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Abstract. In this paper we prove that Bourgain algebra of qX relative to L∞ contains C if X is backward
shift invariant analytic subalgebra and q ∈ X is an inner function, i.e.

(
qX,L∞

)
b ⊃ C. We also studied some

Bourgain algebras of finitely generated ideals in A and H∞.

1. Introduction

Let Y be a commutative Banach algebra with an identity and let X be a linear subspace of Y. J. Cima
and R. Timoney [1] introduced the notion of the Bourgain algebra based on the ideas of J. Bourgain [2]. The
Bourgain algebra Xb or (X,Y)b of X relative to L∞ is the space of all functions f in Y such that if fn → 0
weakly in X, then dist

(
f . fn,X

)
→ 0.

Distance dist
(

f . fn,X
)

between f . fn and X is the quotient norm of the coset f . fn + X in the space Y/X.
The proof in [1] shows that (X,Y)b is a closed subalgebra of Y and contains the constant functions; if X is an
algebra then X ⊂ (X,Y)b.

Let D be the open unit disk and H∞ denote the algebra of bounded analytic functions on D. Taking the
boundary values of the functions on T = {z ∈ C : |z| = 1}, we can consider H∞ = H∞ (T) as an essentially
supremum-norm closed subalgebra of L∞ = L∞ (T). Let z belong to D and ϕz

(
f
)

= f (z) for every f ∈ H∞.
Thenϕz is a complex homomorphism “evaluation at the point z”. Let C = C (T) be the space of all continuous
functions on the closed unit circle T.

A closed subalgebra B between H∞ and L∞ is called a Douglas algebra.
B coincides with the closed subalgebra generate by H∞ and complex conjugate of interpolating Blaschke
product [3]. The space H∞ + C = [H∞, z] is a typical Douglas algebra [3]. In [4] J. Cima, Sv. Janson and K.
Yale showed that H∞b relative L∞ is H∞+C. P. Gorkin, K. Izuchi and R. Mortini [5] present another proof.
They also prove many properties of the Bourgain algebras (X,L∞)b where X is Douglas algebra. K Izuchi
in [6] proved that the Bourgain algebra of a closed subalgebra E between disk algebra A = H∞ ∩ C and H∞

relative to L∞ is always contained in H∞+C and Ebb = (Eb)b = Eb.
An inner function is a function f ∈ H∞ such that

∣∣∣ f (z)
∣∣∣ = 1 almost everywhere on T. A sequence {zn}n

is called interpolating if for every bounded sequence {an}n of complex numbers there is a function f ∈ H∞

such that f (zn) = an for all n. For a sequence in D with
∞∑

n=1
(1 − |zn|) < ∞, the function:
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B (z) =

∞∏
n=1

−z̄n

|zn|

z − zn

1 − z̄nz
, z ∈ D,

is called a Blaschke product with zeros {zn}n. If {zn}n is an interpolating sequence, B(z) then is also called
interpolating. Some results for interpolating sequences and their applications in the description of Douglas
algebras have been obtained in [3] and [7]. Interpolating sequences can be applied for obtaining new scalar
solutions of nonlinear differential equations using results in [8], [9] and [10].

A norm closed subalgebra between A and H∞ is called an analytic subalgebra. A subset X of H∞ is called
blackward shift invariant if

f ∗ =
f (z) − f (0)

z
∈ X, for every f in X.

Let X be an analytic subalgebra. K. Nishizawa in [11] proved that the linear space X + C is a closed
subalgebra of L∞ if and only if X is a backward shift invariant.

Some characterizations of backward shift invariant analytic subalgebras are given it the follow statement.

Lemma 1.1. [12] Let X be an analytic algebra. Then the following conditions are equivalent.

1. X is backward shift invariant.
2. For each a in D , ( f (z) − f (0))/(z − a) ∈ X for every f ∈ X.
3. For each a in D, (z − a)X + A = X.
4. X + C is a closed subalgebra.
5. X = H∞ ∩ [X + C].

K. Izuchi has been shown that if X is a closed subalgebra, such that
A ⊂ X ⊂ H∞ and X + C is an algebra then Xb relative L∞ contains C [6]. In particular, this is valid for every
backward shift invariant analytic subalgebra. There are many different subalgebras of H∞ that do not have
the property “backward shift invariant”.

Example 1. Let X be an analytic subalgebra, Xα =
{
f ∈ X : f (α) = 0

}
and α ∈ D. Since X is a closed

subalgebra between A and H∞ then

zα =
z − α

1 − ᾱz
∈ Xα and

zα − zα(0)
z − 0

=
zα + α

z
.

