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Abstract. Let X and Y be topological spaces and f : X → Y be a continuous function. We are interested
in finding points of X and Y at which f is open. We will show that if X is developable, the set of points of
openness of f in X is a Gδ subset of X. If X is developable and f is closed, then the set of points of openness
of f in Y is a Gδ subset of Y. These will extend some results of S. Levi.

1. Introduction

Let X and Y be topological spaces. Let us recall that f : X→ Y is open at x ∈ X if it maps neighborhoods
of x into neighborhoods of f (x) and f is open at y ∈ Y if for each open A in X, y ∈ f (A) implies y ∈ Int f (A).
It follows from the definition that f : X → Y is open at y ∈ f (X) if and only if it is open at each point of
f−1(y).

A continuous mapping f from a topological space X to a topological space Y is called closed at y ∈ Y
[10] if for every open subset W ⊂ X containing f−1(y), there is a neighborhood V of y such that f−1(V) ⊂W.
f is closed if it is closed at every point of Y.

The investigation of the set of points of Y at which f is open for a continuous closed mapping f : X→ Y
has been studied by S. Levi in [7]. In fact, S. Levi [7] proved the following theorem.

Theorem 1.1. If f : X → Y is a continuous closed mapping on a metrizable space X, the set of points of Y at which
f is open is a Gδ set in Y.

In this paper, we will generalize Theorem 1.1 for developable topological spaces. We will also prove
that if f is a continuous function from a developable topological space X to a topological space Y, then the
set of all points of X at which f is open is a Gδ set in X and we present an example of Professor Bouziad,
which shows that this is not true if X is a topological space with a base of countable order. The example of
Professor Bouziad also shows that Corollary 2.7 in [4] is wrong.
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2. Points of openness of mappings in domain

We quote [3] and [6] as basic references. First we remind some notions.

Definition 2.1. Let X and Y be topological spaces and f : X→ Y be a function. The function f is called open
(resp. feebly open) at x ∈ X if f (x) ∈ Int( f (U)) (resp. f (U) has a nonempty interior) for each neighbourhood
U of x. f is called open (resp. feebly open) if it is open (feebly open) at each point of X.

Let X be a topological space, x ∈ X andG be a collection of subsets of X. Then st(x,G) =
⋃
{G ∈ G : x ∈ G}.

LetN be the set of positive integers and {Gn : n ∈N} be a sequence of open covers of X.
(1) If for each x ∈ X, the set {st(x,Gn : n ∈N} is a base at x, we say that {Gn : n ∈N} is a development on

X and that the space X is developable. A regular developable space is called a Moore space.
(2) If for every sequence {Gn : n ∈ N} such that Gn ∈ Gn for every n ∈ N and for every x ∈

⋂
Gn, the

sequence {∩i≤nGi : n ∈ N} is a base at x, we say that {Gn : n ∈ N} is a weak development on X and that the
space X is weakly developable.

The notion of a weak development was introduced by B. Alleche and J. Calbrix in [2].
Let X be a developable topological space, Y be a topological space and f : X → Y be a function. Let

{Gn : n ∈N} be a development of X. Of course, without loss of generality, we can suppose that the sequence
{Gn : n ∈N} is such that

Gn+1 ≺ Gn for every n ∈N.
(Gn+1 ≺ Gn means that for every U ∈ Gn+1, there is V ∈ Gn such that U ⊂ V.)
For every n ∈Nwe will define sets
(∗) An = {x ∈ X : ∃ O,∃G ∈ Gn, x ∈ O ⊂ G, f (O) is open} and

Bn = {x ∈ X : ∃ open O,∃G ∈ Gn, x ∈ O ⊂ G, Int f (O) , ∅}.
In the definition of sets An we used some ideas of Professor Bouziad (private communication).
In what follows, {Gn : n ∈N} is a development of X.

Lemma 2.2. Let X and Y be topological spaces and let X be developable. Let f : X → Y be a function. Then f is
open at x ∈ X if and only if x ∈

⋂
{An : n ∈N}.

Proof. Let x ∈ X. Suppose that f is open at x. Let n ∈ N and let G ∈ Gn be such that x ∈ G. Then
f (x) ∈ Int f (G). Put U = Int f (G) and put O = f−1(U)∩G. Then x ∈ O,O ⊂ G and f (O) is open. Hence x ∈ An.

Suppose now that x ∈
⋂
{An : n ∈N}. To prove that f is open at x, let U be a neighbourhood of x. There

is n ∈N such that
st(x,Gn) ⊂ U.

