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Abstract. We establish the existence of best proximity points (pairs) for a new class of cyclic (noncyclic)
condensing operators by using the concept of measure of noncompactness. Our conclusions extend and
improve the main results of [Indagationes Math. 29 (2018), 895-906]. By applying our results, we prove a
coupled best proximity point theorem and investigate the existence of a solution for a system of differential
equations.

1. Introduction

We study some best proximity point (pair) problems, strongly related to the existence/non-existence
of fixed points for mappings. The main skill is the use of measures of noncompactness to get the key
inequalities satisfied by the mappings. So, we depict a brief history to correctly understand our topic and
its motivation. Indeed, we point out some cornerstones. From Schauder [14], we recall the classical fixed
point problem in a Banach space X with some regularity assumptions.

Theorem 1.1. Let A ⊆ X be nonempty, compact and convex. If T : A→ A is a continuous operator, then it admits
at least a fixed point.

Precisely, the Schauder’s theorem can be considered as generalization of Brouwer fixed point theorem
from Rn to infinite dimensional Banach spaces, via an approximation process (we refer to [2] for more
information).

Let K ⊆ H where H is a normed linear space. We recall that a mapping T : K→ Y is said to be a compact
operator if T is continuous and maps bounded sets into relatively compact sets (Y is also a normed linear
space). Here, the interest for compact operators is motivated by the following result.

Theorem 1.2. Let K ⊆ H be nonempty, bounded, closed and convex. If T : K → K is a compact operator, then it
admits a fixed point.

To get significant extensions of the theory of compact operators, many researchers considered the
concept of measure of noncompactness, which was firstly established by Kuratowski and further generalized
by Hausdorff.
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Definition 1.3. Let Σ ⊆ X be the family of all nonempty and bounded subsets of a metric space (X, d). By
α : Σ→ [0,∞) given as

α(B) = inf{ε > 0 : B can be covered by finitely many sets with diameter ≤ ε},

for all B ∈ Σ, we mean the Kuratowski measure of noncompactness.
Also, by χ : Σ→ [0,∞) given as

χ(B) = inf{ε > 0 : B can be covered by finitely many balls with radii ≤ ε},

for all B ∈ Σ, we mean the Hausdorff measure of noncompactness.

For an exhaustive discussion on the Kuratowski-Hausdorff measures of noncompactness we refer to
Akhmerov-Kamenskii-Patapov-Rodkina-Sadovskii [3]. Here, we recall the following definitions.

Definition 1.4. Let Σ ⊆ X be the family of all bounded subsets of a metric space (X, d). By µ : Σ→ [0,∞) we mean
a measure of noncompactness (MNC) if the following conditions hold:
(i) µ(A) = 0 iff A is relatively compact,
(ii) µ(A) = µ(A) for all A ∈ Σ,
(iii) µ(A ∪ B) = max{µ(A), µ(B)} for all A,B ∈ Σ.

If µ is an MNC on Σ, then the following properties will be concluded immediately (see [2] for more
information).
(1) If A ⊆ B, then µ(A) ≤ µ(B),
(2) µ(A ∩ B) ≤ min{µ(A), µ(B)} for all A,B ∈ Σ,
(3) If A is a finite set, then µ(A) = 0,
(4) If {An} is a decreasing sequence of nonempty, bounded and closed subsets of X such that limn→∞ µ(An) =
0, then A∞ := ∩n≥1An is nonempty and compact.
Also, if X is a Banach space, then
(5) µ(con(A)) = µ(A) for all A ∈ Σ,
(6) µ(tA) = |t|µ(A), for any number t and A ∈ Σ,
(7) µ(A + B) ≤ µ(A) + µ(B), for all A,B ∈ Σ.

Next definition provides the notion of condensing operator.

Definition 1.5. Let A ⊆ X and µ be an MNC on X. If T : A→ X is continuous and there exists r ∈ [0, 1) such that
µ(TK) ≤ rµ(K), for every bounded subset K of A, then T is a condensing operator.

Contractions and compact operators are examples of condensing operators. On the basis of Schauder’s
theorem, Darbo (see [5]) proposed the following result

Theorem 1.6. Let A ⊆ X be nonempty, bounded, closed and convex. If T : A→ A is a condensing operator, then T
admits a fixed point.

Various generalizations and extensions of such a theorem appeared in the literature, where the authors
considered different classes of control functions and studied various applications of functional analysis,
for example, in the theory of differential and integral equations. For instance, we recall the works of
Aghajani-Sabzali [1] and Samadi-Ghaemi [13].

This paper is organized as follows: in Section 2, we recall some basic definitions and notions related to
best proximity theory. In Section 3, we present some existence results of best proximity points (pairs) for
new classes of cyclic (noncyclic) condensing operators. Also, we extend and improve the main conclusions
of Gabeleh-Markin [11]. As an application of our results, we establish a new coupled best proximity point
theorem in Section 4 and finally in Section 5, we study the existence of a solution for a system of differential
equations under appropriate conditions.
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2. Mathematical background

Here, for reader convenience, we collect some basic definitions and notations that are needed in the
sequel of the paper.

