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Abstract. In the present paper, considering the differential equations on smooth closed manifolds, we
investigate and establish the well-posedness of boundary value problems nonlocal type for parabolic
equations and also hyperbolic equations in Hölder spaces. Furthermore, in various Hölder norms we
establish new coercivity estimates for the solutions of such type parabolic boundary value problems on
manifolds and hyperbolic boundary value problems on manifolds as well.

1. Introduction

The role played by the coercivity inequalities (well-posedness) is well known (see, e.g. [1–3]) in the
study of boundary value problems involving partial differential equations. The well-posedness of partial
differential equations of nonlocal parabolic and hyperbolic types in the Euclidean space has been well
studied (see, for example [4–9],[11–20] and also the references therein).

The present article considers the differential equations on smooth closed manifolds, investigates and
establishes in Hölder spaces the well posedness of nonlocal type boundary value problems on manifolds.
In addition, for the solutions of such boundary value problems for parabolic equations and hyperbolic
equations on manifolds it establishes new coercivity inequlities in various Hölder norms.

2. Laplacian on Riemannian manifolds

In this section, we will recall the basic definitions and fact about the Laplacian on Riemannian manifolds.
For more information and unexplained subjects, the reader is referred to [22, 23], and the references therein.

A pair (M, 1) is a Riemannian manifold ifM is a smooth manifold and 1 is a map assigning to each x ∈ M
a symmetric positive definite non degenerate bilinear form 〈·, ·〉1(x) : TxM×TxM→ R so that for all smooth
vector fields X,Y ∈ ΓC∞ (TM) , the map x 7−→ 〈X(x),Y(x)〉1(x) is smooth.
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For the local coordinates (x1, . . . , xn) , let us consider
(
U, ϕ

)
corresponding natural basis

{(
∂
∂x1

)
x
, . . . ,

(
∂
∂xn

)
x

}
of tangent space TxM, then by 1i j we denote

〈(
∂
∂xi

)
x
,
(
∂
∂x j

)
x

〉
1(x)
.We also denote by 1i j the entries of the inverse

matrix of (1i j).
Recall that the gradient ∇1 : C∞ (M)→ ΓC∞ (TM) is defined by〈

∇1ϕ,X
〉
1

= dϕ (X)

for all ϕ ∈ C∞(M), X ∈ ΓC∞ (TM) . In the local coordinates (x1, . . . , xn) , the gradient vector field has the
form

∇1ϕ =

n∑
i, j=1

1i j ∂ϕ

∂xi

∂
∂x j

.

Since the differential operator d is linear and satisfies the Leibniz rule, we have ∇1
(
ϕ + ψ

)
= ∇1ϕ+∇1ψ and

∇1
(
ϕ · ψ

)
= ϕ · ∇1ψ + ψ · ∇1ϕ for all ϕ,ψ ∈ C 1(M).

Let ω ∈ Ωn(M) be an n−form and X be a vector field onM. The (n − 1)−form ιXω ∈ Ωn−1(M) is defined
by

ιXω (X1, . . . ,Xn−1) = ω
(
X,X1, . . . ,Xn−1

)
,

where X1, . . . ,Xn−1 are any vector fields onM. For d(ιXω) being an n−form, there exits a number divω(X) so
that d (ιXω) = divω(X)ω.

Divergence div1 : ΓC∞ (TM)→ C∞(M) is the operator defined by

d
(
ιXω1

)
= div1(X)ω1 for all X ∈ ΓC∞ (TM) .

Here, ω1 ∈ Ωn(M) is the natural volume element obtained from the metric 1 onM. In the local coordinates

(x1, . . . , xn) , for X =
n∑

j=1
b j

∂
∂x j
∈ ΓC∞ (TM) we have

div1(X) =
1√

det 1

n∑
i=1

∂
∂xi

(
bi

√
det 1

)
. (1)

For all X,Y ∈ ΓC∞ (TM) and ω ∈ Ωn (M) we get ιX+Yω = ιXω + ιYω. This yields div1 (X + Y) = div1 (X) +
div1 (Y) Furthermore, by (1), we have for every ϕ ∈ C∞(M)

div1
(
ϕX

)
= ϕdiv1X +

〈
∇1ϕ,X

〉
1
. (2)

The Laplace-Beltrami operator ∆1 : C∞ (M)→ C∞ (M) on (M, 1) is the operator defined by

∆1 = −div1 ◦ ∇1.

For both ∇1 and div1 being linear, we have

∆1
(
ϕ + ψ

)
= ∆1ϕ + ∆1ψ

for every ϕ,ψ ∈ C∞(M). We also have

∆1
(
ϕ · ψ

)
= ψ∆1ϕ + ϕ∆1ψ − 2

〈
∇1ϕ,∇1ψ

〉
1
.

Considering the local coordinates (x1, . . . , xn) , the following equality holds:

∆1 = −
1√

det 1

n∑
i, j=1

∂
∂xi

(
1i j

√
det 1

∂
∂x j

)
.
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For instance, let us consider the n−spere

Sn = {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + · · · + x2

n+1 = 1}.

in geodesic polar coordinates namely ξ : (0, π)n−1
× (0, 2π)→ Sn,

x1 = cosθ1
x2 = sinθ1 cosθ2
x3 = sinθ1 sinθ2 cosθ3
...
xn = sinθ1 sinθ2 · · · cosθn
xn+1 = sinθ1 sinθ2 · · · sinθn

(3)

where 0 < θ1, θ2, . . . , θn−1 < π, 0 < θn < 2π. Then we have

1Sn =



1 0 0 0 0 · · · · · ·

0 sin2 θ1 0 0 0 · · · · · ·

0 0 sin2 θ1 sin2 θ2 0 0 · · · · · ·

0 0 0
. . . 0 · · · · · ·

...
...

