Bourgain Algebras of Ideals in H^{∞} Generated by Inner Functions

Miroslav Hristov ${ }^{\text {a }}$
${ }^{a}$ Faculty of Mathematics and computer science, University of Shumen "Konstantin Preslavsky",Shumen, Bulgaria

Abstract

In this paper we prove that Bourgain algebra of $q X$ relative to L^{∞} contains C if X is backward shift invariant analytic subalgebra and $q \in X$ is an inner function, i.e. $\left(q X, L^{\infty}\right)_{b} \supset C$. We also studied some Bourgain algebras of finitely generated ideals in A and H^{∞}.

1. Introduction

Let Y be a commutative Banach algebra with an identity and let X be a linear subspace of Y. J. Cima and R. Timoney [1] introduced the notion of the Bourgain algebra based on the ideas of J. Bourgain [2]. The Bourgain algebra X_{b} or $(X, Y)_{b}$ of X relative to L^{∞} is the space of all functions f in Y such that if $f_{n} \rightarrow 0$ weakly in X, then $\operatorname{dist}\left(f . f_{n}, X\right) \rightarrow 0$.

Distance $\operatorname{dist}\left(f \cdot f_{n}, X\right)$ between $f . f_{n}$ and X is the quotient norm of the coset $f . f_{n}+X$ in the space Y / X. The proof in [1] shows that $(X, Y)_{b}$ is a closed subalgebra of Y and contains the constant functions; if X is an algebra then $X \subset(X, Y)_{b}$.

Let D be the open unit disk and H^{∞} denote the algebra of bounded analytic functions on D. Taking the boundary values of the functions on $T=\{z \in C:|z|=1\}$, we can consider $H^{\infty}=H^{\infty}(T)$ as an essentially supremum-norm closed subalgebra of $L^{\infty}=L^{\infty}(T)$. Let z belong to D and $\varphi_{z}(f)=f(z)$ for every $f \in H^{\infty}$. Then φ_{z} is a complex homomorphism "evaluation at the point z ". Let $C=C(T)$ be the space of all continuous functions on the closed unit circle T.

A closed subalgebra B between H^{∞} and L^{∞} is called a Douglas algebra.
B coincides with the closed subalgebra generate by H^{∞} and complex conjugate of interpolating Blaschke product [3]. The space $H^{\infty}+C=\left[H^{\infty}, z\right]$ is a typical Douglas algebra [3]. In [4] J. Cima, Sv. Janson and K. Yale showed that H_{b}^{∞} relative L^{∞} is $H^{\infty}+C$. P. Gorkin, K. Izuchi and R. Mortini [5] present another proof. They also prove many properties of the Bourgain algebras $\left(X, L^{\infty}\right)_{b}$ where X is Douglas algebra. K Izuchi in [6] proved that the Bourgain algebra of a closed subalgebra E between disk algebra $A=H^{\infty} \cap C$ and H^{∞} relative to L^{∞} is always contained in $H^{\infty}+C$ and $E_{b b}=\left(E_{b}\right)_{b}=E_{b}$.

An inner function is a function $f \in H^{\infty}$ such that $|f(z)|=1$ almost everywhere on T. A sequence $\left\{z_{n}\right\}_{n}$ is called interpolating if for every bounded sequence $\left\{a_{n}\right\}_{n}$ of complex numbers there is a function $f \in H^{\infty}$ such that $f\left(z_{n}\right)=a_{n}$ for all n. For a sequence in D with $\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$, the function:

[^0]$$
B(z)=\prod_{n=1}^{\infty} \frac{-\bar{z}_{n}}{\left|z_{n}\right|} \frac{z-z_{n}}{1-\bar{z}_{n} z}, z \in D
$$
is called a Blaschke product with zeros $\left\{z_{n}\right\}_{n}$. If $\left\{z_{n}\right\}_{n}$ is an interpolating sequence, $B(z)$ then is also called interpolating. Some results for interpolating sequences and their applications in the description of Douglas algebras have been obtained in [3] and [7]. Interpolating sequences can be applied for obtaining new scalar solutions of nonlinear differential equations using results in [8], [9] and [10].
A norm closed subalgebra between A and H^{∞} is called an analytic subalgebra. A subset X of H^{∞} is called blackward shift invariant if
$$
f^{*}=\frac{f(z)-f(0)}{z} \in X, \text { for every } f \text { in } X
$$

Let X be an analytic subalgebra. K. Nishizawa in [11] proved that the linear space $X+C$ is a closed subalgebra of L^{∞} if and only if X is a backward shift invariant.