Definition 2.1. Let X be a Banach space. We say that
(i) X is uniformly convex if there exists a strictly increasing function δ : (0, 2] → [0, 1] such that the following
implication holds for all x, y, p ∈ X,R > 0 and r ∈ [0, 2R]:

‖x − p‖ ≤ R,
‖y − p‖ ≤ R,
‖x − y‖ ≥ r

⇒ ‖
x + y

2
− p‖ ≤ (1 − δ(

r
R

))R;

(ii) X is strictly convex if the following implication holds for all x, y, p ∈ X and R > 0:
‖x − p‖ ≤ R,
‖y − p‖ ≤ R,
x , y

⇒ ‖
x + y

2
− p‖ < R.

Let A and B be two nonempty subsets of a normed linear space Y. The pair (A,B) satisfies a property if
both A and B satisfy that property. So, we say that (A,B) is closed if and only if both A and B are closed;
(A,B) ⊆ (C,D) ⇔ A ⊆ C, B ⊆ D. From now on, B(x; r) will mean the closed ball in the Banach space X
centered at x ∈ X with radius r > 0. We shall also adopt the following notations

δx(A) = sup{d(x, y) : y ∈ A} for all x ∈ X,
δ(A,B) = sup{d(x, y) : x ∈ A, y ∈ B},

diam(A) = δ(A,A).

The closed and convex hull of a set A will be denoted by con(A), which is the smallest closed and convex
set that contains A. We mention that if A is a nonempty and compact subset of a Banach space X, then
con(A) is compact (see Dunford-Schwartz [6]).

In addition, we set
dist(A,B) := inf{‖x − y‖ : (x, y) ∈ A × B},

A0 := {x ∈ A : ∃ y′ ∈ B : ‖x − y′‖ = dist(A,B) (y′ is called a proximal point of x)},

B0 := {y ∈ B : ∃ x′ ∈ A : ‖x′ − y‖ = dist(A,B) (x′ is called a proximal point of y)}.

Definition 2.2. A nonempty pair (A,B) in a normed linear space Y is said to be proximinal if A = A0 and B = B0.

It is remarkable to note that if (A,B) is a nonempty, bounded, closed and convex pair in a reflexive
Banach space X, then (A0,B0) is also nonempty, closed and convex.

A mapping T : A ∪ B→ A ∪ B is said to be
(i) relatively nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for any (x, y) ∈ A × B,
(ii) cyclic if T(A) ⊆ B and T(B) ⊆ A,
(iii) noncyclic if T(A) ⊆ A and T(B) ⊆ B,
(iv) compact if the pair (T(A),T(B)) is compact (see [11]).

Definition 2.3. Let (A,B) be a nonempty pair in a Banach space X and T : A ∪ B → A ∪ B be a mapping. If T is
cyclic, then a point p ∈ A ∪ B is said to be a best proximity point for T provided that

‖p − Tp‖ = dist(A,B).

Also, if T is noncyclic, then the pair (p, q) ∈ A × B is called a best proximity pair for T provided that

p = Tp, q = Tq, ‖p − q‖ = dist(A,B).
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Existence of best proximity points (pairs) for cyclic (noncyclic) relatively nonexpansive mappings was
first studied by Eldred-Kirk-Veeramani [7], under a geometric concept of proximal normal structure.

Definition 2.4. ([7]) A convex pair (K1,K2) in a Banach space X is said to have proximal normal structure (PNS) if
for any bounded, closed, convex and proximinal pair (H1,H2) ⊆ (K1,K2) for which dist(H1,H2) = dist(K1,K2) and
δ(H1,H2) > dist(H1,H2), there exists (x1, x2) ∈ H1 ×H2 such that

max{δx1 (H2), δx2 (H1)} < δ(H1,H2).

Notice that the pair (K,K) has PNS if and only if K has normal structure in the sense of Brodski-Milman
[4].

It was announced in [7] that every nonempty, bounded, closed and convex pair in a uniformly convex
Banach space X has the PNS. Also, every nonempty, compact and convex pair in a Banach space X has the
PNS (Theorem 3.5 of Gabeleh [9]). We also mention that a characterization of proximal normal structure by
proximal diametral sequences is given in [9].

By [7], we recall the following results.

Theorem 2.5. (Theorem 2.1 of [7]) Let (A,B) be a nonempty, weakly compact and convex pair in a Banach space X
and suppose (A,B) has PNS. If T : A∪ B→ A∪ B is a cyclic relatively nonexpansive mapping, then it admits a best
proximity point.

Theorem 2.6. (Theorem 2.2 of [7]) Let (A,B) be a nonempty, weakly compact and convex pair in a strictly convex
Banach space X and suppose (A,B) has PNS. If T : A ∪ B→ A ∪ B is a noncyclic relatively nonexpansive mapping,
then it admits a best proximity pair.

The next corollaries play a crucial role to establish the results of this paper.

Corollary 2.7. Let (A,B) be a nonempty, compact and convex pair in a Banach space X. If T : A ∪ B→ A ∪ B is a
cyclic relatively nonexpansive mapping, then it admits a best proximity point.

Corollary 2.8. Let (A,B) be a nonempty, compact and convex pair in a strictly convex Banach space X. If T :
A ∪ B→ A ∪ B is a noncyclic relatively nonexpansive mapping, then it admits a best proximity pair.

