

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Cline's Formula and Jacobson's Lemma for g-Drazin Inverse

Huanyin Chena, Marjan Sheibani Abdolyousefib

^aSchool of Mathematics, Hangzhou Normal University, Hangzhou, China ^bFarzanegan Campus, Semnan University, Semnan, Iran

Abstract. We present new conditions under which Cline's formula and Jacobson's lemma for g-Drazin inverse hold. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$ satisfying $a^k b^k a^k = a^{k+1}$ for some $k \in \mathbb{N}$. We prove that a has g-Drazin inverse if and only if $b^k a^k$ has g-Drazin inverse. In this case,

$$(b^k a^k)^d = b^k (a^d)^2 a^k$$
 and $a^d = a^k [(b^k a^k)^d]^{k+1}$.

Further, we study Jacobson's lemma for g-Drazin inverse in a Banach algebra under the preceding condition. The common spectral property of bounded linear operators on a Banach space is thereby obtained.

1. Introduction

Let R be an associative ring with an identity. The commutant of $a \in R$ is defined by $comm(a) = \{x \in R \mid xa = ax\}$. The double commutant of $a \in R$ is defined by $comm^2(a) = \{x \in R \mid xy = yx \text{ for all } y \in comm(a)\}$. An element $a \in R$ has g-Drazin inverse if there exists $b \in R$ such that

$$b = bab, b \in comm^2(a), a - a^2b \in R^{qnil}.$$

The preceding b is unique if it exists, we denote it by a^d . Here, $R^{qnil} = \{a \in R \mid 1 + ax \in R^{-1} \text{ for every } x \in comm(a)\}$. If we replace R^{qnil} by the set R^{nil} of all nilpotents in R, we call such b the Drazin inverse of a, and denote it by a^D . The set of all g-Drazin invertible elements in R will be denoted by R^d .

Let $a, b \in R$. Then $ab \in R^d$ if and only if $ba \in R^d$ and $(ba)^d = b[(ab)^d]^2a$. This was known as Cline's formula for g-Drazin inverse (see [7, Theorem 2.1]). Lian and Zeng extended Cline's formula for generalized Drazin inverse to the case when aba = aca (see [6]). We refer the reader for further extensions of Cline's formula to [6, Theorem 2.3] and [14, Theorem 2.2].

For any $a, b \in R$, Jacobson's lemma for g-Drazin inverse states that $1 + ab \in R^d$ if and only if $1 + ba \in R^d$ (see [15, Theorem 2.3]). Corach et al. extended Jacobson's lemma to the case that aba = aca (see [2, Theorem 1]). Further extensions of Jacobson's lemma can be found in [12, Theorem 3.1] and [2, Theorem 1].

In [4, Theorem 2.20], Gupta and Kumar studied Cline's formula for Drazin inverse under the condition $a^k b^k a^k = a^{k+1}$. By the analysis technique, they investigated common spectral properties of linear operators

2020 Mathematics Subject Classification. 15A09, 47A10, 32A65, 16U99.

Keywords. Cline's formula; Jacobson's leamm; g-Drazin inverse; Bounded linear operator; Common spectral property.

Received: 17 December 2020; Revised: 12 July 2021; Accepted: 21 August 2021

Communicated by Dijana Mosić

Corresponding author: Marjan Sheibani Abdolyousefi

Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY21A010018).

Email addresses: huanyinchen@aliyun.com (Huanyin Chen), m.sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi)

A and B satisfying $A^k B^k A^k = A^{k+1}$ and $B^k A^k B^k = B^{k+1}$. The common spectral properties under the preceding operator equations are investigated by many authors. For instance, Schmoeger [9] considered the common spectral properties of bounded linear operators A and B under $ABA = A^2$ and $BAB = B^2$.

Let \mathcal{A} be a Banach algebra, and let $a,b \in \mathcal{A}$ satisfying $a^kb^ka^k = a^{k+1}$ for some $k \in \mathbb{N}$. The motivation of this paper is to investigate whether Cline's formula holds for g-Drazin inverse under the preceding equations. In Section 2, we proved that a has g-Drazin inverse if and only if b^ka^k has g-Drazin inverse. In this case,

$$(b^k a^k)^d = b^k (a^d)^2 a^k$$
 and $a^d = a^k [(b^k a^k)^d]^{k+1}$.

In Section 3, we further study Jacobson's lemma for g-Drazin inverse in a Banach algebra under the assumption that $a^kb^ka^k=a^{k+1}$ for some $k\in\mathbb{N}$. Finally, in the last section, the common spectral property of bounded linear operators on a Banach space for g-Drazin inverse is thereby obtained. Let $A,B\in\mathcal{L}(X)$ such that $A^kB^kA^k=A^{k+1}$ and $B^kA^kB^k=B^{k+1}$ for some $k\in\mathbb{N}$. We prove that $\sigma_d(A)=\sigma_d(A^kB^k)=\sigma_d(B^kA^k)=\sigma_d(B)$, where σ_d is the g-Drazin spectrum.

