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Abstract. Let G be a graph of order n. For i = 1, 2, . . . ,n, let di be the degree of the vertex vi of G. The

Sombor matrix Aso of G is defined so that its (i, j)-entry is equal to
√

d2
i + d2

j if the vertices vi and v j are

adjacent, and 0 otherwise. The spectral radius η1 and the energy Eso of Aso are examined. In particular,
upper bounds on Eso are obtained, as well as Nordhaus–Gaddum–type results for η1 and Eso.

1. Introduction

Let G = (V,E) be a connected graph with vertex set V = V(G) and edge set E = E(G), and let |V| = n
and |E| = m. The edge connecting the vertices u and v will be denoted by uv. Let di be the degree of vertex
vi ∈ V(G) for i = 1, 2, . . . ,n. The maximum and minimum degree of G are denoted by ∆ and δ, respectively.

The adjacency matrix A = A(G) = (ai j)n×n of G is defined via

ai j =

 1 if the vertices vi and v j are adjacent

0 otherwise.

Letλ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A(G), forming the spectrum of the graph G [5]. The maximum
eigenvalue λ1 is usually called as the spectral radius of G. The energy of G is defined as [13]

E = E(G) =

n∑
i=1

|λi| .

There are a number of graph energies, and the majority of them are based on some types of degree–based
square, symmetric matrices; see [9, 10].
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Recently, a new vertex–degree–based graph invariant was introduced [8], defined as

SO = SO(G) =
∑

i j∈E(G)

√
(di)2 + (d j)2,

and named Sombor index. In fact, in [8], a novel approach to the interpretation of vertex–degree–based
molecular structure descriptors was put forward. In [8], some basic properties of the Sombor index are
established, including bounds for general graphs and trees. The relations between Sombor and other
degree-based indices are given in [16]. Inspired by this new index, following the reasoning from [6], we
define the Sombor matrix of the graph G, denoted by Aso = Aso(G) = (a′i j)n×n via

a′i j =


√

(di)2 + (d j)2 if the vertices vi and v j are adjacent

0 otherwise.

It is obvious that Aso(G) =
√

2 r A(G) if G is an r-regular graph.
We denote the eigenvalues of Aso(G) by η1 ≥ η2 ≥ · · · ≥ ηn, which form the Sombor spectrum of G. Then,

in analogy with the ordinary graph spectrum [5, 6], η1 is the Sombor spectral radius and

Eso = Eso(G) =

n∑
i=1

|ηi|

is the Sombor energy of G.
Let f (G) be a graph invariant and n a positive integer, The Nordhaus–Gaddum problem is to determine

sharp bounds for f (G) + f (G) and f (G) · f (G), as G ranges over the class of all graphs of order n, and to
characterize the extremal graphs, i.e., graphs that achieve the bounds. Nordhaus–Gaddum type relations
have received wide attention; see the recent survey [1] and the book chapter [14].

For other undefined notations and terminology from graph theory, refer to [2, 7]. The rest of the paper
is structured as follows. In Section 2, we get some bounds for Sombor spectral radius and Sombor energy.
In Section 3, we give Nordhaus–Gaddum type results for the spectral radius η1. Analogous results for the
Sombor energy are given in Section 4.

2. Bounds for Sombor spectral radius and Sombor energy

We state here some previously known results that are needed in the next two sections.

Lemma 2.1. (Rayleigh–Ritz) [17] If M is a symmetric n × n matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, then for
any x ∈ Rn, such that x , 0,

λ1 xT x ≥ xT M x .

Equality holds if and only if x is an eigenvector of M corresponding to the largest eigenvalue λ1.

Lemma 2.2. [11] Let A = (ai j) and B = (bi j) be symmetric, non-negative matrices of order n. If A ≥ B, i.e. ai j ≥ bi j
for all i, j, then λ1(A) ≥ λ1(B), where λ1 is the largest eigenvalue.

