Filomat 35:15 (2021), 5131–5135 https://doi.org/10.2298/FIL2115131H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Bourgain Algebras of Ideals in H^{∞} Generated by Inner Functions

Miroslav Hristov^a

^aFaculty of Mathematics and computer science, University of Shumen "Konstantin Preslavsky", Shumen, Bulgaria

Abstract. In this paper we prove that Bourgain algebra of qX relative to L^{∞} contains C if X is backward shift invariant analytic subalgebra and $q \in X$ is an inner function, i.e. $(qX, L^{\infty})_b \supset C$. We also studied some Bourgain algebras of finitely generated ideals in A and H^{∞} .

1. Introduction

Let *Y* be a commutative Banach algebra with an identity and let *X* be a linear subspace of *Y*. J. Cima and R. Timoney [1] introduced the notion of the Bourgain algebra based on the ideas of J. Bourgain [2]. The Bourgain algebra X_b or $(X, Y)_b$ of *X* relative to L^{∞} is the space of all functions *f* in *Y* such that if $f_n \to 0$ weakly in *X*, then $dist(f, f_n, X) \to 0$.

Distance $dist(f.f_n, X)$ between $f.f_n$ and X is the quotient norm of the coset $f.f_n + X$ in the space Y/X. The proof in [1] shows that $(X, Y)_b$ is a closed subalgebra of Y and contains the constant functions; if X is an algebra then $X \subset (X, Y)_b$.

Let *D* be the open unit disk and H^{∞} denote the algebra of bounded analytic functions on *D*. Taking the boundary values of the functions on $T = \{z \in \mathbb{C} : |z| = 1\}$, we can consider $H^{\infty} = H^{\infty}(T)$ as an essentially supremum-norm closed subalgebra of $L^{\infty} = L^{\infty}(T)$. Let *z* belong to *D* and $\varphi_z(f) = f(z)$ for every $f \in H^{\infty}$. Then φ_z is a complex homomorphism "evaluation at the point *z*". Let C = C(T) be the space of all continuous functions on the closed unit circle *T*.

A closed subalgebra *B* between H^{∞} and L^{∞} is called a Douglas algebra.

B coincides with the closed subalgebra generate by H^{∞} and complex conjugate of interpolating Blaschke product [3]. The space $H^{\infty} + C = [H^{\infty}, z]$ is a typical Douglas algebra [3]. In [4] J. Cima, Sv. Janson and K. Yale showed that H_b^{∞} relative L^{∞} is $H^{\infty}+C$. P. Gorkin, K. Izuchi and R. Mortini [5] present another proof. They also prove many properties of the Bourgain algebras $(X, L^{\infty})_b$ where X is Douglas algebra. K Izuchi in [6] proved that the Bourgain algebra of a closed subalgebra *E* between disk algebra $A = H^{\infty} \cap C$ and H^{∞} relative to L^{∞} is always contained in $H^{\infty}+C$ and $E_{bb} = (E_b)_b = E_b$.

An inner function is a function $f \in H^{\infty}$ such that |f(z)| = 1 almost everywhere on *T*. A sequence $\{z_n\}_n$ is called interpolating if for every bounded sequence $\{a_n\}_n$ of complex numbers there is a function $f \in H^{\infty}$ such that f(z) = a for all n. For a sequence in *D* with $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, the function:

such that $f(z_n) = a_n$ for all *n*. For a sequence in *D* with $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, the function:

²⁰²⁰ Mathematics Subject Classification. Primary 30H05; Secondary 30H50, 46J30

Keywords. Bounded analytic functions, Bourgain algebras, Ideals, Invariant subalgebras, Backward shift invariant subalgebras Received: 18 December 2020; Accepted: 03 April 2021

Communicated by Dragan S. Djordjević

Research supported by Shumen University through Scientific Research Grant RD-08-28/12.01.2022

Email address: miroslav.hristov@shu.bg (Miroslav Hristov)

$$B(z) = \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z-z_n}{1-\overline{z}_n z}, z \in D,$$

is called a Blaschke product with zeros $\{z_n\}_n$. If $\{z_n\}_n$ is an interpolating sequence, B(z) then is also called interpolating. Some results for interpolating sequences and their applications in the description of Douglas algebras have been obtained in [3] and [7]. Interpolating sequences can be applied for obtaining new scalar solutions of nonlinear differential equations using results in [8], [9] and [10].

