Bernstein subset of \mathbb{R} , i.e., every uncountable closed subset of \mathbb{R} meets both *B* and $\mathbb{R} \setminus B$. Let $\{B_{\alpha} : \alpha < 2^{\omega}\}$ be an enumeration of all countable subsets of *B* having uncountable closure in \mathbb{R} . For each $\alpha < 2^{\omega}$ choose a point $x_{\alpha} \in \overline{B_{\alpha}} \setminus (B \cup \{x_{\beta} : \beta < \alpha\})$, and points $x_{\alpha,n} \in B_{\alpha}$ such that $x_{\alpha,n}$ converges to x_{α} . Let

$$X = B \bigcup \{x_{\alpha} : \alpha < 2^{\omega}\}.$$

Topologize *X* by declaring the points of *B* to be isolated, and $x_{\alpha} \cup \{x_{\alpha,n} : n \ge m\}$, $m \in \omega$, to be a base at x_{α} . By Example 3 in [1] *X* is a weakly developable non developable space.

Put $Y = \mathbb{R}$. Put $A = \{x_{\alpha,2n} : \alpha < 2^{\omega}, n \in \mathbb{N}\}$. Topologize *Y* by declaring all points of the set *A* to be isolated and every $y \in Y \setminus A$ to have neighbourhoods from the usual Euclidean topology on \mathbb{R} . Define a function $f : X \to Y$ as follows: f(x) = x for $x \notin A$ and $f(x) = x_{1,1}$ for $x \in A$. Put $H = \{x_{\alpha} : \alpha < 2^{\omega}\}$. It is easy to verify that the set of all points of *X* at which *f* is feebly open is the set *H*, which is not a G_{δ} set in *X*.

Lemma 2.6. Let X and Y be topological spaces and let X be developable. Let $f : X \to Y$ be a function. Then $C(f) \cap A_n \subset IntA_n$ for every $n \in \mathbb{N}$, where C(f) is the set of all points of continuity of f.

Proof. Let $x \in C(f) \cap A_n$, $n \in \mathbb{N}$. There is a set O in X and an open set $G \in \mathcal{G}_n$ such that $x \in O \subset G$ and f(O) is open. Let V be an open set in X such that $x \in V$, $V \subset G$ and $f(V) \subset f(O)$. Then $V \subset A_n$, since $V \cup O \subset G$ and the set $f(V \cup O) = f(O)$ is open. \Box

Corollary 2.7. Let X and Y be topological spaces and let X be developable. Let $f : X \to Y$ be a continuous function. Then the set A_n is open for every $n \in \mathbb{N}$.

Proof. By Lemma 2.6, $C(f) \cap A_n \subset IntA_n$ for every $n \in \mathbb{N}$. Thus $A_n \subset IntA_n$ for every $n \in \mathbb{N}$, i.e. A_n is open for every $n \in \mathbb{N}$. \Box

Corollary 2.8. Let X and Y be topological spaces and let X be developable. Let $f : X \to Y$ be a continuous function. The set of all points of X at which f is open is a G_{δ} set in X.

The following example shows that the condition of developability of X in Corollary 2.8 cannot be replaced by the condition of weak developability.

Example 2.9. To define *X* and *Y* we will use the notions of Example 2.5. For each $\alpha < 2^{\omega}$ choose different points $x_{\alpha}, y_{\alpha} \in \overline{B_{\alpha}} \setminus (B \cup \{x_{\beta} : \beta < \alpha\} \cup \{y_{\beta} : \beta < \alpha\})$, and points $x_{\alpha,n} \in B_{\alpha}$ such that $x_{\alpha,n}$ converges to x_{α} . Let $X = B \cup \{x_{\alpha} : \alpha < 2^{\omega}\}$ be Gruenhage space. Put $Y = B \cup \{x_{\alpha} : \alpha < 2^{\omega}\} \cup \{y_{\alpha} : \alpha < 2^{\omega}\}$.

Topologize *Y* by declaring the sets $\{x_{\alpha}, y_{\alpha}\}$ open, $\alpha < 2^{\omega}$ and every $y \in B$ to have neighbourhoods induced from the usual Euclidean topology on *B*.

Define a function $f : X \to Y$ as follows: $f(x_{\alpha,n}) = y_{\alpha}$, $n \in \mathbb{N}$, $\alpha < 2^{\omega}$ and f(x) = x otherwise. It is easy to verify that f is continuous and the set of all points of X at which f is open is the set H, which is not a G_{δ} set in X.