Lemma 2.3. [15] Let M be a symmetric matrix of order n, and let Mk be its leading k × k submatrix. Then, for
i = 1, 2, . . . , k,

λn−i+1(M) ≤ λk−i+1(Mk) ≤ λk−i+1(M) ,

where λi(M) is the i-th largest eigenvalue of M.
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Lemma 2.4. [3] Let G be a graph of order n with m edges, minimum degree δ ≥ 1, and maximum degree ∆. Then

λ1 ≤
√

2m − δ(n − 1) + (δ − 1)∆ ,

with equality holding if and only if G is regular, a star plus copies of K2, or a complete graph plus a regular graph
whose degree is smaller.

The following result is immediate.

Corollary 2.5. Let G be a graph of order n with m edges, minimum degree δ ≥ 1, and maximum degree ∆. Then

η1 ≤
√

2 ∆(G)
√

2m − δ(n − 1) + (δ − 1)∆ .

Moreover, the bound is sharp.

Proof. From Lemma 2.2, we have

η1 ≤
√

2 ∆(G)λ1 ≤
√

2 ∆(G)
√

2m − δ(n − 1) + (δ − 1)∆ .

If G is a regular graph of degree ∆ = δ, then η1 =
√

2 ∆λ1, which means that the bound is sharp.

Koolen and Moulton [12] obtained the following three results.

Lemma 2.6. [12] If 2m ≥ n and G is a graph on n vertices with m edges, then the inequality

E(G) ≤
2m
n

+

√
(n − 1)

[
2m −

(2m
n

)2]
holds. Moreover, equality holds if and only if G is either n

2 K2, Kn, or a non-complete connected strongly regular graph
with two non-trivial eigenvalues both with absolute value√

1
n − 1

[
2m −

(2m
n

)2]
.

Lemma 2.7. [12] If 2m ≤ n and G is a graph on n vertices with m edges, then the inequality

E(G) ≤ 2m

holds. Moreover, equality holds if and only if G is disjoint union of edges and isolated vertices.

Lemma 2.8. [12] Let G be a graph on n vertices. Then

E(G) ≤
n
2

(1 +
√

n) ,

holds, with equality holding if and only if G is a strongly regular graph with parameters
(
n, (n +

√
n)/2, (n +

2
√

n)/4, (n + 2
√

n)/4
)
.

Following the idea from [12], we obtain the following results.

Theorem 2.9. Let G be a graph on n vertices with m edges having no isolated vertices. If 2m ≥ n, then

Eso(G) ≤ t +
√

(n − 1) [4m∆2 − t2] , (1)

where t = max
{

2
√

2 mδ
n ,

√
4m∆2

n

}
. Moreover, the upper bound is sharp.
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Proof. Suppose that η1 ≥ η2 ≥ · · · ≥ ηn are the eigenvalues of Aso(G) (which are real as the Sombor matrix
of is real and symmetric). Then, setting x = (1, 1, . . . , 1)T in Lemma 2.1, we get

η1 ≥
2SO(G)

n
≥

2
√

2 mδ
n

.

Combining this with the Cauchy–Schwartz inequality, applied to the vectors
(|η2|, |η3|, . . . , |ηn|)T and (1, 1, . . . , 1)T with n − 1 entries, we obtain the inequality

n∑
i=2

|ηi| ≤

√√
(n − 1)

 n∑
i=1

η2
i − η

2
1

.
Now, the function F(x) := x +

√
(n − 1) [4m∆2 − x2] attains a maximum value when x =

√
4m∆2

n . Thus

F(η1) ≤ F
(√

4m∆2

n

)
holds. If 2

√
2 mδ
n ≥

√
4m∆2

n , then F(η1) ≤ F( 2
√

2 mδ
n ). Thus, we must have

Eso(G) ≤ x +

√√
(n − 1)

 n∑
i=1

η2
i − x2

 ≤ t +
√

(n − 1)
{
4m∆2 − t2} .

One can easily check that n
2 K2 and Kn attain this upper bound.

Corollary 2.10. Let G be a graph on n vertices with m edges having no isolated vertices. If 2m ≥ n, then

Eso(G) ≤ ∆
√

4nm .

Theorem 2.11. Let G be a graph on n vertices with m edges. If 2m ≤ n, then

Eso(G) ≤ 2
√

2 m∆(G) .

Moreover, the bound is sharp.