1. If α , 0 then
(

zα+α
z

)
(α) = α

α = 1 , 0

2. If α = 0 then z0+0
z (0) = 1 , 0 .

Therefore, zα−zα(0)
z−0 < Xα and Xα is not backward shift invariant.

Example 2. Let X be an analytic subalgebra α ∈ D, let q be an inner function in X and qα =
q−q(α)

1−q(α).q . We

study the algebra qαX. Since 1 ∈ X then qα ∈ qαX. We assume that qα−qα(0)
z = qα.p and p ∈ X. Then we get

qα = z.qα.p + qα(0) (1).

1. If α is such that q(0) = q(α) then qα(0) = 0 and we obtain that z.p = 1, i.e. z is invertible inX.
2. If α is such that q(0) , q(α) then qα(0) , 0. But for z = α in (1) we obtain that qα(0) = 0.

Therefore qα−qα(0)
z−0 < qαX and qαX is not backward shift invariant.

In particular, if q(α) = 0 it follows that qX do not have the property “backward shift invariant”. In
this paper we prove that Bourgain algebra of qX relative to L∞ contains C if X is backward shift invariant
analytic subagbera and q ∈ X, i.e.

(
qX,L∞

)
b ⊃ C. Other results related to Bourgain algebras of subspaces of

H∞ were obtained in [13], [14] and [15]. Bourgain algebras of some finitely generated ideals in A and H∞

are also studied.
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2. The main results

Theorem 2.1. Let X be a backward shift invariant analytic subalgebra and let q ∈ X be an inner function. The
Bourgain algebra of qX relative L∞ contains C, i.e.

(
qX,L∞

)
b ⊃ C.

Proof. Since qX is an algebra, the space
(
qX,L∞

)
b is a closed subalgebra of L∞ and qX ⊂

(
qX,L∞

)
b. If f ∈ X

then f .q1 ∈ X for 1 ∈ X and we obtain that X ⊂
(
qX,L∞

)
b.

First we will look at the case when q(0) , 0.
Let fn → 0 weakly in qX, i.e. ϕ( fn) → 0 for all ϕ ∈ (X)∗. For ϕ = ϕ0 we have ϕ0( fn) = fn(0) → 0. If

fn = q1n, then fn(0) = q(0).1n(0), where 1n ∈ X and we obtain 1n(0)→ 0.
Put tn(z) = 1n(z) − 1(0). Since z̄tn =

[
1n(z) − 1n(0)

]
.z̄ =

[
1n(z) − 1n(0)

]
/z for z ∈ T and X is a backward

shift invariant then z̄tn ∈ X. Hence:

dist
(
z̄ fn, qX

)
= dist

(
z̄q1n, qX

)
≤ dist

(
z̄1n,X

)
=

dist
(
z̄tn + 1n(0).z̄,X

)
= dist

(
z̄1n(0),X

)
=

inf
{
‖h‖∞ : h ∈

[
z̄1n(0)

]}
≤

∥∥∥z̄1n(0)
∥∥∥ =

∣∣∣1n(0)
∣∣∣→ 0

and we obtain z̄ ∈
(
qX,L∞

)
b .

Now let q(0) = 0.
We can assume that, q = zk.p, k ∈ N and p is an inner function, such that p(0) , 0. But p (z) =

q(z)
zk =

1
zk−1 .

q(z)
z = 1

zk−1 .
q(z)−q(0)

z−0 = 1
zk−1 .q1(z) , where q1(z) =

q(z)−q(0)
z−0 belong to the backward shift invariant algebra X.

We get to the k − 1 step:

p (z) =
1
z
.qk−1 (z) =

qk−1(z) − qk−1(0)
z − 0

∈ X,

that is p ∈ X is an inner function and p(0) , 0 . If fn → 0 weakly in qX, then fn → 0 in pX because
qX = zkp.X ⊂ pX . If fn = q1n, where 1n ∈ X we have:

dist
(
z̄. fn, qX

)
= dist

(
z̄. fn, zk.pX

)
= dist

(
z̄k+1. fn, pX

)
→ 0

because of the first case z̄ belongs to the algebra
(
pX,L∞

)
b. It follows that, z̄ ∈

(
qX,L∞

)
b.

Since z ∈ X ⊂
(
qX,L∞

)
b and

(
qX,L∞

)
b contains the constant functions, by the Weierstrase theorem we

have C ⊂
(
qX,L∞

)
b. The theorem is proved.

We need two lemmas.