Throughout the paper, all rings are associative with an identity and all Banach algebras are complex. We use R^{-1} and R^{qnil} to denote the set of all units and the set of all quasinilpotents of the ring R, respectively. \mathbb{C} stands for the field of all complex numbers.

2. Cline's Formula

In this section we propose to give Cline's formula for the g-Drazin inverse under the conditions $a^k b^k a^k = a^{k+1}$ for some $k \in \mathbb{N}$. The following lemma is crucial in the sequel.

Lemma 2.1. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$ satisfying $a^k b^k a^k = a^{k+1}$ for some $k \in \mathbb{N}$. If a has g-Drazin inverse, then $b^k a^k$ has g-Drazin inverse. In this case,

$$(b^k a^k)^d = b^k (a^d)^2 a^k.$$

Proof. Let $y = b^k (a^d)^2 a^k$. Step 1. $yb^k a^k y = y$. We see that

$$yb^{k}a^{k}y = b^{k}(a^{d})^{2}a^{k}(b^{k}a^{k})b^{k}(a^{d})^{2}a^{k}$$

$$= b^{k}(a^{d})^{2}(a^{k}b^{k}a^{k})b^{k}a^{k}(a^{d})^{2}$$

$$= b^{k}(a^{d})^{2}a^{k+1}b^{k}a^{k}(a^{d})^{2}$$

$$= b^{k}(a^{d})^{2}a(a^{k}b^{k}a^{k})(a^{d})^{2}$$

$$= b^{k}(a^{d})^{2}aa^{k+1}(a^{d})^{2}$$

$$= b^{k}(a^{d})^{2}a^{k}$$

$$= y.$$

Step 2. We claim by induction that

$$[b^k a^k - (b^k a^k) y (b^k a^k)]^{n+1} = b^k (1 - aa^d) a^{k+n}.$$

Let n = 1

$$[b^k a^k - (b^k a^k) y (b^k a^k)]^2 = b^k (1 - aa^d) a^k b^k (1 - aa^d) a^k$$

= $b^k (1 - aa^d) a^{k+1}$.

And for n we have,

$$\begin{aligned} & [b^k a^k - (b^k a^k) y (b^k a^k)]^{n+1} \\ &= [b^k a^k - (b^k a^k) y (b^k a^k)]^n [b^k a^k - (b^k a^k) y (b^k a^k)] \\ &= b^k (1 - aa^d) a^{k+n-1} b^k (1 - aa^d) a^k \\ &= b^k (1 - aa^d) a^{k+n}. \end{aligned}$$

As a has g-Drazin inverse then, $a-a^2a^d\in\mathcal{A}^{qnil}$. Let $\alpha=a-a^2a^d$ and $\beta=a^k$. It is obvious that $\alpha^2\beta=\alpha\beta\alpha$ and $\beta^2\alpha=\beta\alpha\beta$. Then we deduce by [16, Lemma 2.11] that $\alpha\beta=a^k(a-a^2a^d)\in R^{qnil}$. Hence $a^kb^ka^k(1-aa^d)=a^{k+1}(1-aa^d)=a^k(a-a^2a^d)\in\mathcal{A}^{qnil}$. By using Cline's formula,

$$[b^k a^k - (b^k a^k) y (b^k a^k)]^{k+1} = b^k (1 - aa^d) a^{2k} = b^k a^k (1 - aa^d) a^k \in \mathcal{A}^{qnil},$$

and so

$$b^k a^k - (b^k a^k) y(b^k a^k) \in \mathcal{A}^{qnil}$$
.

Step 3. $y \in comm^2(b^ka^k)$. Let $x \in comm(b^ka^k)$. Then $xb^ka^k = b^ka^kx$, and so $a^k(xb^ka^k) = a^k(b^ka^kx)$. Hence $(a^kxb^ka^k)b^ka^k = (a^kb^ka^kx)b^ka^k$. That is, $a^kxb^ka^{k+1} = a^{k+1}xb^ka^k$. Thus $(a^kxb^ka^k)a = a(a^kxb^ka^k)$, and then $a^{k+1}x = a^kxb^ka^k \in comm(a)$. This shows that $(a^{k+1}x)a^d = a^d(a^{k+1}x)$. We directly compute that

$$yx = b^{k}a^{k}(a^{d})^{2}x$$

$$= b^{k}(a^{d})^{3}(a^{k+1}x)$$

$$= b^{k}(a^{k+1}x)(a^{d})^{3}$$

$$= b^{k}a^{k+1}x(a^{d})^{3}$$

$$= (b^{k}a^{k})(b^{k}a^{k})x(a^{d})^{3}$$

$$= x(b^{k}a^{k})(b^{k}a^{k})(a^{d})^{3}$$

$$= xb^{k}a^{k+1}(a^{d})^{3} = xb^{k}a^{k}(a^{d})^{2}$$

$$= xy.$$

Therefore $y \in comm^2(b^ka^k)$, and so $y = (b^ka^k)^d$, as required. \square

We are ready to generalize [4, Theorem 2.10] to g-Drazin inverse as follow.