Very recently, Corollaries 2.7, 2.8 were extended as follows.

Theorem 2.9. (Theorem 3.2 of [11]) Let (A,B) be a nonempty, bounded, closed and convex pair in a reflexive Banach
space X. Assume that T : A∪B→ A∪B is a cyclic relatively nonexpansive mapping. If T is compact, then it admits
a best proximity point.

Theorem 2.10. (Theorem 4.1 of [11]) Let (A,B) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach space X. Assume that T : A ∪ B→ A ∪ B is a noncyclic relatively nonexpansive mapping. If
T is compact, then it admits a best proximity pair.

The cyclic (noncyclic) version of condensing mappings was introduced in [11] in order to study the
existence of best proximity points (pairs) and to generalize Theorems 2.9 and 2.10 above.

Definition 2.11. Let (A,B) be a nonempty and convex pair in a Banach space X and µ an MNC on X. A cyclic
(noncyclic) mapping T : A ∪ B → A ∪ B is said to be a condensing operator if there exists r ∈ (0, 1) such
that for any nonempty, bounded, closed, convex, proximinal and T-invariant pair (H1,H2) ⊆ (A,B) such that
dist(H1,H2) = dist(A,B) we have

µ(T(H1) ∪ T(H2)) ≤ rµ(H1 ∪H2).

Next results are real extensions of Theorem 1.6 due to Darbo.
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Theorem 2.12. (Theorem 3.4 of [11]) Let (A,B) be a nonempty, bounded, closed and convex pair in a reflexive
Banach space X and µ an MNC on X. If T : A ∪ B → A ∪ B is a cyclic relatively nonexpansive mapping which is
condensing in the sense of Definition 2.11, then it admits a best proximity point.

Theorem 2.13. (Theorem 3.4 of [11]) Let (A,B) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach space X and µ an MNC on X. If T : A ∪ B → A ∪ B is a noncyclic relatively nonexpansive
mapping which is condensing in the sense of Definition 2.11, then it admits a best proximity pair.

We also refer to Gabeleh-Vetro [12] for the generalizations of Theorems 2.12 and 2.13, by considering a
class of cyclic (noncyclic) Meir-Keeler condensing operators.

3. Best proximity point (pair) results

Motivated by the fixed point results of Samadi-Ghaemi [13], we denote by Ψ the set of all nondecreasing
functionsψ : [0,∞)→ [0,∞) such thatψ(t) = 0 if and only if t = 0, and denote by Γ the family of all functions
γ : [0,∞)→ [0, 1) for which lim supt→r+ γ(t) < 1 for all r ≥ 0.

Definition 3.1. Let (A,B) be a nonempty and convex pair in a Banach space X and µ an MNC on X. A mapping
T : A∪ B→ A∪ B is said to be a cyclic (noncyclic) ψ− γ condensing operator if for any nonempty, bounded, closed,
convex, proximinal and T-invariant pair (K1,K2) ⊆ (A,B) with dist(K1,K2) = dist(A,B) we have

ψ
(
µ((T(K1) ∪ T(K2)))

)
≤ γ

(
ψ(µ(K1 ∪ K2))

)
ψ(µ(K1 ∪ K2)),

where ψ ∈ Ψ and γ ∈ Γ.

Obviously, if ψ is the identity function on [0,∞) and γ = r with r ∈ [0, 1), then we retrieve the class of
condensing mappings in Definition 2.11.

Let (A,B) be a nonempty pair in a normed linear space X and T : A ∪ B→ A ∪ B be a cyclic (noncyclic)
mapping. By MT(A,B) we denote the set of all nonempty, bounded, closed, convex, proximinal and
T-invariant pair (U,V) ⊆ (A,B) with dist(U,V) = dist(A,B). Notice that MT(A,B) may be empty, but in
particular if (A,B) is a nonempty, bounded, closed and convex pair in a reflexive Banach space X and T is
cyclic (noncyclic) relatively nonexpansive, then (A0,B0) ∈ MT(A,B) (see Gabeleh [8] for more details).

Here, we state the first result of this section.

Theorem 3.2. Let (A,B) be a nonempty, bounded, closed and convex pair in a reflexive Banach space X and µ an
MNC on X. Let T : A ∪ B → A ∪ B be a cyclic ψ − γ condensing operator for some ψ ∈ Ψ and γ ∈ Γ. If T is a
relatively nonexpansive mapping, then it admits a best proximity point.

Proof. It is worth noticing that (A0,B0) ∈ MT(A,B) , ∅. Set

An := con(T(An−1)), Bn := con(T(Bn−1)).

By the fact that A1 = con(T(A0)) ⊆ B0, we get

T(A1) ⊆ T(B0) ⊆ con(T(B0)) = B1.