A norm closed subalgebra between A and H^{∞} is called an analytic subalgebra. A subset X of H^{∞} is called blackward shift invariant if

$$f^* = \frac{f(z) - f(0)}{z} \in X$$
, for every f in X .

Let X be an analytic subalgebra. K. Nishizawa in [11] proved that the linear space X + C is a closed subalgebra of L^{∞} if and only if *X* is a backward shift invariant.

Some characterizations of backward shift invariant analytic subalgebras are given it the follow statement.

Lemma 1.1. [12] Let X be an analytic algebra. Then the following conditions are equivalent.

- 1. X is backward shift invariant.
- 2. For each a in D, $(f(z) f(0))/(z a) \in X$ for every $f \in X$.
- 3. For each a in D, (z a)X + A = X.
- 4. X + C is a closed subalgebra.
- 5. $X = H^{\infty} \cap [X + C]$.

K. Izuchi has been shown that if X is a closed subalgebra, such that

 $A \subset X \subset H^{\infty}$ and X + C is an algebra then X_b relative L^{∞} contains C [6]. In particular, this is valid for every backward shift invariant analytic subalgebra. There are many different subalgebras of H^{∞} that do not have the property "backward shift invariant".

Example 1. Let X be an analytic subalgebra, $X_{\alpha} = \{f \in X : f(\alpha) = 0\}$ and $\alpha \in D$. Since X is a closed subalgebra between A and H^{∞} then

$$z_{\alpha} = \frac{z - \alpha}{1 - \bar{\alpha}z} \in X_{\alpha} \text{ and } \frac{z_{\alpha} - z_{\alpha}(0)}{z - 0} = \frac{z_{\alpha} + \alpha}{z}.$$

- 1. If $\alpha \neq 0$ then $\left(\frac{z_{\alpha}+\alpha}{z}\right)(\alpha) = \frac{\alpha}{\alpha} = 1 \neq 0$ 2. If $\alpha = 0$ then $\frac{z_{\alpha}+\alpha}{z}(0) = 1 \neq 0$.

Therefore, $\frac{z_{\alpha}-z_{\alpha}(0)}{z-0} \notin X_{\alpha}$ and X_{α} is not backward shift invariant.

Example 2. Let *X* be an analytic subalgebra $\alpha \in D$, let *q* be an inner function in *X* and $q_{\alpha} = \frac{q-q(\alpha)}{1-q(\alpha).q}$. We study the algebra $q_{\alpha}X$. Since $1 \in X$ then $q_{\alpha} \in q_{\alpha}X$. We assume that $\frac{q_{\alpha}-q_{\alpha}(0)}{z} = q_{\alpha}p$ and $p \in X$. Then we get $q_{\alpha} = z.q_{\alpha}.p + q_{\alpha}(0) (1).$

- 1. If α is such that $q(0) = q(\alpha)$ then $q_{\alpha}(0) = 0$ and we obtain that $z \cdot p = 1$, i.e. z is invertible in X.
- 2. If α is such that $q(0) \neq q(\alpha)$ then $q_{\alpha}(0) \neq 0$. But for $z = \alpha$ in (1) we obtain that $q_{\alpha}(0) = 0$.

Therefore $\frac{q_{\alpha}-q_{\alpha}(0)}{z-0} \notin q_{\alpha}X$ and $q_{\alpha}X$ is not backward shift invariant. In particular, if $q(\alpha) = 0$ it follows that qX do not have the property "backward shift invariant". In this paper we prove that Bourgain algebra of qX relative to L^{∞} contains C if X is backward shift invariant analytic subagbera and $q \in X$, i.e. $(qX, L^{\infty})_b \supset C$. Other results related to Bourgain algebras of subspaces of H^{∞} were obtained in [13], [14] and [15]. Bourgain algebras of some finitely generated ideals in A and H^{∞} are also studied.