Theorem 2.2. Let \mathcal{A} be a Banach algebra, and let $a,b \in \mathcal{A}$ satisfying $a^kb^ka^k = a^{k+1}$ for some $k \in \mathbb{N}$. Then a has g-Drazin inverse if and only if b^ka^k has g-Drazin inverse. In this case,

$$(b^k a^k)^d = b^k (a^d)^2 a^k$$
 and $a^d = a^k [(b^k a^k)^d]^{k+1}$.

Proof. \Longrightarrow This is proved in Lemma 2.1.

$$\leftarrow$$
 Let $p = (b^k a^k)^d$ and $z = a^k p^{k+1}$.

Step 1. $z \in comm(a)$. We see that

$$za = a^{k}p^{k+1}a$$

$$= a^{k}p^{k+2}b^{k}a^{k+1}$$

$$= a^{k}p^{k+2}(b^{k}a^{k})b^{k}a^{k}$$

$$= a^{k}p^{k+1}(b^{k}a^{k})$$

$$= a^{k}(b^{k}a^{k})p^{k+1}$$

$$= a^{k+1}p^{k+1}$$

$$= az.$$

as desired.

Step 2. zaz = z. We compute that

$$zaz = a^k p^{k+1} a^{k+1} p^{k+1} = a^k p^{k+1} a^k (b^k a^k) p^{k+1} = (a^k p^{k+1}) a^k p^k = a^{2k} p^{2k+1}$$

$$= a^{k-1} a^{k+1} p^{2k+1} = a^{k-1} a^k p^{2k} = a^{k-2} a^k p^{2k-1} = \cdots = a^k p^{k+1} = z,$$

as required.

Step 3. $a - a^2z \in \mathcal{A}^{qnil}$. We check that

$$(a - a^{2}z)^{k+1} = a^{k+1}(1 - a^{k+1}p^{k+1})$$

$$= a^{k}b^{k}a^{k} - (a^{k+1})^{2}p^{k+1}$$

$$= a^{k}b^{k}a^{k} - a^{k}(b^{k}a^{2k})b^{k}a^{k}p^{k+1}$$

$$= a^{k}b^{k}a^{k} - a^{k}(b^{k}a^{k+1})a^{k-1}b^{k}a^{k}p^{k+1}$$

$$= a^{k}b^{k}a^{k} - a^{k}(b^{k}a^{k})^{2}a^{k-1}b^{k}a^{k}p^{k+1}$$

$$= a^{k}b^{k}a^{k} - a^{k}(b^{k}a^{k})^{3}a^{k-2}b^{k}a^{k}p^{k+1}$$

$$\vdots$$

$$= a^{k}b^{k}a^{k} - a^{k}(b^{k}a^{k})^{k+1}b^{k}a^{k}p^{k+1}$$

$$= a^{k}[b^{k}a^{k} - a^{k}(b^{k}a^{k})^{2}p].$$

We easily see that

$$[b^{k}a^{k} - (b^{k}a^{k})^{2}p]a^{k} = b^{k}a^{2k} - (b^{k}a^{k})p(b^{k}a^{2k})$$

$$= (b^{k}a^{k})^{2}a^{k-1} - (b^{k}a^{k})p(b^{k}a^{k})^{2}a^{k-1}$$

$$= (b^{k}a^{k})^{3}a^{k-2} - (b^{k}a^{k})p(b^{k}a^{k})^{3}a^{k-2}$$

$$\vdots$$

$$= (b^{k}a^{k})^{k+1} - (b^{k}a^{k})p(b^{k}a^{k})^{k+1}$$

$$= (b^{k}a^{k})[b^{k}a^{k} - (b^{k}a^{k})^{2}p].$$

Since $b^k a^k$ has g-Drazin inverse, $b^k a^k - (b^k a^k)^2 p \in \mathcal{A}^{qnil}$ and so $(b^k a^k)(b^k a^k - (b^k a^k)^2 p) \in \mathcal{A}^{qnil}$. Hence, $[b^k a^k - (b^k a^k)^2 p]a^k \in \mathcal{A}^{qnil}$. By using Cline's formula (see [7, Theorem 2.1]), we have $(a - a^2 z)^{k+1} \in \mathcal{A}^{qnil}$, and so $a - a^2 z \in \mathcal{A}^{qnil}$. Therefore $a^d = z = a^k p^{k+1}$, as asserted. \square