Since x ∈ An, there are a subset O of X and G ∈ Gn such that x ∈ O ⊂ G and f (O) is open. Thus we have
x ∈ O ⊂ st(x,Gn) ⊂ U and f (x) ∈ f (O) ⊂ Int f (U).

Lemma 2.3. Let X and Y be topological spaces and let X be developable. Let f : X → Y be a function. Then f is
feebly open at x ∈ X if and only if x ∈

⋂
{Bn : n ∈N}.

Proof. Let x ∈ X. If f is feebly open at x, then of course x ∈ Bn for every n ∈ N. Suppose now that
x ∈
⋂
{Bn : n ∈ N}. To prove that f is feebly open at x, let U be a neighbourhood of x. There is n ∈ N such

that
st(x,Gn) ⊂ U.

Since x ∈ Bn, there is an open set O in X and an open set G ∈ Gn such that x ∈ O ⊂ G and Int f (O) , ∅.
Thus we have

x ∈ O ⊂ st(x,Gn) ⊂ U and ∅ , Int f (O) ⊂ Int f (U).

Corollary 2.4. Let X and Y be topological spaces and let X be developable. Let f : X → Y be a function. The set of
all points of X at which f is feebly open is a Gδ set in X.
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Proof. It is easy to verify that the set Bn as defined in (∗) is open for every n ∈N.

The following example shows that the condition of developability of X in Corollary 2.4 cannot be
replaced by the condition of weak developability.

Example 2.5. Let X be Gruenhage’s space. We need to remind the definition of this space. Let B be a
Bernstein subset of R, i.e., every uncountable closed subset of R meets both B and R \ B. Let {Bα : α < 2ω}
be an enumeration of all countable subsets of B having uncountable closure in R. For each α < 2ω choose a
point xα ∈ Bα \ (B

⋃
{xβ : β < α}), and points xα,n ∈ Bα such that xα,n converges to xα. Let

X = B
⋃
{xα : α < 2ω}.

Topologize X by declaring the points of B to be isolated, and xα ∪ {xα,n : n ≥ m}, m ∈ ω, to be a base at xα.
By Example 3 in [1] X is a weakly developable non developable space.

Put Y = R. Put A = {xα,2n : α < 2ω,n ∈N}. Topologize Y by declaring all points of the set A to be isolated
and every y ∈ Y \ A to have neighbourhoods from the usual Euclidean topology on R. Define a function
f : X → Y as follows: f (x) = x for x < A and f (x) = x1,1 for x ∈ A. Put H = {xα : α < 2ω}. It is easy to verify
that the set of all points of X at which f is feebly open is the set H, which is not a Gδ set in X.

Lemma 2.6. Let X and Y be topological spaces and let X be developable. Let f : X → Y be a function. Then
C( f ) ∩ An ⊂ IntAn for every n ∈N, where C( f ) is the set of all points of continuity of f .

Proof. Let x ∈ C( f ) ∩ An, n ∈ N. There is a set O in X and an open set G ∈ Gn such that x ∈ O ⊂ G and f (O)
is open. Let V be an open set in X such that x ∈ V, V ⊂ G and f (V) ⊂ f (O). Then V ⊂ An, since V ∪O ⊂ G
and the set f (V ∪O) = f (O) is open.

Corollary 2.7. Let X and Y be topological spaces and let X be developable. Let f : X→ Y be a continuous function.
Then the set An is open for every n ∈N.

Proof. By Lemma 2.6, C( f ) ∩ An ⊂ IntAn for every n ∈ N. Thus An ⊂ IntAn for every n ∈ N, i.e. An is open
for every n ∈N.

Corollary 2.8. Let X and Y be topological spaces and let X be developable. Let f : X→ Y be a continuous function.
The set of all points of X at which f is open is a Gδ set in X.

The following example shows that the condition of developability of X in Corollary 2.8 cannot be
replaced by the condition of weak developability.

Example 2.9. To define X and Y we will use the notions of Example 2.5. For each α < 2ω choose different
points xα, yα ∈ Bα \ (B ∪ {xβ : β < α} ∪ {yβ : β < α}), and points xα,n ∈ Bα such that xα,n converges to xα. Let
X = B ∪ {xα : α < 2ω} be Gruenhage space. Put Y = B ∪ {xα : α < 2ω} ∪ {yα : α < 2ω}.

Topologize Y by declaring the sets {xα, yα} open, α < 2ω and every y ∈ B to have neighbourhoods induced
from the usual Euclidean topology on B.

Define a function f : X → Y as follows: f (xα,n) = yα, n ∈ N, α < 2ω and f (x) = x otherwise. It is easy to
verify that f is continuous and the set of all points of X at which f is open is the set H, which is not a Gδ set
in X.