Equivalently, T(B1) ⊆ A1, which implies that T is cyclic on A1 ∪ B1. Continuing this process and using
inductive reasoning, we deduce that T is cyclic on An ∪ Bn for any n ∈N. Besides, we have

An+1 = con(T(An)) ⊆ Bn = con(T(Bn−1)) ⊆ An−1, ∀n ∈N, (1)

Bn+1 = con(T(Bn)) ⊆ An = con(T(An−1)) ⊆ Bn−1, ∀n ∈N, (2)
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which ensure that the sequence {(A2n,B2n)}n∈N∪{0} is decreasing. On the other hand, for (x0, y0) ∈ A0 × B0
with ‖x0 − y0‖ = dist(A,B) we have

dist(A2n,B2n) ≤ ‖T2nx0 − T2ny0‖ ≤ ‖x0 − y0‖ = dist(A,B), ∀n ∈N,

and so, dist(A2n,B2n) = dist(A,B) for all n ∈N ∪ {0}.
Now, let u ∈ con(T(A0)). Then u =

∑m
j=1 λ jT(u j) for some m ∈ N, where u j ∈ A0 for all 1 ≤ j ≤ m.

Because of the fact that (A0,B0) is proximinal, for all 1 ≤ j ≤ m there exists an element v j ∈ Bk for which
‖u j − v j‖ = dist(A,B0)(= dist(A,B)). Suppose v :=

∑m
j=1 λ jT(v j). Then v ∈ con(T(B0)). Since T is a relatively

nonexpansive mapping,

‖u − v‖ = ‖

m∑
j=1

λ jT(u j) −
m∑

j=1

λ jT(v j)‖ ≤
m∑

j=1

λ j‖T(u j) − T(v j)‖

≤

m∑
j=1

λ j‖u j − v j‖ = dist(A,B).

Therefore, each point of con(T(A0)) has a proximal point in con(T(B0)). By a similar argument, we can see
that each point of con(T(B0)) has a proximal point in con(T(A0)) too, that is, the pair (con(T(A0)), con(T(B0)))
is proximinal. Moreover, if q ∈ con(T(A0)), then there exists a sequence {yn} in con(T(A0)) such that yn → q.
Since (con(T(A0)), con(T(B0))) is proximinal, for any n ∈N there exists a point xn ∈ con(T(Bk)) such that

‖xn − yn‖ = dist(con(T(A0)), con(T(B0))) = dist(A,B).

Weakly compactness of con(T(B0)) ensures the existence of a subsequence {xn j } of {xn} for which xn j ⇀
p ∈ con(T(B0)), where ” ⇀ ” stands for weakly convergence in the Banach space X. Weakly lower semi-
continuity of the norm implies that

‖p − q‖ ≤ lim inf
j→∞

‖xn j − yn j‖ = dist(A,B).

Thereby, (A1,B1) is proximinal. Again by using mathematical induction we conclude that each pair
(An,Bn)}n∈N∪{0} is proximinal. Therefore, {(A2n,B2n)}n∈N∪{0} is a descending sequence in MT(A,B). Notice
that if for some n ∈ N we have µ(A2n ∪ B2n) = 0, then the pair (A2n,B2n) is compact and convex and T is
cyclic on A2n ∪ B2n. Hence, the result follows from Corollary 2.7. So, we may assume that µ(A2n ∪ B2n) > 0
for all n ∈ N. By the fact that T is a cyclic ψ − γ condensing operator for some ψ ∈ Ψ and γ ∈ Γ and using
(1), (2) we obtain

ψ
(
µ(A2n+2 ∪ B2n+2)

)
= ψ

(
max{µ(A2n+2), µ(B2n+2)}

)
≤ ψ

(
max{µ(B2n+1), µ(A2n+1)}

)
= ψ

(
max{µ(con(T(B2n))), µ(con(T(A2n)))}

)
= ψ

(
max{µ((T(B2n))), µ((T(A2n)))}

)
= ψ

(
max{µ(con(T(B2n))), µ(con(T(A2n)))}

)
= ψ

(
max{µ((T(B2n))), µ((T(A2n)))}

)
= ψ

(
µ(T(A2n) ∪ T(B2n))

)
≤ γ

(
ψ(µ(A2n ∪ B2n))

)
ψ(µ(A2n ∪ B2n)) (3)

< ψ(µ(A2n ∪ B2n)).

This ensures that the sequence {ψ(µ(A2n ∪ B2n))} is strict decreasing and so we have

r := sup
n∈N

γ
(
ψ(µ(A2n ∪ B2n))

)
< 1.
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Also, from (3) we have

ψ
(
µ(A2n+2 ∪ B2n+2)

)
≤ γ

(
ψ(µ(A2n ∪ B2n))

)
ψ(µ(A2n ∪ B2n))

≤ rψ(µ(A2n ∪ B2n))

≤ r2ψ(µ(A2n−2 ∪ B2n−2))

≤ · · · ≤ r2nψ(µ(A0 ∪ B0)).

Hence, ψ(µ(A2n ∪ B2n)) → 0 as n → +∞. Moreover, as {µ(A2n ∪ B2n)}n∈N∪{0} is a decreasing sequence of
nonnegative real numbers, we deduce that µ(A2n ∪ B2n) → t for some t ≥ 0 as n → +∞. Since ψ is an
increasing function, ψ(t) ≤ ψ(µ(A2n ∪ B2n)) for all n ∈N, which implies that ψ(t) = 0 and by the property of
ψ we must have t = 0, that is, µ(A2n ∪ B2n)→ 0 as n→ +∞. Now if we set

A∞ :=
∞⋂

n=0

A2n, B∞ :=
∞⋂

n=0

B2n,

then (A∞,B∞) is nonempty, compact, convex and T-invariant with dist(A∞,B∞) = dist(A,B). Thus the result
follows from Corollary 2.7.