Corollary 2.3. Let \mathcal{A} be a Banach algebra, and let $a,b \in \mathcal{A}$ satisfying $a^kb^ka^k = a^{k+1}$ and $b^ka^kb^k = b^{k+1}$ for some $k \in \mathbb{N}$. Then a has g-Drazin inverse if and only if b has g-Drazin inverse. In this case,

$$b^d = b^k [a^k (b^k (a^d)^2 a^k)^2 b^k]^{k+1}.$$

Proof. In view of Theorem 2.2, a has g-Drazin inverse if and only if $b^k a^k$ has g-Drazin inverse, b has g-Drazin inverse if and only if $a^k b^k$ has g-Drazin inverse. In light of Cline's formula, $a^k b^k$ has g-Drazin inverse if and only if $b^k a^k$ has g-Drazin inverse. Therefore $a \in \mathcal{A}^d$ if and only if $b \in \mathcal{A}^d$. Moreover we have,

$$\begin{array}{rcl} b^d & = & b^k[(a^kb^k)^d]^{k+1}, \\ (a^kb^k)^d & = & a^k[(b^ka^k)^d]^2b^k, \\ (b^ka^k)^d & = & b^k(a^d)^2a^k. \end{array}$$

Therefore,

$$b^{d} = b^{k} [a^{k} ((b^{k} a^{k})^{d})^{2} b^{k}]^{k+1}$$

= $b^{k} [a^{k} (b^{k} (a^{d})^{2} a^{k})^{2} b^{k}]^{k+1},$

as desired. \square

Corollary 2.4. Let \mathcal{A} be a Banach algebra, and let $a,b \in \mathcal{A}$ satisfying $a^kb^ka^k = a^{k+1}$ and $b^ka^kb^k = b^{k+1}$ for some $k \in \mathbb{N}$. Then $a \in \mathcal{A}^{qnil}$ if and only if $b \in \mathcal{A}^{qnil}$.

Proof. Since $a \in \mathcal{A}^{qnil}$, we have $a^d = 0$. Then $b^d = 0$ by Corollary 2.3, which implies that $b \in \mathcal{A}^{qnil}$. The other direction is proved in the similar way. \square

Example 2.5.

Let $R = M_3(\mathbb{C})$. Choose

$$A = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right), B = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right) \in R.$$

Then $A^2B^2A^2 = A^3$, $B^2A^2B^2 = B^3$. In view of Theorem 2.2, $(B^2A^2)^d = B^2(A^d)^2A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Clearly we have,

$$A^{d} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right), B^{d} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

3. Jacobson's lemma

In this section we study Jacobson's lemma in the case that $a^k b^k a^k = a^{k+1}$ for some $k \in \mathbb{N}$. We begin with the following theorem which is a part of our main results in this paper.

Theorem 3.1. Let R be a ring, and let $a, b \in R$ satisfying $a^k b^k a^k = a^{k+1}$ for some $k \in \mathbb{N}$. Then $1 - a \in R^{-1}$ if and only if $1 - b^k a^k \in R^{-1}$. In this case,

$$(1 - b^k a^k)^{-1} = 1 + b^k (1 - a)^{-1} a^k,$$

$$(1 - a)^{-1} = 1 + a + \dots + a^{k-1} + a^k (1 - b^k a^k)^{-1}.$$

Proof. \Longrightarrow Set $s = (1 - a)^{-1}$. Then

$$\begin{array}{rcl} (1-b^ka^k)(1+b^ksa^k) & = & 1+b^ksa^k-b^ka^k-b^k(a^kb^ka^k)s\\ & = & 1+b^ksa^k-b^ka^k-b^ksa^{k+1}\\ & = & 1+b^k(s-1-sa)a^k\\ & = & 1+b^k[s(1-a)-1]a^k\\ & = & 1. \end{array}$$

Moreover, we have

$$(1 + b^k s a^k)(1 - b^k a^k) = 1 - b^k a^k + b^k s a^k - b^k s a^{k+1}$$

$$= 1 - b^k (1 - s) a^k - b^k s a^{k+1}$$

$$= 1 - b^k s (s^{-1} - 1) a^k - b^k s a^{k+1}$$

$$= 1$$

Therefore $(1 - b^k a^k)^{-1} = 1 + b^k (1 - a)^{-1} a^k$.