Proof. Since 2m ≤ n, it follows that G has at least n − 2m isolated vertices. Consider the graph G′ obtained
from G by removing all isolated vertices. Then G′ has at most 2m vertices and m edges. Thus we may
apply Theorem 2.9 to see that Eso(G) = Eso(G′) ≤ 2

√
2 m∆(G′) = 2

√
2 m∆(G) holds. If G′ is a disjoint union

of edges, then G attains the upper bound.

Theorem 2.12. Let G be a graph on n vertices having no isolated vertices. Then

Eso(G) ≤
(n + n

√
n)∆2

√
2 δ

. (2)

Proof. Suppose that G is a graph with n vertices and m edges. If 2m ≥ n and

2
√

2 mδ
n

≥

√
4m∆2

n
,

then using routine calculus, it is seen that the right–hand side of inequality (1) – considered as a function of
m – is maximized for

m =
(n2 + n

√
n)∆2

4 δ2 .

Substituting this value of m into (1), we get the bound (2).
If √

4m∆2

n
≥

2
√

2 mδ
n

,

then

Eso(G) ≤
√

4nm∆2 ≤

√
2 n∆2

δ
.

If 2m ≤ n, then by Theorem 2.11, Eso(G) ≤
√

2 n∆(G). It is clear that (2) follows.
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3. Nordhaus–Gaddum type results for Sombor spectral radius

In this section we present lower and upper bounds on η1 + η̄1.

Theorem 3.1. Let G be a graph of order n with m edges, minimum degree δ and maximum degree ∆. Then

η1 + η̄1 ≥
2
n

[
√

2 mδ(G) +

[(
n
2

)
−m

] [
n − 1 − ∆(G)

]√
2
]
. (3)

Moreover, the bound is sharp.

Proof. Let x = (x1, x2, . . . , xn)T be any vector in Rn. We have

xT(Aso + Āso)x = xTAsox + xTĀsox

=
∑

viv j∈E(G)

(
2
√

d2
i + d2

j

)
xi x j +

∑
viv j∈E(Ḡ)

(
2
√

d̄2
i + d̄2

j

)
xi x j

which for x =
(

1
√

n
, 1
√

n
, · · · , 1

√
n

)T
becomes

=
2
n

∑
viv j∈E(G)

√
d2

i + d2
j +

2
n

∑
viv j∈E(Ḡ)

√
d̄2

i + d̄2
j

=
2
n

[SO(G) + SO(G)]

≥
2
n

[
√

2 mδ(G) +

[(
n
2

)
−m

] [
n − 1 − ∆(G))

]√
2
]
. (4)

From Lemma 2.1, we get η1 ≥ xTAso x and η̄1 ≥ xT Āsox. Combining this with inequality (4), we obtain
((3)).

Suppose now that equality holds in (3). Therefore G is regular. Conversely, it is not difficult to see that
the equality (3) holds for regular graphs.

Corollary 3.2. If G is regular, then

η1 + η̄1 ≥ xT(Aso + Āso)x ≥
√

2 ∆2 +
√

2(n − 1 − ∆)2 .

We are now in the position to give Nordhaus–Gaddum type results for η1.

Theorem 3.3. Let G be a connected graph of order n with m edges. Then

η1 + η̄1 ≤
√

2 ∆(G)
√

2m − δ(n − 1) + (δ − 1)∆

+
√

2(n − 1 − δ)

√
2
(
n
2

)
− 2m − (δ + 1)(n − 1) + δ(∆ + 1) .

Moreover, the bound is sharp.
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Proof. From Corollary 2.5, we have

η1 ≤
√

2 ∆
√

2m − δ(n − 1) + (δ − 1)∆

and

η1 ≤

√

2 ∆

√
2
(
n
2

)
− 2m − δ(n − 1) + (δ − 1)∆

=
√

2(n − 1 − δ)

√
2
(
n
2

)
− 2m − (δ + 1)(n − 1) + δ(∆ + 1) ,

and hence

η1 + η1 ≤

√

2 ∆
√

2m − δ(n − 1) + (δ − 1)∆

+
√

2(n − 1 − δ)

√
2
(
n
2

)
− 2m − (δ + 1)(n − 1) + δ(∆ + 1) .

In order to show the sharpness of the upper bound in Theorem 3.3, we consider the following examples.