Remark 3.3. It is remarkable to note that the reflexivity condition in Theorem 3.2 is essential in order to establish
nonemptiness of the proximal pair (A0,B0).

The following best proximity pair theorem is an extension of Theorem 2.13.

Theorem 3.4. Let (A,B) be a nonempty, bounded, closed and convex pair in a reflexive Banach space X and µ an
MNC on X. Let T : A ∪ B→ A ∪ B be a noncyclic ψ − γ condensing operator for some ψ ∈ Ψ and γ ∈ Γ. If T is a
relatively nonexpansive mapping, then it admits a best proximity pair.

Proof. As in the proof of Theorem 3.2, let An = con(T(An−1)) and Bn = con(T(Bn−1)) for all n ∈ N. Since T is
noncyclic, A1 = con(T(A0)) ⊆ A0, and so

T(A1) ⊆ T(A0) ⊆ con(T(A0)) = A1.

Similarly, T(B1) ⊆ B1, that is, T is noncyclic on A1∪B1. Continuing this process we obtain that T is noncyclic
on An ∪ Bn for all n ∈N. Also, for all n ∈Nwe have

An+1 = con(T(An)) ⊆ An, Bn+1 = con(T(Bn)) ⊆ Bn.

By a similar argument as in the proof of Theorem 3.2, we conclude that {(An,Bn)} is a descending sequence of
nonempty, weakly compact, convex, T-invariant and proximinal pairs inMT(A,B) such that dist(An,Bn) =
dist(A,B) for all n ∈N. Now, if we define

(A∞,B∞) =

 ∞⋂
n=0

An,
∞⋂

n=1

Bn

 ,
then (A∞,B∞) is nonempty, compact, convex and T-invariant pair in a strictly convex Banach space X, and
by Corollary 2.8, T has a best proximity pair.
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4. Coupled best proximity points

Let (A,B) be a nonempty pair in a normed linear space X and F : (A × A) ∪ (B × B) → A ∪ B be a cyclic
mapping, that is, F(A × A) ⊆ B and F(B × B) ⊆ A. A point (u, v) ∈ (A × A) ∪ (B × B) is called a coupled best
proximity point for the mapping F provided that

‖u − F(u, v)‖ = ‖v − F(v,u)‖ = dist(A,B).

This notion was first introduced in the Ph.D Thesis of the first author ([10]).
In this section we establish a coupled best proximity point which is based on Theorem 3.2 above. To

this end, we need the following lemmas.

Lemma 4.1. ([3]) Suppose that µ1, µ2, · · · , µn are measures of noncompactness in the Banach spaces X1,X2, · · · ,Xn,
respectively. Moreover, assume that the function Θ : [0,∞)n

→ [0,∞) is convex and Θ(x1, x2, · · · , xn) = 0 if and
only if x j = 0 for all j = 1, 2, · · · ,n. Then

µ(E) = Θ
(
µ1(E1), µ2(E2), · · · , µn(En)

)
,

defines a measure of noncompactness in X1 × X2 × · · · × Xn, where E j denotes the natural projection of E into E j for
j = 1, 2, · · · ,n.

Lemma 4.2. Let (A,B) be a nonempty, bounded, closed and convex pair in a Banach space X. Consider the Banach
space X × X with the norm

‖(x, y)‖ = max{‖x‖, ‖y‖}, ∀x, y ∈ X.

Then the pair (A,B) is proximinal in X if and only if (A × A,B × B) is proximinal in X × X.

Proof. At first we note that dist(A × A,B × B) = dist(A,B). Indeed, for any (a, a′) ∈ A × A, (b, b′) ∈ B × B we
have

dist(A × A,B × B) = inf(
(a,a′),(b,b′)

)
∈(A×A)×(B×B)

‖(a, a′) − (b, b′)‖

= inf(
(a,a′),(b,b′)

)
∈(A×A)×(B×B)

max{‖a − b‖, ‖a′ − b′‖}

= dist(A,B).

If (A,B) is proximinal and (a, a′) ∈ A×A, then we can find b, b′ ∈ B such that ‖a−b‖ = ‖a′−b′‖ = dist(A,B).
So, for (b, b′) ∈ B × B we have ‖(a, a′) − (b, b′)‖ = dist(A,B)

(
= dist(A × A,B × B)

)
, that is, (A × A)0 = A × A.

By a similar argument we can see that (B × B)0 = B × B and so the pair
(
(A × A), (B × B)

)
is proximinal in

X × X. Besides, if
(
(A × A), (B × B)

)
is proximinal and a ∈ A, then (a, a) ∈ A × A and so there exists a point

(b, b′) ∈ B × B for which ‖(a, a) − (b, b′)‖ = dist(A,B), and hence ‖a − b‖ = ‖a − b′‖ = dist(A,B), that is, A0 = A.
Equivalently, B0 = B which implies that (A,B) is proximinal and hence the conclusion of lemma holds true.