← One easily checks that

$$(1-a)\left[1+a+\cdots+a^{k-1}+a^k(1-b^ka^k)^{-1}\right]$$
= 1-a^k+(1-a)a^k(1-b^ka^k)^{-1}
= 1-a^k+(a^k-a^kb^ka^k)(1-b^ka^k)^{-1}
= 1.

In view of [12, Corollary 2.5], $1 - a^k b^k \in R^{-1}$. Clearly, $(1 - a^k b^k) a^k = a^k (1 - b^k a^k)$; hence,

$$a^{k}(1-b^{k}a^{k})^{-1} = (1-a^{k}b^{k})^{-1}a^{k}$$
.

By direct computation, we have

$$\begin{bmatrix}
1 + a + \dots + a^{k-1} + a^k (1 - b^k a^k)^{-1} \\
= 1 - a^k + a^k (1 - b^k a^k)^{-1} (1 - a) \\
= 1 - a^k (1 - b^k a^k)^{-1} [1 - b^k a^k - (1 - a)] \\
= 1 - a^k (1 - b^k a^k)^{-1} (a - b^k a^k) \\
= 1 - (1 - a^k b^k)^{-1} a^k (a - b^k a^k) \\
= 1 - (1 - a^k b^k)^{-1} (a^{k+1} - a^k b^k a^k) \\
= 1.$$

This completes the proof. \Box

Corollary 3.2. Let R be a ring, and let $a, b \in R$ satisfying $a^k b^k a^k = a^{k+1}$ and $b^k a^k b^k = b^{k+1}$ for some $k \in \mathbb{N}$. Then $1 - a \in R^{-1}$ if and only if $1 - b \in R^{-1}$. In this case,

$$(1-b)^{-1} = \sum_{i=0}^{k+1} b^i + b^{k+1} (1-a)^{-1} a^k b^k.$$

Proof. In view of Theorem 3.1, $1 - a \in R^{-1}$ if and only if $1 - b^k a^k \in R^{-1}$. Furthermore, we have

$$(1-b)^{-1} = 1 + b + \dots + b^{k-1} + b^k (1 - a^k b^k)^{-1},$$
$$(1 - b^k a^k)^{-1} = 1 + b^k (1 - a)^{-1} a^k.$$

In light of Jacobson's lemma, we get

$$(1 - a^k b^k)^{-1} = 1 + a^k (1 - b^k a^k)^{-1} b^k.$$

Therefore we have

$$(1-b)^{-1} = \sum_{i=0}^{k-1} b^i + b^k [1 + a^k (1 + b^k (1-a)^{-1} a^k) b^k],$$
$$= \sum_{i=0}^{k+1} b^i + b^{k+1} (1-a)^{-1} a^k b^k.$$

as asserted. \square

For a Banach algebra \mathcal{A} , it is well known that

$$a \in \mathcal{A}^{qnil} \Leftrightarrow \lim_{n \to \infty} ||a^n||^{\frac{1}{n}} = 0 \Leftrightarrow \lambda - a \in \mathcal{A}^{-1}$$
 for any scarlar $\lambda \neq 0$.

Many papers discussed Jacobson's lemma for g-Drazin inverse in the setting of matrices, operators and elements of Banach algebras.

Theorem 3.3. Let \mathcal{A} be a Banach algebra, and let $a,b \in \mathcal{A}$ satisfying $a^kb^ka^k = a^{k+1}$ for some $k \in \mathbb{N}$. If 1-a has g-Drazin inverse, then $1-b^ka^k$ has g-Drazin inverse. In this case,

$$(1 - b^k a^k)^d$$

$$= 1 + b^k \Big[(1 - a)^d - (1 - a)^\pi (1 - (1 - a)^\pi (1 - a))^{-1} \Big] a^k.$$

Proof. \Longrightarrow Let $y = 1 + b^k [(1-a)^d - (1-a)^\pi (1-(1-a)^\pi (1-a))^{-1}] a^k$. We shall prove that $(1-b^k a^k)^d = y$. Step 1. $y(1-b^k a^k)y = y$. We see that

$$\begin{split} y(1-b^ka^k) &= 1-b^ka^k + b^k \Big[(1-a)^d - (1-a)^\pi (1-(1-a)^\pi (1-a))^{-1} \Big] \\ (a^k - a^kb^ka^k) &= 1-b^ka^k + b^k \Big[(1-a)^d - (1-a)^\pi (1-(1-a)^\pi (1-a))^{-1} \Big] \\ (1-a)a^k &= 1-b^k \Big[(1-a)^\pi + (1-a)^\pi (1-a)(1-(1-a)^\pi (1-a))^{-1} \Big] a^k \\ &= 1-b^k (1-(1-a)^\pi (1-a))^{-1} \Big[(1-a)^\pi (1-(1-a)^\pi (1-a)) \\ &+ (1-a)^\pi (1-a) \Big] a^k \\ &= 1-b^k (1-(1-a)^\pi (1-a))^{-1} (1-a)^\pi a^k. \end{split}$$