In our paper [4] we wrongly proved Corollary 2.8 for a topological space X with a base of countable order. Professor A. Bouziad sent us an example which showed that it is not true.

We say that a topological space *X* has a base of countable order [6] if there is a sequence \mathfrak{B}_n of bases for *X* such that if $x \in B_n \in \mathfrak{B}_n$ and $B_{n+1} \subset B_n$ for each $n \ge 1$, then $\{B_n\}_n$ is a base at *x*.

Since every weakly developable space has a base of countable order [1], Example 2.9 shows that Corollary 2.8 cannot work for a topological space *X* with a base of countable order. However we will also present an example of Professor A. Bouziad, since he pointed out that Corollary 2.7 in [4] does not work for a topological space *X* with a base of countable order.

Example 2.10. Let $X = [0, \omega_1)$ with the usual order topology τ . Then *X* is a topological space with a base of countable order [8]. Let us define a new topology *S* on *X* as follows: if *x* is not a limit ordinal, let $V(x) = \{x + n : n < \omega\}$ and take $\{V(x)\}$ as a basis of neighbourhoods of *x* for *S*. Limit ordinals conserve their neighbourdoods from τ . Then *S* is a well defined topology on *X*. Clearly, the identity map *f* from (*X*, τ) to (*X*, *S*) is continuous and the set of points at which *f* is open is the set of limit ordinals *L*. It is well known that *L* is not a G_{δ} set in *X*.

Lemma 2.11. Let X and Y be topological spaces and let X be developable. Let $f : X \to Y$ be a feebly open function. Then the set A_n is dense in X for every $n \in \mathbb{N}$.

Proof. Let $n \in \mathbb{N}$. Let U be a nonempty open set in X. Since \mathcal{G}_n is an open cover of X, let $G \in \mathcal{G}_n$ be such that $U \cap G \neq \emptyset$. Since f is a feebly open function, we have

Int
$$f(U \cap G) \neq \emptyset$$
.

Put $L = Intf(U \cap G)$ and $H = f^{-1}(L) \cap U \cap G$. Then $H \neq \emptyset$, f(H) = L is open and $H \subset A_n \cap U$. Thus A_n is dense in X. \Box

Theorem 2.12. Let X be a Baire developable space and Y be a topological space. Let $f : X \to Y$ be a feebly open continuous function. The set of all points of X at which f is open is a dense G_{δ} set in X.

Proof. By Lemma 2.2 the set $\bigcap \{A_n : n \in \mathbb{N}\}$ is the set of all points of *X* at which *f* is open. By Corollary 2.7 the set A_n is open for every $n \in \mathbb{N}$. By Lemma 2.11 the set A_n is dense for every $n \in \mathbb{N}$. Since *X* is a Baire space, the set $\bigcap \{A_n : n \in \mathbb{N}\}$ is dense in *X*. \Box

Let *X* and *Y* be topological spaces. A function $f : X \to Y$ is quasicontinuous [9] at $x \in X$ if for every open set $V \subset Y$, $f(x) \in V$ and every open set $U \subset X$, $x \in U$ there is a nonempty open set $W \subset U$ such that $f(W) \subset V$. If *f* is quasicontinuous at every point of *X*, we say that *f* is quasicontinuous.

We say that a set $A \subset X$ is quasi-open [9] if $A \subset IntA$. A function f from a topological space X into a topological space Y is quasicontinuous if for every open set U in Y the set $f^{-1}(U)$ is quasi-open in X.

Lemma 2.13. Let X and Y be topological spaces and let X be developable. Let $f : X \to Y$ be a quasicontinuous function. Then the set A_n is quasi-open for every $n \in \mathbb{N}$.

Proof. Let $n \in \mathbb{N}$. Let $x \in A_n$ and let U be an open neighbourhood of x. Since $x \in A_n$, there is a set O and $G \in \mathcal{G}_n$ such that $x \in O \subset G$ and f(O) is open. The quasicontinuity of f at x implies that there is a nonempty open set $V \subset G \cap U$ such that $f(V) \subset f(O)$. Then $V \subset IntA_n$, since $V \cup O \subset G$ and $f(V \cup O) = f(O)$ is open. \Box

The proof of the following theorem is very similar to the proof of Theorem 2.12.