Example 1. Let G be a regular graph. Then G is also regular. From Corollary 2.5, we have

η1 + η1 =
√

2 ∆
√

2m − δ(n − 1) + (δ − 1)∆

+
√

2(n − 1 − δ)

√
2
(
n
2

)
− 2m − (δ + 1)(n − 1) + δ(∆ + 1) ,

which implies that the upper bound of Theorem 3.3 is sharp.

4. Nordhaus–Gaddum type results for Sombor energy

We first give a lower bound for Eso(G) + Eso(G).

Theorem 4.1. Let G be a connected graph of order n with m edges, and let C1,C2, . . . ,Cr be the connected components
of G. If η(C1) ≥ η(C2) ≥ . . . ≥ η(Cr), then

Eso(G) + Eso(G) ≥
4
√

2 mδ
n

+

r∑
i=1

4
√

2 m(Ci)δ(Ci)
n

.

Moreover, the bound is sharp.

Proof. Note that

Eso(G) + Eso(G) =

n∑
i=1

|ηi| +

n∑
i=1

|η̄i| ≥ 2η1 + 2
r∑

i=1

η(Ci)

≥
4SO(G)

n
+

r∑
i=1

4SO(Ci)
n

≥
4
√

2 mδ
n

+

r∑
i=1

4
√

2 m(Ci)δ(Ci)
n

.

One can check that the regular complete bipartite graph attains this lower bound.
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The following corollary is immediate.

Corollary 4.2. If G is a regular graph of order n, then

Eso(G) + Eso(G) ≥ 2
√

2 ∆2 + 2
√

2(n − 1 − ∆)2.

Next, we give an upper bound for Eso(G) + Eso(G).

Theorem 4.3. Let G be a graph of order n having no isolated vertices. If G has no isolated vertices, then

Eso(G) + Eso(G) ≤
(
∆2

δ
+

(n − 1 − δ)2

n − 1 − ∆

)
(n + n

√
n)

√
2

. (5)

Proof. From Theorem 2.12, we have

Eso(G) + Eso(G) ≤
(n + n

√
n)∆2

√
2 δ

+
(n + n

√
n)∆̄2

√
2 δ̄

which straightforwardly implies (5).

The above lower bound can be improved as follows.

Theorem 4.4. Let G be a connected graph of order n with m edges. If η1 ≥ η̄1, then

Eso(G) + Eso(G) ≤

√
8mn∆2 + 8

[(
n
2

)
−m

]
n(n − 1 − δ)2 .

Proof. Since A2 x = λ2 x, it follows that

n∑
i=1

η2
i =

n∑
i=1

A2
so(ii) =

n∑
i=1

n∑
j=1

(a′i j)
2 = 2

∑
viv j∈E(G)

(a′i j)
2 .

From the Cauchy–Schwarz inequality,

(Eso − η1)2
≤

2
∑

viv j∈E(G)

(a′i j)
2
− η2

1

 (n − 1) ,

and thus

Eso ≤ η1 +
√

n − 1
√

2
∑

viv j∈E(G)

(a′i j)
2 − η2

1
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implying

Eso(G) + Eso(G) ≤ η1 +
√

n − 1
√

2
∑

viv j∈E(G)

(a′i j)
2 − η2

1

+ η̄1 +
√

n − 1
√

2
∑

viv j∈E(Ḡ)

(ā′i j)
2 − η̄2

1

≤ η1 + η̄1 +
√

2(n − 1)
√

2
∑

viv j∈E(G)

(a′i j)
2 + 2

∑
viv j∈E(Ḡ)

(ā′i j)
2 − η2

1 − η̄
2
1

≤ η1 + η̄1 +
√

n − 1
√

4
∑

viv j∈E(G)

(a′i j)
2 + 4

∑
viv j∈E(Ḡ)

(ā′i j)
2 − (η1 + η̄1)2

≤ η1 + η̄1 +
√

n − 1

√
8m∆2 + 8

[(
n
2

)
−m

]
(n − 1 − δ)2 − (η1 + η̄1)2

≤

√
8mn∆2 + 8

[(
n
2

)
−m

]
n(n − 1 − δ)2 .
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