Then we have

$$1 - y(1 - b^k a^k) = b^k (1 - (1 - a)^{\pi} (1 - a))^{-1} (1 - a)^{\pi} a^k.$$

Therefore we check that

$$\begin{split} y - y(1 - b^k a^k)y \\ &= \left[1 - y(1 - b^k a^k)\right]y \\ &= b^k(1 - (1 - a)^\pi(1 - a))^{-1}(1 - a)^\pi a^k + b^k(1 - (1 - a)^\pi(1 - a))^{-1} \\ (1 - a)^\pi a^k b^k \Big[(1 - a)^d - (1 - a)^\pi(1 - (1 - a)^\pi(1 - a))^{-1}\Big]a^k \\ &= b^k(1 - (1 - a)^\pi(1 - a))^{-1}(1 - a)^\pi a^k + b^k(1 - (1 - a)^\pi(1 - a))^{-1} \\ (1 - a)^\pi)(a^k b^k a^k)\Big[(1 - a)^d - (1 - a)^\pi(1 - (1 - a)^\pi(1 - a))^{-1}\Big] \\ &= b^k(1 - (1 - a)^\pi(1 - a))^{-1}(1 - a)^\pi a^k - b^k a(1 - (1 - a)^\pi(1 - a))^{-1} \\ (1 - a)^\pi(1 - (1 - a)^\pi(1 - a))^{-1}a^k \\ &= b^k(1 - a)^\pi\Big[(1 - (1 - a)^\pi(1 - a)) - a\Big](1 - (1 - a)^\pi(1 - a))^{-2}a^k \\ &= b^k(1 - a)^\pi\Big[(1 - a) - (1 - a)^\pi(1 - a)\Big](1 - (1 - a)^\pi(1 - a))^{-2}a^k \\ &= 0; \end{split}$$

hence, $y = y(1 - b^k a^k)y$, as required.

Step 2. $(1 - b^k a^k) - (1 - b^k a^k) y (1 - b^k a^k) \in \mathcal{A}^{qnil}$. We verify that

$$\begin{aligned} &(1-b^ka^k) - (1-b^ka^k)y(1-b^ka^k) \\ &= (1-b^ka^k)[1-y(1-b^ka^k)] \\ &= (1-b^ka^k)b^k(1-(1-a)^\pi(1-a))^{-1}(1-a)^\pi a^k \\ &= (1-b^ka^k)b^ka^k(1-(1-a)^\pi(1-a))^{-1}(1-a)^\pi \\ &= b^ka^k(1-a)(1-(1-a)^\pi(1-a))^{-1}(1-a)^\pi \\ &= b^ka^k(1-a)^\pi(1-a)(1-(1-a)^\pi(1-a))^{-1} \end{aligned}$$

By induction, we have

$$\begin{split} & \left[(1-b^k a^k) - (1-b^k a^k) y (1-b^k a^k) \right]^n \\ & = \ b^k a^{k+n} \Big[(1-a)^\pi (1-a) \Big]^n [1-(1-a)^\pi (1-a)]^{-n}. \end{split}$$

Therefore

$$\begin{split} & \| \left[(1-b^k a^k) - (1-b^k a^k) y (1-b^k a^k) \right]^n \|^{\frac{1}{n}} \leq \| b^k \|^{\frac{1}{n}} \| a \|^{1+\frac{k}{n}} \\ & \| \left[(1-a) - (1-a)^2 (1-a)^d \right]^n \|^{\frac{1}{n}} \| \left[1 - (1-a)^\pi (1-a) \right]^{-1} \| \ . \end{split}$$

Accordingly,

$$\lim_{n\to\infty} \| \left[(1-b^k a^k) - (1-b^k a^k) y (1-b^k a^k) \right]^n \|_{\pi}^{\frac{1}{n}} = 0,$$

and so $(1 - b^k a^k) - (1 - b^k a^k) y (1 - b^k a^k) \in \mathcal{A}^{qnil}$.