In what follows we assume that Ψ′ denotes a subclass of the set Ψ with the additional condition

ψ(t + s) ≤ ψ(t) + ψ(s), ∀s, t ∈ [0,∞),

for any ψ ∈ Ψ′.



M. Gabeleh, J. Markin / Filomat 35:15 (2021), 5059–5071 5067

Theorem 4.3. Let (A,B) be a nonempty, bounded, closed and convex pair in a reflexive Banach space X and µ an
MNC on X. Let F : (A × A) ∪ (B × B) → A ∪ B be a cyclic mapping such that for all nonempty, bounded, closed,
convex, proximinal and T-invariant pairs (K1,K2) ⊆ (A,B) and (K′1,K

′

2) ⊆ (A,B) with dist(K1,K2) = dist(A,B) =
dist(K′1,K

′

2) we have

ψ
(
µ((F(K1 × K′1) ∪ F(K2 × K′2)))

)
≤

1
2
γ
(
ψ
(

max{µ(K1 ∪ K′1), µ(K2 ∪ K′2)}
))

× ψ
(

max{µ(K1 ∪ K′1), µ(K2 ∪ K′2)}
)
, (4)

where ψ ∈ Ψ′ and γ ∈ Γ. If

‖F(x, x′) − F(y, y′)‖ ≤ max{‖x − y‖, ‖x′ − y′‖}, (5)
∀(x, x′) ∈ A × A, ∀(y, y′) ∈ B × B,

then F admits a coupled best proximity point.

Proof. Set µ̃(E) := max{µ(E1), µ(E2)}, where E j denotes the natural projection of E into E j for j = 1, 2. From
Lemma 5.1 µ̃ is a MNC on X × X. Define the mapping T : (A × A) ∪ (B × B)→ (A × A) ∪ (B × B) by

T(u, v) = (F(u, v),F(v,u)), ∀(u, v) ∈ (A × A) ∪ (B × B).

Note that if (u, v) ∈ A × A, then by the fact that F is cyclic, (F(u, v),F(v,u)) ∈ B × B, that is, T(A × A) ⊆ B × B.
Similarly, T(B × B) ⊆ A × A. Thus T is cyclic on (A × A) ∪ (B × B). For any ((a, a′), (b, b′)) ∈ (A × A) × (B × B)
we have

‖T(a, a′) − T(b, b′)‖

= ‖
(
F(a, a′),F(a′, a)

)
−

(
F(b, b′),F(b′, b)

)
‖

= ‖
(
F(a, a′) − F(b, b′),F(a′, a) − F(b′, b)

)
‖

= max{‖F(a, a′) − F(b, b′)‖, ‖F(a′, a) − F(b′, b)‖}

≤ max
{

max{‖a − b‖, ‖a′ − b′‖},max{‖a′ − b′‖, ‖a − b‖}
}

(by (5))

= max{‖a − b‖, ‖a′ − b′‖}
= ‖(a, a′) − (b, b′)‖,

which implies that T is relatively nonexpansive. On the other hand (recall (4)), we have

ψ
(
µ̃
[(

T(K1 × K′1)
)
∪

(
T(K2 × K′2)

)])
= ψ

(
max{µ̃

(
T(K1 × K′1)

)
, µ̃

(
T(K2 × K′2)

)
}

)
= ψ

(
max{µ̃

(
F(K1 × K′1) × F(K′1 × K1)

)
, µ̃

(
F(K2 × K′2) × F(K′2 × K2)

)
}

)
= ψ

(
max

{
max{µ

(
F(K1 × K′1)

)
, µ

(
F(K′1 × K1)

)
},

max{µ
(
F(K2 × K′2)

)
, µ

(
F(K′2 × K2)

)
}

})
= ψ

(
max

{
max{µ

(
F(K1 × K′1)

)
, µ

(
F(K2 × K′2)

)
},

max{µ
(
F(K′1 × K1)

)
, µ

(
F(K′2 × K2)

)
}

})
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= ψ
(

max
{
µ
(
F(K1 × K′1) ∪ F(K2 × K′2)

)
, µ

(
F(K′1 × K1) ∪ F(K′2 × K2)

)})
≤ ψ

(
µ
(
F(K1 × K′1) ∪ F(K2 × K′2)

))
+ ψ

(
µ
(
F(K′1 × K1) ∪ F(K′2 × K2)

))
≤

1
2
γ
(
ψ
(

max{max{µ(K1), µ(K′1)},max{µ(K2), µ(K′2)}}
))

× ψ
(

max{{max{µ(K1), µ(K′1)},max{µ(K2), µ(K′2)}}
)

+
1
2
γ
(
ψ
(

max{max{µ(K′1), µ(K1)},max{µ(K′2), µ(K2)}}
))

× ψ
(

max{{max{µ(K′1), µ(K1)},max{µ(K′2), µ(K2)}}
)

= γ
(
ψ
(

max{max{µ(K1), µ(K′1)},max{µ(K2), µ(K′2)}}
))