Some characterizations of backward shift invariant analytic subalgebras are given it the follow statement.
Lemma 1.1. [12] Let X be an analytic algebra. Then the following conditions are equivalent.

1. X is backward shift invariant.
2. For each a in $D,(f(z)-f(0)) /(z-a) \in X$ for every $f \in X$.
3. For each a in $D,(z-a) X+A=X$.
4. $X+C$ is a closed subalgebra.
5. $X=H^{\infty} \cap[X+C]$.
K. Izuchi has been shown that if X is a closed subalgebra, such that
$A \subset X \subset H^{\infty}$ and $X+C$ is an algebra then X_{b} relative L^{∞} contains C [6]. In particular, this is valid for every backward shift invariant analytic subalgebra. There are many different subalgebras of H^{∞} that do not have the property "backward shift invariant".

Example 1. Let X be an analytic subalgebra, $X_{\alpha}=\{f \in X: f(\alpha)=0\}$ and $\alpha \in D$. Since X is a closed subalgebra between A and H^{∞} then

$$
z_{\alpha}=\frac{z-\alpha}{1-\bar{\alpha} z} \in X_{\alpha} \text { and } \frac{z_{\alpha}-z_{\alpha}(0)}{z-0}=\frac{z_{\alpha}+\alpha}{z} .
$$

1. If $\alpha \neq 0$ then $\left(\frac{z_{\alpha}+\alpha}{z}\right)(\alpha)=\frac{\alpha}{\alpha}=1 \neq 0$
2. If $\alpha=0$ then $\frac{z_{0}+0}{z}(0)=1 \neq 0$.

Therefore, $\frac{z_{\alpha}-z_{\alpha}(0)}{z-0} \notin X_{\alpha}$ and X_{α} is not backward shift invariant.
Example 2. Let X be an analytic subalgebra $\alpha \in D$, let q be an inner function in X and $q_{\alpha}=\frac{q-q(\alpha)}{1-q(\alpha) \cdot q}$. We study the algebra $q_{\alpha} X$. Since $1 \in X$ then $q_{\alpha} \in q_{\alpha} X$. We assume that $\frac{q_{\alpha}-q_{\alpha}(0)}{z}=q_{\alpha} . p$ and $p \in X$. Then we get $q_{\alpha}=z . q_{\alpha} \cdot p+q_{\alpha}(0)(1)$.

1. If α is such that $q(0)=q(\alpha)$ then $q_{\alpha}(0)=0$ and we obtain that $z . p=1$, i.e. z is invertible in X.
2. If α is such that $q(0) \neq q(\alpha)$ then $q_{\alpha}(0) \neq 0$. But for $z=\alpha$ in (1) we obtain that $q_{\alpha}(0)=0$.

Therefore $\frac{q_{\alpha}-q_{\alpha}(0)}{z-0} \notin q_{\alpha} X$ and $q_{\alpha} X$ is not backward shift invariant.
In particular, if $q(\alpha)=0$ it follows that $q X$ do not have the property "backward shift invariant". In this paper we prove that Bourgain algebra of $q X$ relative to L^{∞} contains C if X is backward shift invariant analytic subagbera and $q \in X$, i.e. $\left(q X, L^{\infty}\right)_{b} \supset C$. Other results related to Bourgain algebras of subspaces of H^{∞} were obtained in [13], [14] and [15]. Bourgain algebras of some finitely generated ideals in A and H^{∞} are also studied.

2. The main results

Theorem 2.1. Let X be a backward shift invariant analytic subalgebra and let $q \in X$ be an inner function. The Bourgain algebra of $q X$ relative L^{∞} contains C, i.e. $\left(q X, L^{\infty}\right)_{b} \supset C$.

Proof. Since $q X$ is an algebra, the space $\left(q X, L^{\infty}\right)_{b}$ is a closed subalgebra of L^{∞} and $q X \subset\left(q X, L^{\infty}\right)_{b}$. If $f \in X$ then $f . q g \in X$ for $g \in X$ and we obtain that $X \subset\left(q X, L^{\infty}\right)_{b}$.
First we will look at the case when $q(0) \neq 0$.
Let $f_{n} \rightarrow 0$ weakly in $q X$, i.e. $\varphi\left(f_{n}\right) \rightarrow 0$ for all $\varphi \in(X)^{*}$. For $\varphi=\varphi_{0}$ we have $\varphi_{0}\left(f_{n}\right)=f_{n}(0) \rightarrow 0$. If $f_{n}=q g_{n}$, then $f_{n}(0)=q(0) \cdot g_{n}(0)$, where $g_{n} \in X$ and we obtain $g_{n}(0) \rightarrow 0$.