Theorem 2.14. Let X be a Baire developable space and Y be a topological space. Let $f : X \to Y$ be a feebly open quasicontinuous function. The set of all points of X at which f is open is a residual set in X (i.e. it contains a dense G_{δ} set in X).

We will finish this part with an interesting observation. We need the following theorem from the paper [5].

Theorem 2.15. Let X be a topological space and Y be a weakly developable space. Let $f : X \to Y$ be a function. Then the set C(f) of the points of continuity of f is a G_{δ} set.

Theorem 2.16. Let X be a developable space and Y be a weakly developable space. Let $f : X \to Y$ be a function. Then the set $C(f) \cap O(f)$ is a G_{δ} set, where O(f) is the set of $x \in X$ such that f is open at x.

Proof. By Lemma 2.2 we have $O(f) = \bigcap \{A_n : n \in \mathbb{N}\}$. Thus $C(f) \cap O(f) = C(f) \cap \bigcap \{A_n : n \in \mathbb{N}\} = \bigcap \{C(f) \cap A_n : n \in \mathbb{N}\}$. By Lemma 2.6 we have $\bigcap \{C(f) \cap A_n : n \in \mathbb{N}\} = \bigcap \{C(f) \cap IntA_n : n \in \mathbb{N}\}$. Since by Theorem 2.15, C(f) is a G_{δ} set, we are done. \Box

3. Points of openness of mappings in range space

Let *X* be a developable topological space, *Y* be a topological space and $f : X \to Y$ be a function. Let $\{\mathcal{G}_n : n \in \mathbb{N}\}$ be a development for *X*. Using the above definition (*) of the sets A_n we define a function $O_f : X \to [0, \infty]$ by:

 $O_f(x) = \inf\{1/n : x \in A_n\}$, if $x \in A_n$ for some $n \in \mathbb{N}$ and $O_f(x) = \infty$, otherwise.

Lemma 3.1. Let X be a developable space and Y be a topological space. A function $f : X \to Y$ is open at $x \in X$ if and only if $O_f(x) = 0$.

Proof. If $f: X \to Y$ is open at $x \in X$, then by Lemma 2.2 $x \in A_n$ for every $n \in \mathbb{N}$. Thus $O_f(x) = 0$.

Suppose now that $O_f(x) = 0$. Then $x \in \bigcap \{A_n : n \in \mathbb{N}\}$ (since $\mathcal{G}_{n+1} \prec \mathcal{G}_n$ for every $n \in \mathbb{N}$, we have $A_{n+1} \subset A_n$ for every $n \in \mathbb{N}$). Thus by Lemma 2.2 *f* is open at $x \in X$. \Box

Lemma 3.2. Let $f : X \to Y$ be a continuous function, where X is a developable space and Y is a topological space. Then $O_f : X \to [0, \infty]$ is upper semicontinuous.

Proof. For every $n \in \mathbb{N}$ define $f_n : X \to [0, 1]$ by $f_n(x) = 1/n$, if $x \in A_n$ and $f_n(x) = \infty$, if $x \notin A_n$. Since by Corollary 2.7 the set A_n is open, f_n is upper semicontinuous. Therefore, as $O_f(x) = inf_{n \in \mathbb{N}}f_n(x)$ for every $x \in X$, O_f is upper semicontinuous. \Box

Definition 3.3. ([7]) Let *f* be a function from a topological space *X* to a topological space *Y*. *f* is open at $y \in Y$ if for each open set *A* in *X*, $y \in f(A)$ implies that $y \in Intf(A)$.

It follows from the definition that $f : X \to Y$ is open at $y \in f(X)$ if and only if it is open at each point of $f^{-1}(y)$.

Definition 3.4. Let X be a developable space, Y be a topological space and $f : X \to Y$ be a function. Define $\Theta_f : Y \to [0, 1]$ by $\Theta_f(y) = sup\{O_f(x) : x \in f^{-1}(y)\}$ if $y \in f(X)$ and $\Theta_f(y) = 0$ otherwise.

The following lemma follows immediately from the definition and Lemma 3.1.

Lemma 3.5. Let X be a developable space and Y be a topological space. Then a continuous function $f : X \to Y$ is open at $y \in Y$ if and only if $\Theta_f(y) = 0$.