2. The main results

Theorem 2.1. Let X be a backward shift invariant analytic subalgebra and let $q \in X$ be an inner function. The Bourgain algebra of qX relative L^{∞} contains C, i.e. $(qX, L^{\infty})_h \supset C$.

Proof. Since qX is an algebra, the space $(qX, L^{\infty})_b$ is a closed subalgebra of L^{∞} and $qX \subset (qX, L^{\infty})_b$. If $f \in X$ then $f.qg \in X$ for $g \in X$ and we obtain that $X \subset (qX, L^{\infty})_{h}$.

First we will look at the case when $q(0) \neq 0$.

Let $f_n \to 0$ weakly in qX, i.e. $\varphi(f_n) \to 0$ for all $\varphi \in (X)^*$. For $\varphi = \varphi_0$ we have $\varphi_0(f_n) = f_n(0) \to 0$. If $f_n = qg_n$, then $f_n(0) = q(0).g_n(0)$, where $g_n \in X$ and we obtain $g_n(0) \to 0$.

Put $t_n(z) = g_n(z) - g(0)$. Since $\bar{z}t_n = [g_n(z) - g_n(0)] \cdot \bar{z} = [g_n(z) - g_n(0)] / z$ for $z \in T$ and X is a backward shift invariant then $\overline{z}t_n \in X$. Hence:

$$dist(\overline{z}f_n, qX) = dist(\overline{z}qg_n, qX) \le dist(\overline{z}g_n, X) = dist(\overline{z}t_n + g_n(0).\overline{z}, X) = dist(\overline{z}g_n(0), X) = inf\{||h||_{\infty} : h \in [\overline{z}g_n(0)]\} \le ||\overline{z}g_n(0)|| = |g_n(0)| \to 0$$

and we obtain $\bar{z} \in (qX, L^{\infty})_h$.

Now let q(0) = 0.

We can assume that, $q = z^k p$, $k \in \mathbb{N}$ and p is an inner function, such that $p(0) \neq 0$. But $p(z) = \frac{q(z)}{z^k} = \frac{1}{z^{k-1}} \cdot \frac{q(z)-q(0)}{z-0} = \frac{1}{z^{k-1}} \cdot q_1(z)$, where $q_1(z) = \frac{q(z)-q(0)}{z-0}$ belong to the backward shift invariant algebra X. We get to the k - 1 step:

$$p(z) = \frac{1}{z} \cdot q_{k-1}(z) = \frac{q_{k-1}(z) - q_{k-1}(0)}{z - 0} \in X,$$

that is $p \in X$ is an inner function and $p(0) \neq 0$. If $f_n \to 0$ weakly in qX, then $f_n \to 0$ in pX because $qX = z^k p. X \subset pX$. If $f_n = qg_n$, where $g_n \in X$ we have:

$$\operatorname{dist}\left(\bar{z}.f_n,qX\right) = \operatorname{dist}\left(\bar{z}.f_n,z^k.pX\right) = \operatorname{dist}\left(\bar{z}^{k+1}.f_n,pX\right) \to 0$$

because of the first case \bar{z} belongs to the algebra $(pX, L^{\infty})_{h}$. It follows that, $\bar{z} \in (qX, L^{\infty})_{h}$.

Since $z \in X \subset (qX, L^{\infty})_b$ and $(qX, L^{\infty})_b$ contains the constant functions, by the Weierstrase theorem we have $C \subset (qX, L^{\infty})_{h}$. The theorem is proved. \Box

We need two lemmas.

Lemma 2.2. [3] If $\{z_n\}_n \subset D$ is interpolating sequence, then there exist functions $\{f_n\}_n \subset H^{\infty}(D)$ and positive number *M* such that $f_n(z_n) = 1$ for all n, $f_n(z_k) = 0$ for $n \neq k$ and $\sum_{n=1}^{\infty} |f_n(z)| \le M$ for $z \in D$.

Lemma 2.3. [4] Suppose that $\{f_n\}_n$ is a sequence in H^{∞} such that $\sum_{n=1}^{\infty} |f_n(z)| \le M$ for all $z \in D$. Then $f_n \to 0$ weakly in H^{∞} .