× ψ
(

max{{max{µ(K1), µ(K′1)},max{µ(K2), µ(K′2)}}
)

= γ
(
ψ
(

max{µ̃(K1 × K′1), µ̃(K2 × K′2)}
))
ψ
(

max{µ̃(K1 × K′1), µ̃(K2 × K′2)}
)

= γ
(
ψ
(
µ̃
[
(K1 × K′1) ∪ (K2 × K′2)

]))
ψ
(
µ̃
[
(K1 × K′1) ∪ (K2 × K′2)

])
,

which ensures that T is a cyclic ψ − γ condensing operator. It now follows from Theorem 3.2 that T admits
a best proximity point, that is, there exists a point (p, q) ∈ (A × A) ∪ (B × B) for which

dist(A,B) = ‖(p, q) − T(p, q)‖
= ‖(p, q) − (F(p, q),F(q, p))‖
= max{‖p − F(p, q)‖, ‖q − F(q, p)‖}.

Therefore, (p, q) is a coupled best proximity point of F.

We conclude this section with the following result.

Corollary 4.4. Let (A,B) be a nonempty, bounded, closed and convex pair in a reflexive Banach space X and µ an
MNC on X. Let F : (A × A) ∪ (B × B) → A ∪ B be a cyclic mapping such that for all nonempty, bounded, closed,
convex, proximinal and T-invariant pairs (K1,K2) ⊆ (A,B) and (K′1,K

′

2) ⊆ (A,B) with dist(K1,K2) = dist(A,B) =
dist(K′1,K

′

2) we have

µ((F(K1 × K′1) ∪ F(K2 × K′2)) ≤
r
2

max{µ(K1 ∪ K′1), µ(K2 ∪ K′2)}

for some r ∈ (0, 1). If

‖F(x, x′) − F(y, y′)‖ ≤ max{‖x − y‖, ‖x′ − y′‖}, ∀(x, x′) ∈ A × A, ∀(y, y′) ∈ B × B,

then F admits a coupled best proximity point.

5. Application to a system of differential equations

In this section, we prove a theorem establishing the existence of an optimal solution of certain systems
of differential equations with local initial conditions. We recall the following well-known version of the
Mean-Value Theorem.

Lemma 5.1. Let J be a real interval, X a Banach space and f : J → X a differentiable mapping. Let a, b ∈ J with
a < b. Then

f (b) − f (a) ∈ (b − a)con({ f ′(t) : t ∈ [a, b]}).
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Definition 5.2. Let a, b ∈ (0,∞), I := [t0 − a, t0 + a] and V1 = B(x0; b),V2 = B(x1; b) be closed balls in a Banach
space X, where t0 is a real number and x0, x1 ∈ X. Let f : I × V1 → X and 1 : I × V2 → X be two continuous
mappings. We study the system of differential equations:x′(t) = f (t, x(t)); x(t0) = x0,

y′(t) = 1(t, y(t)); y(t0) = x1,
(6)

defined on a closed real interval J = [t0 − h, t0 + h] for some h ∈ (0,∞), x0 , x1. Denote by C(J,X) the set of all
continuous mappings from J into X with the supremum norm and set

C(J,V1) := {x ∈ C(J,X) : x(t0) = x0},

C(J,V2) := {y ∈ C(J,X) : y(t0) = x1}.

So, for all (x, y) ∈ C(J,V1) × C(J,V2) we get

‖x − y‖∞ = sup
t∈J
‖x(t) − y(t)‖ ≥ ‖x0 − x1‖,

and hence dist(C(J,V1),C(J,V2)) = ‖x0 − x1‖. Let define the operator

T : C(J,V1) ∪ C(J,V2)→ C(J,X),

given by

Tx(t) = x1 +

∫ t

t0

1(s, x(s))ds, x ∈ C(J,V1),

Ty(t) = x0 +

∫ t

t0

f (s, y(s))ds, y ∈ C(J,V2).

Now, z ∈ C(J,V1) ∪ C(J,V2) is an optimal solution for (6) whenever
‖z − Tz‖∞ = dist(C(J,V1),C(J,V2)).

We establish the following result.

Theorem 5.3. Let α be an MNC on C(J,X). Under the assumptions of Definition 5.2, we assume that

α( f (I ×W2) ∪ 1(I ×W1)) ≤ bϕ(α(W1 ∪W2)),

‖ f (t, x) − 1(t, y)‖ ≤
1
h

(‖x(t) − y(t)‖ − ‖x1 − x0‖),

for all (x, y) ∈ C(J,V1) × C(J,V2), some upper semicontinuous function ϕ : [0,∞) → [0,∞) with ϕ(t) < t, and for
any (W1,W2) ⊆ (V1,V2) and h ≤ min{a, b

M1
, b

M2
, 1

2b }, where

M1 = sup{‖ f (t, x)‖ : (t, x) ∈ I × V1}, M2 = sup{‖1(t, y)‖ : (t, y) ∈ I × V2}.

Therefore, the system (6) admits an optimum solution.