Put $t_{n}(z)=g_{n}(z)-g(0)$. Since $\bar{z} t_{n}=\left[g_{n}(z)-g_{n}(0)\right] . \bar{z}=\left[g_{n}(z)-g_{n}(0)\right] / z$ for $z \in T$ and X is a backward shift invariant then $\bar{z} t_{n} \in X$. Hence:

$$
\begin{gathered}
\operatorname{dist}\left(\bar{z} f_{n}, q X\right)=\operatorname{dist}\left(\bar{z} q g_{n}, q X\right) \leq \operatorname{dist}\left(\bar{z} g_{n}, X\right)= \\
\operatorname{dist}\left(\bar{z} t_{n}+g_{n}(0) . \bar{z}, X\right)=\operatorname{dist}\left(\bar{z} g_{n}(0), X\right)= \\
\inf \left\{\|h\|_{\infty}: h \in\left[\bar{z} g_{n}(0)\right]\right\} \leq\left\|\bar{z} g_{n}(0)\right\|=\left|g_{n}(0)\right| \rightarrow 0
\end{gathered}
$$

and we obtain $\bar{z} \in\left(q X, L^{\infty}\right)_{b}$.
Now let $q(0)=0$.
We can assume that, $q=z^{k} . p, k \in \mathbb{N}$ and p is an inner function, such that $p(0) \neq 0$. But $p(z)=\frac{q(z)}{z^{k}}=$ $\frac{1}{z^{k-1}} \cdot \frac{q(z)}{z}=\frac{1}{z^{k-1}} \cdot \frac{q(z)-q(0)}{z-0}=\frac{1}{z^{k-1}} \cdot q_{1}(z)$, where $q_{1}(z)=\frac{q(z)-q(0)}{z-0}$ belong to the backward shift invariant algebra X. We get to the $k-1$ step:

$$
p(z)=\frac{1}{z} \cdot q_{k-1}(z)=\frac{q_{k-1}(z)-q_{k-1}(0)}{z-0} \in X
$$

that is $p \in X$ is an inner function and $p(0) \neq 0$. If $f_{n} \rightarrow 0$ weakly in $q X$, then $f_{n} \rightarrow 0$ in $p X$ because $q X=z^{k} p . X \subset p X$. If $f_{n}=q g_{n}$, where $g_{n} \in X$ we have:

$$
\operatorname{dist}\left(\bar{z} \cdot f_{n}, q X\right)=\operatorname{dist}\left(\bar{z} \cdot f_{n}, z^{k} \cdot p X\right)=\operatorname{dist}\left(\bar{z}^{k+1} \cdot f_{n}, p X\right) \rightarrow 0
$$

because of the first case \bar{z} belongs to the algebra $\left(p X, L^{\infty}\right)_{b}$. It follows that, $\bar{z} \in\left(q X, L^{\infty}\right)_{b}$.
Since $z \in X \subset\left(q X, L^{\infty}\right)_{b}$ and $\left(q X, L^{\infty}\right)_{b}$ contains the constant functions, by the Weierstrase theorem we have $C \subset\left(q X, L^{\infty}\right)_{b}$. The theorem is proved.

We need two lemmas.
Lemma 2.2. [3] If $\left\{z_{n}\right\}_{n} \subset D$ is interpolating sequence, then there exist functions $\left\{f_{n}\right\}_{n} \subset H^{\infty}(D)$ and positive number M such that $f_{n}\left(z_{n}\right)=1$ for all $n, f_{n}\left(z_{k}\right)=0$ for $n \neq k$ and $\sum_{n=1}^{\infty}\left|f_{n}(z)\right| \leq M$ for $z \in D$.

Lemma 2.3. [4] Suppose that $\left\{f_{n}\right\}_{n}$ is a sequence in H^{∞} such that $\sum_{n=1}^{\infty}\left|f_{n}(z)\right| \leq M$ for all $z \in D$. Then $f_{n} \rightarrow 0$ weakly in H^{∞}.

Corollary 2.4. Let I be a finitely generated rotation ideal in algebra H^{∞}, then $\left(I, L^{\infty}\right)_{b}=H^{\infty}+C$.
Proof. By [16] $I=z^{m} \cdot H^{\infty}$ for some positive integer m and we can applies Theorem 2.1 by $X=H^{\infty}$ and $q=z^{m}$. Therefore $\left(I, L^{\infty}\right)_{b} \supset H^{\infty}+C$.