Corollary 2.4. Let I be a finitely generated rotation ideal in algebra H^{∞} , then $(I, L^{\infty})_b = H^{\infty} + C$.

Proof. By [16] $I = z^m \cdot H^\infty$ for some positive integer *m* and we can applies Theorem 2.1 by $X = H^\infty$ and $q = z^m$. Therefore $(I, L^{\infty})_b \supset H^{\infty} + C$.

By the Chang-Marshall theorem, every Douglas algebra B such that $H^{\infty} + C \subsetneq B$ is generated by H^{∞} and complex conjugate of infinity interpolating Blaschke product. Then for $(I, L^{\infty})_b = H^{\infty} + C$ it is sufficient to prove that $(I, L^{\infty})_b$ does not contain any complex conjugate of infinity interpolating Blaschke product.

Let *c* be an interpolating Blaschke product with zeros $\{z_n\}_n \subset D$. Notice that $|z_n| \to 1$. According to Lemma 2.2 there exist functions $\{f_n\}_n \subset H^\infty$ and positive number M such that $f_n(z_n) = 1$ for all n, $f_k(z_n) = 0$ for $n \neq k$ and $\sum_{n=1}^{\infty} |f_n(z)| \leq M$ for $z \in D$. Then for the functions $g_n(z) = z^m f_n(z)$, $n \in \mathbb{N}$ we obtain $g_n \in z^m H^{\infty}$, $g_n(z_n) = z_n^m f_n(z_n) = z_n^m$ for all n, $g_n(z_k) = 0$ for $n \neq k$ and $\sum_{n=1}^{\infty} |g_n(z)| \leq M$ for $z \in D$. By Lemma 2.3 (with $z^m H^{\infty}$ instead H^{∞}) we have $g_n \to 0$ weakly in $z^m H^{\infty}$ but

$$\operatorname{dist}\left(\bar{c}g_{n}, z^{m}H^{\infty}\right) = \operatorname{dist}\left(g_{n}, c.z^{m}.H^{\infty}\right) =$$
$$\operatorname{inf}\left(\sup_{z\in D} |g_{n}(z) - c(z).y(z)| : y \in z^{m}H^{\infty}\right) \ge$$
$$\operatorname{inf}\left(|g_{n}(z_{n}) - c(z_{n}).y(z_{n})| : y \in z^{m}H^{\infty}\right) = |g_{n}(z_{n})| = |z_{n}|^{m} \to 1.$$

Thus $\bar{c} \notin (I, L^{\infty})_b$ and the corollary is proved. \Box

By [17], if *I* is a finitely generated prime ideal in H^{∞} then there exist $z_0 \in D$ such that $I = \{f \in H^{\infty} : f(z_0) = 0\}$ i.e. $I = (z - z_0)H^{\infty}$. As in Corollary 2.4, the following statement is proved.

Corollary 2.5. Let I be a finitely generated prime ideal of H^{∞} . Then it is fulfilled $(I, L^{\infty})_{h} = H^{\infty} + C$.

Theorem 2.6. If *B* is a finite Blachke product, then $(BA, C)_b = C$, where C = C(T).

Proof. Since $zB \in C$ then $\overline{z}.\overline{B} = \overline{zB} \in C$. Let $f_n = Bg_n$, $g_n \in A$ and $f_n \to 0$ weakly in *BA*. Since *BA* contains in *A* therefore $f_n \to 0$ weakly in *A*. Then

dist
$$(\bar{z}.f_n, BA) = dist(\bar{z}.\bar{B}.f_n, A) = dist(\bar{z}B.f_n, A) \rightarrow 0$$
,

because $(A, C)_b = C$, i.e. $\overline{z} \in (BA, C)_b$.

Since $zg_n \in A$ we obtain: $dist(zf_n, BA) = dist(Bzg_n, BA) = 0$, i.e.// $z \in (BA, C)_b$.

Since *z* and \bar{z} belong to the closed algebra $(BA, C)_b$, then by the Weierstrase theorem we have that $C \in (BA, C)_b$. The inclusion is obvious. \Box

Let $f \in A$ and $Z(f) = \{z \in \overline{D} : f(z) = 0\}$. For an ideal $I \subset A$ let $Z(I) = \bigcap_{f \in I} Z(f)$ denote its zero set.