Lemma 2.2. [3] If {zn}n ⊂ D is interpolating sequence, then there exist functions { fn}n ⊂ H∞(D) and positive number

M such that fn(zn) = 1 for all n, fn(zk) = 0 for n , k and
∞∑

n=1
| fn(z)| ≤M for z ∈ D.

Lemma 2.3. [4] Suppose that { fn}n is a sequence in H∞ such that
∞∑

n=1
| fn(z)| ≤M for all z ∈ D. Then fn → 0 weakly

in H∞.

Corollary 2.4. Let I be a finitely generated rotation ideal in algebra H∞, then (I,L∞)b = H∞ + C.

Proof. By [16] I = zm.H∞ for some positive integer m and we can applies Theorem 2.1 by X = H∞ and q = zm.
Therefore (I,L∞)b ⊃ H∞ + C.

By the Chang-Marshall theorem, every Douglas algebra B such that
H∞ + C  B is generated by H∞ and complex conjugate of infinity interpolating Blaschke product. Then
for (I,L∞)b = H∞ + C it is sufficient to prove that (I,L∞)b does not contain any complex conjugate of infinity
interpolating Blaschke product.

Let c be an interpolating Blaschke product with zeros {zn}n ⊂ D. Notice that |zn| → 1. According
to Lemma 2.2 there exist functions

{
fn
}
n ⊂ H∞ and positive number M such that fn(zn) = 1 for all n,
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fk(zn) = 0 for n , k and
∞∑

n=1

∣∣∣ fn(z)
∣∣∣ ≤ M for z ∈ D. Then for the functions 1n(z) = zm fn(z), n ∈ N we obtain

1n ∈ zmH∞, 1n(zn) = zm
n fn(zn) = zm

n for all n, 1n(zk) = 0 for n , k and
∞∑

n=1

∣∣∣1n(z)
∣∣∣ ≤ M for z ∈ D. By Lemma 2.3

(with zmH∞ instead H∞) we have 1n → 0 weakly in zmH∞ but

dist
(
c̄1n, zmH∞

)
= dist

(
1n, c.zm.H∞

)
=

inf
(
sup
z∈D

∣∣∣1n(z) − c(z).y(z)
∣∣∣ : y ∈ zmH∞

)
≥

inf
(∣∣∣1n(zn) − c(zn).y(zn)

∣∣∣ : y ∈ zmH∞
)

=
∣∣∣1n(zn)

∣∣∣ = |zn|
m
→ 1.

Thus c̄ < (I,L∞)b and the corollary is proved.

By [17], if I is a finitely generated prime ideal in H∞ then there exist z0 ∈ D such that I =
{
f ∈ H∞ : f (z0) = 0

}
i.e. I = (z − z0)H∞. As in Corollary 2.4, the following statement is proved.

Corollary 2.5. Let I be a finitely generated prime ideal of H∞. Then it is fulfilled (I,L∞)b = H∞ + C.

Theorem 2.6. If B is a finite Blachke product, then (BA,C)b = C, where C = C(T).

Proof. Since zB ∈ C then z̄.B̄ = zB ∈ C. Let fn = B1n, 1n ∈ A and fn → 0 weakly in BA. Since BA contains in
A therefore fn → 0 weakly in A. Then

dist
(
z̄. fn,BA

)
= dist

(
z̄.B̄. fn,A

)
= dist

(
zB. fn,A

)
→ 0,

because (A,C)b = C, i.e. z̄ ∈ (BA,C)b.
Since z1n ∈ A we obtain: dist

(
z fn,BA

)
= dist

(
Bz1n,BA

)
= 0, i.e.// z ∈ (BA,C)b.

Since z and z̄ belong to the closed algebra (BA,C)b, then by the Weierstrase theorem we have that
C ∈ (BA,C)b. The inclusion is obvious.

Let f ∈ A and Z
(

f
)

=
{
z ∈ D̄ : f (z) = 0

}
. For an ideal I ⊂ A let Z (I) =

⋂
f∈I

Z
(

f
)

denote its zero set.

Corollary 2.7. Let I , {0} be an ideal in A that Z(I) ∩ T = ∅. Then (I,C)b = C.

Proof. By [18] I is a principal ideal generated by a finite Blaschke product B, i.e. I = BA. By Theorem 2.6 we
obtain (I,C)b = C.

By [17] if I is a finitely generated prime ideal in A then I = (z−z0)A for some z0 ∈ D. But (z − z0) A = z−z0
1−z̄0z A,

since 1
1−z̄0z ∈ A. By Theorem 2.6 we obtain the following statement.

Corollary 2.8. If I is a finitely generated prime ideal in A then (I,C)b = C.
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