Following [10] a continuous mapping f from a topological space X to a topological space Y is called closed at $y \in Y$ if for every open subset $W \subset X$ containing $f^{-1}(y)$, there is a neighborhood V of y such that $f^{-1}(V) \subset W$. f is closed if it is closed at every point of Y.

Proposition 3.6. Let X be a developable space, Y be a topological space and $f : X \to Y$ be a continuous function which is closed at $y \in Y$. Then Θ_f is upper semicontinuous at y.

Proof. If $y \notin f(X)$, then $y \notin \overline{f(X)}$ since f is not closed at each point of $\overline{f(X)} \setminus f(X)$. Hence $Y \setminus \overline{f(X)}$ is a neighbourhood of y and $\Theta_f(z) = 0$ for every $z \in Y \setminus \overline{f(X)}$. If $y \in f(X)$ and $\Theta_f(y) = \infty$, then there is nothing to prove. Suppose that $\Theta_f(y) < \epsilon$ and choose $\epsilon' > 0$ such that $\Theta_f(y) < \epsilon' < \epsilon$. Then for every $x \in f^{-1}(y)$, we have $O_f(x) < \epsilon'$. Since O_f is upper semicontinuous, for every $x \in f^{-1}(y)$, we can find an open neighbourhood V_x of x such that $O_f(t) < \epsilon'$ for each $t \in V_x$. Let $V = \bigcup_{x \in f^{-1}(y)} V_x$. Then V is an open set which contains $f^{-1}(y)$. Since f is closed in y, there is a neighbourhood W of y such that $f^{-1}(W) \subset V$. If $z \in f(X) \cap W$, then

$$\Theta_f(z) = \sup\{O_f(t) : t \in f^{-1}(z)\} \le \epsilon' < \epsilon.$$

If $z \in W \cap (Y \setminus f(X))$, then $\Theta_f(z) = 0 < \epsilon$. Hence Θ_f is upper semicontinuous. \Box

The following theorem generalizes S. Levi's result proved for a metrizable space X see [7].

Theorem 3.7. Let X be a developable space and Y be a topological space. If a continuous function $f : X \to Y$ is closed, then the set of points of Y at which f is open is a G_{δ} set.

Proof. Let *E* denote the set of points of *Y* at which *f* is open. Thanks to Lemma 3.5

 $E = \{y \in Y : \Theta_f(y) = 0\} = \bigcap_{n \in \mathbb{N}} \{y \in Y : \Theta_f(y) < 1/n\}.$

According to Proposition 3.6, the latter set is a G_{δ} subset of Y . \Box

Acknowledgement

The authors are thankful to Professor Bouziad for pointing out their mistake in Corollary 2.7 in [4] and also for some ideas which led to an improvement of the paper.

References

- [1] B. Alleche, A.V. Arhangel'skii, J. Calbrix, Weak developments and metrization, Topology Appl. 100 (2000) 23–38.
- [2] J. Calbrix, B. Alleche, Multifunctions and Čech-complete spaces, In: Proc. 8th Prague Topological Symposium, Prague, Czech Republic, August 18–24, 1996 (P. Simon, ed.), Topology Atlas, Prague, 1997, pp. 30–36. [3] R. Engelking, General Topology, Helderman Verlag, Berlin, 1989.
- [4] L. Holá, A. K. Mirmostafaee, Z. Piotrowski, Points of openness and closedness of some mappings, Banach J. Math. Anal. 9 (2015) 243-252.
- [5] L. Holá, Z. Piotrowski, Set of continuity points of functions with values in generalized metric spaces, Tatra Mt. Math. Publ. 42 (2009) 149–160.
- [6] G. Gruenhage, Generalized metric spaces, Handbook of Set-theoretic Topology, (K. Kunen and J. E. Vaughan (eds.)), Chapter 10, Elsevier Science Publishers B. V., 1984.
- [7] S. Levi, Closed mappings are open at a G_{δ} set, Portugal. Math. 38 (1979) 7–9.
- [8] W.F. Lindgren, P.J. Nyikos, Spaces with bases satisfying certain order and intersection properties, Pacific J. Math. 66 (1976) 455-476.
- [9] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988) 259-306.
- [10] I.A. Vainstein, On closed mappings, Moskov. Gos. Univ. Uc. Zap. 155:5 (1952) 3-53.