Corollary 2.7. Let $I \neq \{0\}$ be an ideal in A that $Z(I) \cap T = \emptyset$. Then $(I, C)_b = C$.

Proof. By [18] *I* is a principal ideal generated by a finite Blaschke product *B*, i.e. I = BA. By Theorem 2.6 we obtain $(I, C)_b = C$.

By [17] if *I* is a finitely generated prime ideal in *A* then $I = (z-z_0)A$ for some $z_0 \in D$. But $(z - z_0)A = \frac{z-z_0}{1-\overline{z}_0z}A$, since $\frac{1}{1-\overline{z}_0z} \in A$. By Theorem 2.6 we obtain the following statement. \Box

Corollary 2.8. If *I* is a finitely generated prime ideal in *A* then $(I, C)_b = C$.

References

- [1] J. Cima, R. Timoney, The Dunford-Pettis property for certain planar uniform algebra, Michigan Math. J. 34 (1987), 99-104
- [2] J. Bourgain, The Dunford Pettis property for the ball algebras the polydisc algebras and Sobolev spaces, Studia Math. 77(1984), 245-253.
- [3] J. Garnett, Bounded analytic functions, Springer, Graduate Texts in Mathematics 236, New York, 2007. Garnet
- [4] J. Cima, S. Janson and K. Yale, Completely continuous HankeI operators on H[∞] and Bourgain algebras, Proc. Amer. Math. Soc. 105(1989), 121-125.
- [5] P. Gorkin, K. Izuchi, R. Mortini, Bourgain algebras of Douglas algebras, Can. J. Math., 44 (4), (1992), 797-804.
- [6] K. Izuchi, Bourgain algebras of the disk, polydisk and ball algebras, Duke Math. J., 66 (3), (1992), 503-519.
- [7] Stankov D. Douglas algebras on the boundary of the big disk, Complex Analysis and Operator Theory, 2015, v. 9, 1337-1348.
 [8] Galina S. Borisova, Solitonic Combinations, Commuting Nonselfadjoint Operators, and Applications, Complex Analysis and Operator Theory, 2021, 15(3), 45

- [9] Galina S. Borisova, Commuting nonselfadjoint operators, open systems, and wave equations, Comptes rendus de l'Academie bulgare des Sciences, 2021, 74(2), 157-165
- [10] M.S. Livsic, Y. Avishai, A Study of Solitonic Combinations Based on the Theory of Commuting Non-Self-Adjoint Operators, Linear Algebra and its Applications, 1989, 122/123/124, 357-414.
- [11] K. Nishizawa, On closed subalgebras between and II, Tokyo J. Math., 5 (1982), 157-169.
- [12] K. Izuchi, Y. Izuchi, Algebras of bounded analytic functions containing the disk algebra, Can. J. Math., 38 (1), (1986), 87-108.
- [13] M. Hristov, On Bourgain algebras of backward shift invariant algebras and their subalgebras, Comptes rendus de l'Academie bulgare des Sciences, 67, 4, 2014, 449-458.
- [14] D. Stankov, Bourgain algebras of closed subalgebras between A and H^{∞} , Comptes rendus de Academie bulgare des Sciences, v. 67, 1, 2014, 5-12.
- [15] D. Stankov, M. Hristov, Bourgain algebras of the algebra $\psi H^{\infty} + C$ on the unit circle and on the spectrum $M(H^{\infty})$, Comptes rendus de l' Academie bulgare des Sciences, (2013), vol. 66, 9, 1223-1230.
 [16] P. Gorkin, Rotation invariant ideals in subalgebras of L[∞], American Mathematical Sosiety, v. 95, 1, 1985. 32 – 36.
- [17] R. Mortini, Finitely Generated Prime Ideals in H^{∞} and A(D), Math.Z. 191, 297 302, (1986).
- [18] R. Mortini, Finitely generated ideals in the disk algebra, Bull. Austral. Math. Soc., v. 50 (1995), 521 528.