Proof. Notice that (C(J,V1),C(J,V2)) is a bounded, closed and convex pair in C(J,X) and that T is cyclic on
C(J,V1) ∪ C(J,V2). We show that T(C(J,V1)) is a bounded and equicontinuous subset of C(J,V2). Set t, t′ ∈ J
and x ∈ C(J,V1) so that we have

‖Tx(t)‖ = ‖x1 +

∫ t

t0

1(s, x(s))ds‖ ≤ ‖x1‖ +

∫ t

t0

‖1(s, x(s))‖ds

≤ ‖x1‖ + M2h ≤ ‖x1‖ + b,
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which leads to boundedness of T(C(J,V1)). Also,

‖Tx(t) − Tx(t′)‖ = ‖

∫ t

t0

1(s, x(s))ds −
∫ t′

t0

1(s, x(s))ds‖

≤

∫ t′

t
‖1(s, x(s))‖ds ≤M2|t − t′|,

that is, T(C(J,V1)) is equicontinuous. In a similar fashion, we deduce that T(C(J,V2)) is bounded and
equicontinuous, too. Now, by Arzela-Ascoli’s theorem we conclude that the pair (C(J,V1),C(J,V2)) is
relatively compact. We show that the operator T is cyclic ψ − γ condensing, for some ψ ∈ Ψ and γ ∈ Γ.
Indeed, assume that (K1,K2) ⊆ (C(J,V1),C(J,V2)) is a nonempty, closed, convex and proximinal pair which
is T-invariant and that

dist(K1,K2) = dist(C(J,V1),C(J,V2)) (= ‖x0 − x1‖).

By Theorem 2.11 of [2] we get

α(T(K1),T(K2))
= max{α(T(K1)), α(T(K2))}
= max{sup

t∈J
{α({Tx(t) : x ∈ K1})}, sup

t∈J
{α({Ty(t) : y ∈ K2})}}

= max{sup
t∈J
{α({x1 +

∫ t

t0

1(s, x(s))ds : x ∈ K1})},

sup
t∈J
{α({x0 +

∫ t

t0

f (s, y(s))ds : y ∈ K2})}}.

By Lemma 5.1 we deduce that

x1 +

∫ t

t0

1(s, x(s))ds ∈ x1 + (t − t0)con({1(s, x(s)) : s ∈ [t0, t]}),

x0 +

∫ t

t0

f (s, y(s))ds ∈ x0 + (t − t0)con({ f (s, y(s)) : s ∈ [t0, t]}),

and so

α(T(K1),T(K2))) ≤ max{sup
t∈J
{α({x1 + (t − t0)con({1(s, x(s)) : s ∈ [t0, t]})})},

sup
t∈J
{α({x0 + (t − t0)con({ f (s, y(s)) : s ∈ [t0, t]})})}}

≤ max{ sup
0≤λ≤h

{α({x1 + λcon({1(J × K1)})})},

sup
0≤λ≤h

{α({x0 + λcon({ f (J × K2)})})}}

= max{hα(1(J × K1)), hα( f (J × K2))}
= hα({1(J × K1) ∪ f (J × K2)})

≤
1
2b

bϕ(α(K1 ∪ K2))

=
1
2
ϕ(α(K1 ∪ K2)).
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It follows that the operator T is ψ − γ condensing, where γ(t) := ϕ(t)
2t ∈ Γ and ψ ∈ Ψ is the identity function.

Next, we show that T is relatively nonexpansive. For any (x, y) ∈ C(J,V1) × C(J,V1) we get

‖Tx(t) − Ty(t)‖ = ‖(x1 +

∫ t

t0

1(s, x(s))ds) − (x0 +

∫ t

t0

f (s, y(s))ds)‖

≤ ‖x1 − x0‖ +

∫ t

t0

‖1(s, x(s)) − f (s, y(s))‖ds

≤ ‖x1 − x0‖ +
1
h

∫ t

t0

(‖x(s) − y(s)‖ − ‖x1 − x0‖)ds

≤ ‖x1 − x0‖ + (‖x − y‖∞ − ‖x1 − x0‖) = ‖x − y‖∞,

and so ‖Tx − Ty‖∞ ≤ ‖x − y‖∞. The conclusion follows immediately by Theorem 3.2 (see Remark 5.4
below).

Remark 5.4. Note that in Theorem 4.3, as we know, the Banach space C(J,X) is not reflexive and the reflexivity
condition in Theorem 3.2 is essential (see Remark 3.3). Since in Theorem 4.3 (x0, x1) ∈

((
C(J,V1)

)
0
,
(
C(J,V2)

)
0

)
, the

proximal pair
((
C(J,V1)

)
0
,
(
C(J,V2)

)
0

)
is nonempty, automatically and we do not need the reflexivity condition of the

Banach space C(J,X).

6. Conclusions

It was proved by Gabeleh and Markin that every cyclic (noncyclic) relatively nonexpansive mapping
which is condensing has a best proximity point (pair) (Theorems 2.12, 2.13). We have extended these
theorems by considering some appropriate control functions (see Theorems 3.2, 3.4). Moreover, we have
studied the existence of a coupled best proximity point for a class of condensing mappings by considering
an appropriate measure of noncompactness (see Theorem 4.3).

In the last section, we have established the existence of a solution of a system of differential equations
by using the existence of a best proximity point which was scurvied in Theorem 3.2.
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