In our paper [4] we wrongly proved Corollary 2.8 for a topological space X with a base of countable
order. Professor A. Bouziad sent us an example which showed that it is not true.

We say that a topological space X has a base of countable order [6] if there is a sequence Bn of bases for
X such that if x ∈ Bn ∈ Bn and Bn+1 ⊂ Bn for each n ≥ 1, then {Bn}n is a base at x.

Since every weakly developable space has a base of countable order [1], Example 2.9 shows that Corollary
2.8 cannot work for a topological space X with a base of countable order. However we will also present
an example of Professor A. Bouziad, since he pointed out that Corollary 2.7 in [4] does not work for a
topological space X with a base of countable order.



Ľ. Holá, A.K. Mirmostafaee / Filomat 35:15 (2021), 5209–5214 5212

Example 2.10. Let X = [0, ω1) with the usual order topology τ. Then X is a topological space with a base
of countable order [8]. Let us define a new topology S on X as follows: if x is not a limit ordinal, let
V(x) = {x + n : n < ω} and take {V(x)} as a basis of neighbourhoods of x for S. Limit ordinals conserve their
neighbourdoods from τ. Then S is a well defined topology on X. Clearly, the identity map f from (X, τ) to
(X,S) is continuous and the set of points at which f is open is the set of limit ordinals L. It is well known
that L is not a Gδ set in X.

Lemma 2.11. Let X and Y be topological spaces and let X be developable. Let f : X → Y be a feebly open function.
Then the set An is dense in X for every n ∈N.

Proof. Let n ∈ N. Let U be a nonempty open set in X. Since Gn is an open cover of X, let G ∈ Gn be such
that U ∩ G , ∅. Since f is a feebly open function, we have

Int f (U ∩ G) , ∅.
Put L = Int f (U ∩ G) and H = f−1(L) ∩U ∩ G. Then H , ∅, f (H) = L is open and H ⊂ An ∩U. Thus An is

dense in X.

Theorem 2.12. Let X be a Baire developable space and Y be a topological space. Let f : X → Y be a feebly open
continuous function. The set of all points of X at which f is open is a dense Gδ set in X.

Proof. By Lemma 2.2 the set
⋂
{An : n ∈ N} is the set of all points of X at which f is open. By Corollary 2.7

the set An is open for every n ∈ N. By Lemma 2.11 the set An is dense for every n ∈ N. Since X is a Baire
space, the set

⋂
{An : n ∈N} is dense in X.

Let X and Y be topological spaces. A function f : X → Y is quasicontinuous [9] at x ∈ X if for every
open set V ⊂ Y, f (x) ∈ V and every open set U ⊂ X, x ∈ U there is a nonempty open set W ⊂ U such that
f (W) ⊂ V. If f is quasicontinuous at every point of X, we say that f is quasicontinuous.

We say that a set A ⊂ X is quasi-open [9] if A ⊂ IntA. A function f from a topological space X into a
topological space Y is quasicontinuous if for every open set U in Y the set f−1(U) is quasi-open in X.

Lemma 2.13. Let X and Y be topological spaces and let X be developable. Let f : X → Y be a quasicontinuous
function. Then the set An is quasi-open for every n ∈N.

Proof. Let n ∈ N. Let x ∈ An and let U be an open neighbourhood of x. Since x ∈ An, there is a set O and
G ∈ Gn such that x ∈ O ⊂ G and f (O) is open. The quasicontinuity of f at x implies that there is a nonempty
open set V ⊂ G∩U such that f (V) ⊂ f (O). Then V ⊂ IntAn, since V∪O ⊂ G and f (V∪O) = f (O) is open.

The proof of the following theorem is very similar to the proof of Theorem 2.12.

Theorem 2.14. Let X be a Baire developable space and Y be a topological space. Let f : X → Y be a feebly open
quasicontinuous function. The set of all points of X at which f is open is a residual set in X (i.e. it contains a dense
Gδ set in X).

We will finish this part with an interesting observation. We need the following theorem from the paper
[5].

Theorem 2.15. Let X be a topological space and Y be a weakly developable space. Let f : X→ Y be a function. Then
the set C( f ) of the points of continuity of f is a Gδ set.

Theorem 2.16. Let X be a developable space and Y be a weakly developable space. Let f : X→ Y be a function. Then
the set C( f ) ∩O( f ) is a Gδ set, where O( f ) is the set of x ∈ X such that f is open at x.