By the Chang-Marshall theorem, every Douglas algebra B such that
$H^{\infty}+C \subsetneq B$ is generated by H^{∞} and complex conjugate of infinity interpolating Blaschke product. Then for $\left(I, L^{\infty}\right)_{b}=H^{\infty}+C$ it is sufficient to prove that $\left(I, L^{\infty}\right)_{b}$ does not contain any complex conjugate of infinity interpolating Blaschke product.

Let c be an interpolating Blaschke product with zeros $\left\{z_{n}\right\}_{n} \subset D$. Notice that $\left|z_{n}\right| \rightarrow 1$. According to Lemma 2.2 there exist functions $\left\{f_{n}\right\}_{n} \subset H^{\infty}$ and positive number M such that $f_{n}\left(z_{n}\right)=1$ for all n,
$f_{k}\left(z_{n}\right)=0$ for $n \neq k$ and $\sum_{n=1}^{\infty}\left|f_{n}(z)\right| \leq M$ for $z \in D$. Then for the functions $g_{n}(z)=z^{m} f_{n}(z), n \in \mathbb{N}$ we obtain $g_{n} \in z^{m} H^{\infty}, g_{n}\left(z_{n}\right)=z_{n}^{m} f_{n}\left(z_{n}\right)=z_{n}^{m}$ for all $n, g_{n}\left(z_{k}\right)=0$ for $n \neq k$ and $\sum_{n=1}^{\infty}\left|g_{n}(z)\right| \leq M$ for $z \in D$. By Lemma 2.3 (with $z^{m} H^{\infty}$ instead H^{∞}) we have $g_{n} \rightarrow 0$ weakly in $z^{m} H^{\infty}$ but

$$
\begin{gathered}
\operatorname{dist}\left(\bar{c} g_{n}, z^{m} H^{\infty}\right)=\operatorname{dist}\left(g_{n}, c \cdot z^{m} \cdot H^{\infty}\right)= \\
\inf \left(\sup _{z \in D}\left|g_{n}(z)-c(z) \cdot y(z)\right|: y \in z^{m} H^{\infty}\right) \geq \\
\inf \left(\left|g_{n}\left(z_{n}\right)-c\left(z_{n}\right) \cdot y\left(z_{n}\right)\right|: y \in z^{m} H^{\infty}\right)=\left|g_{n}\left(z_{n}\right)\right|=\left|z_{n}\right|^{m} \rightarrow 1
\end{gathered}
$$

Thus $\bar{c} \notin\left(I, L^{\infty}\right)_{b}$ and the corollary is proved.
By [17], if I is a finitely generated prime ideal in H^{∞} then there exist $z_{0} \in D$ such that $I=\left\{f \in H^{\infty}: f\left(z_{0}\right)=0\right\}$ i.e. $I=\left(z-z_{0}\right) H^{\infty}$. As in Corollary 2.4, the following statement is proved.

Corollary 2.5. Let I be a finitely generated prime ideal of H^{∞}. Then it is fulfilled $\left(I, L^{\infty}\right)_{b}=H^{\infty}+C$.
Theorem 2.6. If B is a finite Blachke product, then $(B A, C)_{b}=C$, where $C=C(T)$.
Proof. Since $z B \in C$ then $\bar{z} \cdot \bar{B}=\overline{z B} \in C$. Let $f_{n}=B g_{n}, g_{n} \in A$ and $f_{n} \rightarrow 0$ weakly in $B A$. Since $B A$ contains in A therefore $f_{n} \rightarrow 0$ weakly in A. Then

$$
\operatorname{dist}\left(\bar{z} \cdot f_{n}, B A\right)=\operatorname{dist}\left(\bar{z} \cdot \bar{B} \cdot f_{n}, A\right)=\operatorname{dist}\left(\overline{z B} \cdot f_{n}, A\right) \rightarrow 0,
$$

because $(A, C)_{b}=C$, i.e. $\bar{z} \in(B A, C)_{b}$.
Since $z g_{n} \in A$ we obtain: $\operatorname{dist}\left(z f_{n}, B A\right)=\operatorname{dist}\left(B z g_{n}, B A\right)=0$, i.e. $/ / z \in(B A, C)_{b}$.
Since z and \bar{z} belong to the closed algebra $(B A, C)_{b}$, then by the Weierstrase theorem we have that $C \in(B A, C)_{b}$. The inclusion is obvious.