Step 3. $y \in comm(1 - b^k a^k)$. We directly compute that

$$\begin{aligned} &(1-b^ka^k)y\\ &=(1-b^ka^k)\Big[1+b^k((1-a)^d-(1-a)^\pi(1-(1-a)^\pi(1-a))^{-1}\Big]a^k\Big]\\ &=1-b^ka^k+b^k(1-a)a^k\Big[(1-a)^d-(1-a)^\pi(1-(1-a)^\pi(1-a))^{-1}\Big]\\ &=1-b^k\Big[1-(1-a)((1-a)^d-(1-a)^\pi(1-(1-a)^\pi(1-a))^{-1})a^k\Big]\\ &=1-b^k\Big[(1-a)^\pi+(1-a)^\pi(1-a)(1-(1-a)^\pi(1-a))^{-1})a^k\Big]\\ &=1-b^k(1-(1-a)^\pi(1-a))^{-1}(1-a)^\pi a^k.\end{aligned}$$

Therefore $(1 - b^k a^k)y = y(1 - b^k a^k)$, as desired. \square

Corollary 3.4. Let \mathcal{A} be a Banach algebra, let $\lambda \in \mathbb{C}$ and let $a,b \in \mathcal{A}$ satisfying $a^kb^ka^k = a^{k+1}$ for some $k \in \mathbb{N}$. If $\lambda - a$ has g-Drazin inverse, then $\lambda - b^ka^k$ has g-Drazin inverse. In this case,

$$(\lambda - b^k a^k)^d$$

$$= \begin{cases} -b^k (a^d)^2 a^k & \lambda = 0\\ \frac{1}{\lambda} + \frac{1}{\lambda} b^k [(\lambda - a)^d - (\lambda - a)^{\pi} (\lambda - (\lambda - a)^{\pi} (\lambda - a)^{-1}] a^k & \lambda \neq 0 \end{cases}$$

Proof. Case 1. λ = 0. The result follows by Theorem 2.2,

Case 2. $\lambda \neq 0$. Set $c = \frac{a}{\lambda}$ and $d = \lambda^{1-\frac{1}{k}}\dot{b}$. Then $c^k d^k c^k = c^{k+1}$. By virtue of Theorem 3.3, $1 - d^k c^k \in \mathcal{A}^d$ if and only if $1 - c \in \mathcal{A}^d$. We see that

$$1 - d^k c^k = \frac{1}{\lambda} (\lambda - b^k a^k),$$

$$1 - c = \frac{1}{\lambda} (\lambda - a).$$

Therefore $\lambda - a \in \mathcal{A}^d$ if and only if $\lambda - b^k a^k \in \mathcal{A}^d$. Moreover, we have

$$\begin{split} &(\lambda - b^k a^k)^d = \frac{1}{\lambda} (1 - d^k c^k)^d \\ &= \frac{1}{\lambda} + \frac{1}{\lambda} d^k [(1 - c)^d - (1 - c)^\pi (1 - (1 - c)^\pi (1 - c)^{-1})] c^k \\ &= \frac{1}{\lambda} + \frac{1}{\lambda} \lambda^{k-1} b^k [\lambda (\lambda - a)^d - (\lambda - a)^\pi (1 - \frac{1}{\lambda} (\lambda - a)^\pi (\lambda - a)^{-1}) \frac{1}{\lambda^k} a^k] \\ &= \frac{1}{\lambda} + \frac{1}{\lambda} b^k [(\lambda - a)^d - (\lambda - a)^\pi (\lambda - (\lambda - a)^\pi (\lambda - a))^{-1} a^k], \end{split}$$

as asserted. \square

4. Common spectral property

Let X be a Banach space, and let $\mathcal{L}(X)$ denote the set of all bounded linear operators from Banach space to itself, and let $A \in \mathcal{L}(X)$. The g-Drazin spectrum $\sigma_d(A)$ are defined by

$$\sigma_d(A) = \{ \lambda \in \mathbb{C} \mid \lambda I - A \notin \mathcal{L}(X)^d \}.$$

The aim of this section is to concern on common spectrum property of $\mathcal{L}(X)$. We now ready to prove the following.

Theorem 4.1. Let $A, B \in \mathcal{L}(X)$ such that $A^k B^k A^k = A^{k+1}$ for some $k \in \mathbb{N}$., then

$$\sigma_d(A) = \sigma_d(B^k A^k).$$

Proof. Case 1. In view of Theorem 2.2, $B^kA^k \notin \mathcal{L}(X)^d$ if and only if $A \notin \mathcal{L}(X)^d$. Hence, $0 \in \sigma_d(B^kA^k)$ if and only if $0 \in \sigma_d(A)$.