Proof. By Lemma 2.2 we have O( f ) =
⋂
{An : n ∈ N}. Thus C( f ) ∩ O( f ) = C( f ) ∩

⋂
{An : n ∈ N} =⋂

{C( f ) ∩ An : n ∈ N}. By Lemma 2.6 we have
⋂
{C( f ) ∩ An : n ∈ N} =

⋂
{C( f ) ∩ IntAn : n ∈ N}. Since by

Theorem 2.15, C( f ) is a Gδ set, we are done.
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3. Points of openness of mappings in range space

Let X be a developable topological space, Y be a topological space and f : X → Y be a function. Let
{Gn : n ∈ N} be a development for X. Using the above definition (∗) of the sets An we define a function
O f : X→ [0,∞] by:

O f (x) = inf{1/n : x ∈ An}, if x ∈ An for some n ∈N and O f (x) = ∞, otherwise.

Lemma 3.1. Let X be a developable space and Y be a topological space. A function f : X→ Y is open at x ∈ X if and
only if O f (x) = 0.

Proof. If f : X→ Y is open at x ∈ X, then by Lemma 2.2 x ∈ An for every n ∈N. Thus O f (x) = 0.
Suppose now that O f (x) = 0. Then x ∈

⋂
{An : n ∈ N} (since Gn+1 ≺ Gn for every n ∈ N, we have

An+1 ⊂ An for every n ∈N). Thus by Lemma 2.2 f is open at x ∈ X.

Lemma 3.2. Let f : X → Y be a continuous function, where X is a developable space and Y is a topological space.
Then O f : X→ [0,∞] is upper semicontinuous.

Proof. For every n ∈ N define fn : X → [0, 1] by fn(x) = 1/n, if x ∈ An and fn(x) = ∞, if x < An. Since by
Corollary 2.7 the set An is open, fn is upper semicontinuous. Therefore, as O f (x) = in fn∈N fn(x) for every
x ∈ X, O f is upper semicontinuous.

Definition 3.3. ([7]) Let f be a function from a topological space X to a topological space Y. f is open at
y ∈ Y if for each open set A in X, y ∈ f (A) implies that y ∈ Int f (A).

It follows from the definition that f : X → Y is open at y ∈ f (X) if and only if it is open at each point of
f−1(y).

Definition 3.4. Let X be a developable space, Y be a topological space and f : X→ Y be a function. Define
Θ f : Y→ [0, 1] by Θ f (y) = sup{O f (x) : x ∈ f−1(y)} if y ∈ f (X) and Θ f (y) = 0 otherwise.

The following lemma follows immediately from the definition and Lemma 3.1.

Lemma 3.5. Let X be a developable space and Y be a topological space. Then a continuous function f : X → Y is
open at y ∈ Y if and only if Θ f (y) = 0.

Following [10] a continuous mapping f from a topological space X to a topological space Y is called
closed at y ∈ Y if for every open subset W ⊂ X containing f−1(y), there is a neighborhood V of y such that
f−1(V) ⊂W. f is closed if it is closed at every point of Y.

Proposition 3.6. Let X be a developable space, Y be a topological space and f : X → Y be a continuous function
which is closed at y ∈ Y. Then Θ f is upper semicontinuous at y.

Proof. If y < f (X), then y < f (X) since f is not closed at each point of f (X) \ f (X). Hence Y \ f (X) is
a neighbourhood of y and Θ f (z) = 0 for every z ∈ Y \ f (X). If y ∈ f (X) and Θ f (y) = ∞, then there is
nothing to prove. Suppose that Θ f (y) < ε and choose ε′ > 0 such that Θ f (y) < ε′ < ε. Then for every
x ∈ f−1(y), we have O f (x) < ε′. Since O f is upper semicontinuous, for every x ∈ f−1(y), we can find an
open neighbourhood Vx of x such that O f (t) < ε′ for each t ∈ Vx. Let V =

⋃
x∈ f−1(y) Vx. Then V is an open

set which contains f−1(y). Since f is closed in y, there is a neighbourhood W of y such that f−1(W) ⊂ V. If
z ∈ f (X) ∩W, then

Θ f (z) = sup{O f (t) : t ∈ f−1(z)} ≤ ε′ < ε.
If z ∈W ∩ (Y \ f (X)), then Θ f (z) = 0 < ε. Hence Θ f is upper semicontinuous.

The following theorem generalizes S. Levi’s result proved for a metrizable space X see [7].

Theorem 3.7. Let X be a developable space and Y be a topological space. If a continuous function f : X → Y is
closed, then the set of points of Y at which f is open is a Gδ set.

Proof. Let E denote the set of points of Y at which f is open. Thanks to Lemma 3.5
E = {y ∈ Y : Θ f (y) = 0} =

⋂
n∈N{y ∈ Y : Θ f (y) < 1/n}.

According to Proposition 3.6, the latter set is a Gδ subset of Y .
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