Let $f \in A$ and $Z(f)=\{z \in \bar{D}: f(z)=0\}$. For an ideal $I \subset A$ let $Z(I)=\bigcap_{f \in I} Z(f)$ denote its zero set.
Corollary 2.7. Let $I \neq\{0\}$ be an ideal in A that $Z(I) \cap T=\varnothing$. Then $(I, C)_{b}=C$.
Proof. By [18] I is a principal ideal generated by a finite Blaschke product B, i.e. $I=B A$. By Theorem 2.6 we obtain $(I, C)_{b}=C$.

By [17] if I is a finitely generated prime ideal in A then $I=\left(z-z_{0}\right) A$ for some $z_{0} \in D$. But $\left(z-z_{0}\right) A=\frac{z-z_{0}}{1-z_{0} z} A$, since $\frac{1}{1-\bar{z}_{0} z} \in A$. By Theorem 2.6 we obtain the following statement.

Corollary 2.8. If I is a finitely generated prime ideal in A then $(I, C)_{b}=C$.

References

[1] J. Cima, R. Timoney, The Dunford-Pettis property for certain planar uniform algebra, Michigan Math. J. 34 (1987), 99-104
[2] J. Bourgain, The Dunford Pettis property for the ball algebras the polydisc algebras and Sobolev spaces, Studia Math. 77(1984), 245-253.
[3] J. Garnett, Bounded analytic functions, Springer, Graduate Texts in Mathematics 236, New York, 2007. Garnet
[4] J. Cima, S. Janson and K. Yale, Completely continuous HankeI operators on H^{∞} and Bourgain algebras, Proc. Amer. Math. Soc. 105(1989), 121-125.
[5] P. Gorkin, K. Izuchi, R. Mortini, Bourgain algebras of Douglas algebras, Can. J. Math., 44 (4), (1992), 797-804.
[6] K. Izuchi, Bourgain algebras of the disk, polydisk and ball algebras, Duke Math. J., 66 (3), (1992), 503-519.
[7] Stankov D. Douglas algebras on the boundary of the big disk, Complex Analysis and Operator Theory, 2015, v. 9, 1337-1348.
[8] Galina S. Borisova, Solitonic Combinations, Commuting Nonselfadjoint Operators, and Applications, Complex Analysis and Operator Theory, 2021, 15(3), 45
[9] Galina S. Borisova, Commuting nonselfadjoint operators, open systems, and wave equations, Comptes rendus de l'Academie bulgare des Sciences, 2021, 74(2), 157-165
[10] M.S. Livsic, Y. Avishai, A Study of Solitonic Combinations Based on the Theory of Commuting Non-Self-Adjoint Operators, Linear Algebra and its Applications, 1989, 122/123/124, 357-414.
[11] K. Nishizawa, On closed subalgebras between and II, Tokyo J. Math., 5 (1982), 157-169.
[12] K. Izuchi, Y. Izuchi, Algebras of bounded analytic functions containing the disk algebra, Can. J. Math., 38 (1), (1986), 87-108.
[13] M. Hristov, On Bourgain algebras of backward shift invariant algebras and their subalgebras, Comptes rendus de l'Academie bulgare des Sciences, 67, 4, 2014, 449-458.
[14] D. Stankov, Bourgain algebras of closed subalgebras between A and H^{∞}, Comptes rendus de Academie bulgare des Sciences, v. 67, 1, 2014, 5-12.
[15] D. Stankov, M. Hristov, Bourgain algebras of the algebra $\psi H^{\infty}+C$ on the unit circle and on the spectrum $M\left(H^{\infty}\right)$, Comptes rendus de l' Academie bulgare des Sciences, (2013), vol. 66, 9, 1223-1230.
[16] P. Gorkin, Rotation invariant ideals in subalgebras of L^{∞}, American Mathematical Sosiety, v. 95, 1, 1985. 32 - 36.
[17] R. Mortini, Finitely Generated Prime Ideals in H^{∞} and $A(D)$, Math.Z. 191, 297 - 302, (1986).
[18] R. Mortini, Finitely generated ideals in the disk algebra, Bull. Austral. Math. Soc. , v. 50 (1995), 521 - 528.

[^0]: 2020 Mathematics Subject Classification. Primary 30H05; Secondary 30H50, 46J30
 Keywords. Bounded analytic functions, Bourgain algebras,Ideals, Invariant subalgebras, Backward shift invariant subalgebras Received: 18 December 2020; Accepted: 03 April 2021
 Communicated by Dragan S. Djordjević
 Research supported by Shumen University through Scientific Research Grant RD-08-28/12.01.2022
 Email address: miroslav.hristov@shu.bg (Miroslav Hristov)