Case 2. Let $\lambda \neq 0$. If $\lambda \in \sigma_d(B^k A^k)$, then $\lambda \in acc\sigma(B^k A^k)$. Hence,

$$\lambda = \lim_{n \to \infty} \{ \lambda_n \mid \lambda_n I - B^k A^k \notin \mathcal{L}(X)^{-1} \}.$$

If $\lambda \in \sigma_d(A)$, anagously, we have

$$\lambda = \lim_{n \to \infty} \{ \lambda_n \mid \lambda_n I - A \notin \mathcal{L}(X)^{-1} \}.$$

For any $\lambda_n \neq 0$, we have

$$(\lambda_n^{-1}A)^k(\lambda_n^{\frac{k-1}{k}}B)^k(\lambda_n^{-1}A)^k = (\lambda_n^{-1}A)^{k+1}.$$

In light of Theorem 3.1,

$$I - (\lambda_n^{\frac{k-1}{k}} B)^k (\lambda_n^{-1} A)^k \in \mathcal{L}(X)^{-1}$$

if and only if

$$I - \lambda_n^{-1} A \in \mathcal{L}(X)^{-1}.$$

That is, $\lambda_n I - B^k A^k \in \mathcal{L}(X)^{-1}$ if and only if $\lambda_n I - A \in \mathcal{L}(X)^{-1}$. Accordingly, $\sigma_d(B^k A^k) = \sigma_d(A)$. \square

Corollary 4.2. Let $A, B \in \mathcal{L}(X)$ such that $A^k B^k A^k = A^{k+1}$ and $B^k A^k B^k = B^{k+1}$ for some $k \in \mathbb{N}$, then

$$\sigma_d(A) = \sigma_d(B)$$
.

Proof. By Theorem 4.1, $\sigma_d(A) = \sigma_d(B^k A^k)$ and $\sigma_d(B) = \sigma_d(A^k B^k)$. It is clear that $\sigma_d(A^k B^k) = \sigma_d(B^k A^k)$ which implies that $\sigma_d(A) = \sigma_d(B)$. \square

Example 4.3.

Let $R = M_2(\mathbb{C})$. Choose

$$A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array}\right), B = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right).$$

Then $ABA = A^2$, $BAB = B^2$. In view of Theorem 4.1, $\sigma_d(A) = \sigma_d(B)$. In this case, $A^2 \neq B^2$.

Acknowledgement

The authors are highly grateful to the referee for careful reading and valuable suggestions.

References

- [1] C. Benhida and E.H. Zerouali, Local spetral theory of linear operators RS and SR, Integral Equ. Oper. Theory, 54(2006), 1–8.
- [2] G. Corach, B. P. Duggal and R. Harte, Extensions of Jacobson's lemma, Comm. Algebra, 41(2013), 520-531.
- [3] B.P. Duggal, Operator equations $ABA = A^2$ and $BAB = B^2$, Funct. Anal. Approx. Comput., 3(2011), 9–18.
- [4] A. Gupta and A. Kumar, Common spectrl properties of linear operators A and B satisfying $A^k B^k A^k = A^{k+1}$ and $B^k A^k B^k = B^{k+1}$, Asian-Europen J. Math., 12(2019), 1950084 (18 pages). 2018, DOI: 10.1142/S1793557119500840.
- [5] A. Gupta and A. Kumar, A new characterization of generalized Browder's theorem and a Cline's formula for generalized Drazin-meromorphic inverses, Filomat 23(2019), 6335-6345.
- [6] Y. Lian and Q. Zeng, An extension of Cline's formula for generalized Drazin inverse, Turk. Math. J., 40(2016), 161–165.

- [7] Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, *Bull. Malays. Math. Sci. Soc.*, 37(2014), 37–42.
 [8] C. Schmoeger, On the operator equations ABA = A² and BAB = B², Publ. Inst. Math. (Beograd) (N.S.), 78(2005), 127–133.
 [9] C. Schmoeger, Common spectral properties of linear operators A and B such that ABA = A² and BAB = B², Publ. Inst. Math. (Beograd) (N.S.), 79(2006), 109-114.
- [10] K. Yang and X. Fang, Common properties of the operator products in spectral theory, Ann. Funct. Anal., 6(2015), 60–69.
- [11] K. Yan, Q. Zeng, Y. Zeng and Y. Zhu, On Drazin spectral equation for the operator products, Complex Analysis and Operator Theory., 2020, DOI: 10.1007/S11785-01900979-y.
- [12] K. Yan; Q. Zeng and Y. Zhu, Generalized Jacobson's lemma for Drazin inverses and its applications, Linear and Multilinear Algebra, 2018, DOI: 10.1080/03081087.2018.1498828.
- [13] Q. Zeng and H. Zhong, New results on common properties of the products AC and BA, J. Math. Anal. Appl., 427(2015), 830–840.
- [14] Q. Zeng; Z. Wu and Y. Wen, New extensions of Cline's formula for generalized inverses, Filomat, 31(2017), 1973–1980.
- [15] G. Zhuang; J. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra Appl., 436(2012), 742–746.
- [16] H. Zou; D. Mosić and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, Turk. J. Math., 41(2017), 548-563.