...
...

. . . · · · · · ·

0 0 0 0 0 sin2 θ1 · · · sin2 θn−1


,

√
det 1

Sn =

n−1∏
`=1

(sinθ`)
n−` .

Thus, in these coordinates the Laplace-Beltrami operator ∆Sn is

−
1

n−1∏̀
=1

(sinθ`)
n−`

n∑
j=1

∂
∂θ j

(
a j(θ1, . . . , θn)

∂
∂θ j

)
, (4)

where a1 = 1 and for j = 2, . . . ,n, a j =

n−1∏̀
=1

(sinθ`)
n−`

j−1∏
i=1

sin2 θi

.

Before finishing this section, let us recall Stokes’ Theorem and Divergence Theorem for manifolds.

Theorem 2.1 (Stokes’ Theorem). If M is an oriented smooth compact n-manifold with boundary ∂M and if
α ∈ Ωn−1 (M) have compact support, then∫

M

ι∗α =

∫
M

dα, or for short,
∫
M

α =

∫
M

dα.

Here, ι : ∂M→M is the inclusion map.

Theorem 2.2 (Divergence Theorem). IfM is a Riemannian manifold and X is a C1
−vector field onM, then∫

M

div1(X) dV1 =

∫
∂M
〈X, ν〉1 dσ1.

Here, div1 is the divergence operator on (M, 1), dV1 is the natural volume element on (M, 1), and ν is the unit vector
normal to ∂M.



A. Ashyralyev et al. / Filomat 35:15 (2021), 5031–5043 5034

(0, 0, 1)

ba

d

c

θ1

Ω ∂
∂θ2

∂
∂θ1

ξ (θ1, c) ; a ≤ θ1 ≤ b

ξ (b, θ2) ; c ≤ θ2 ≤ d

ξ (a, θ2) ; c ≤ θ2 ≤ d ξ (θ1, d) ; a ≤ θ1 ≤ b

Ω

θ2
b

Figure 1: Topological rectangle on 2−sphere S2

These theorems yield

Theorem 2.3 (Green’s Theorem). Suppose (M, 1) is a compact Riemannian manifold with boundary. If ψ ∈
C 1

(
M

)
and ϕ ∈ C 2

(
M

)
, then∫

M

ψ∆
M
φ dV1 =

∫
M

〈
∇1ψ,∇1φ

〉
dV1 −

∫
∂M
ψ
∂φ

∂ν
dσ1.

Here, ∇1 is the gradient operator on the Riemannian manifold (M, 1).

From Green’s Theorem it follows that

Theorem 2.4. [23] Suppose (M, 1) is a closed (i.e. compact with empty boundary) Riemannian manifold, then

1. (Formal self-adjointness):
〈
ψ,∆

M
ϕ
〉
L2(M,dV1)

=
〈
ϕ,∆

M
ψ
〉
L2(M,dV1)

2. (Positivity):
〈
∆
M
ϕ,ϕ

〉
L2(M,dV1)

≥ 0.

Here, L2(M, dV1) is the Hilbert space{
ϕ :M→ R;

〈
ϕ,ϕ

〉
L2(M,dV1) :=

∫
M

ϕ2(x) dV1(x) < ∞
}
.

Finally, let us recall that eigenfunctions of the Laplace-Beltrami operator ∆Sn on the n−sphere Sn
⊂ Rn+1

are restrictions of harmonic polynomials to the sphere. The eigenvalues are λ` = `(` + n − 1), where
` = 0, 1, 2, . . . .

3. Parabolic differential equations on manifolds

3.1. Nonlocal parabolic differential equation
Let (M, 1) be a smooth closed orientable Riemannian manifold (such as n−sphere Sn, n−torus Tn). Let

us consider the nonlocal parabolic differential equation
ut (t, x) + ∆

M
u(t, x) + δu(t, x) = f (t, x), 0 ≤ t ≤ 1, x ∈ M,

u(0, x) =

p∑
i=1

αiu(λi, x) + µ(x), x ∈ M, 0 < λ1 < · · · < λp ≤ 1.
(5)
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Here, ∆
M

is the Laplace-Beltrami operator on the manifold (M, 1), δ > 0, and
p∑

i=1

|αi| ≤ 1.

We have

Theorem 3.1. The solutions of (5) satisfy the following stability inequality

‖ ut ‖C α
0 (L2(M,dV1)) + ‖ Lu ‖C α

0 (L2(M,dV1))

≤ K(λ1, δ)
(
‖ f ‖Cα

0 (L2(M,dV1 ))

α(1−α) + ‖Lµ‖L2(M,dV1)

)
,

where K(λ1, δ) does not depend on µ(x), f (t, x).

We consider problem (5) as the nonlocal boundary value problem
U′ (t) + LU (t) = F(t), 0 ≤ t ≤ 1,

U(0) =

p∑
i=1

αiU(λi) + µ, 0 < λ1 < · · · < λp ≤ 1
(6)

in the Hilbert space H = L2

(
M, dV1

)
with the self-adjoint positive definite operator L = ∆M + δI. Here, I

denotes the identity operator, ‖ψ‖L2(M,dV1) =
(∫
M
ψ2(x)dV1(x)

)1/2
, and dV1 is the natural volume element of

M obtained from metric tensor 1.
The proof of Theorem 3.1 is based on the following theorem.

Theorem 3.2. Problem (6) is well-posed in C α
0 (H) and the following coercivity inequality holds:

‖U′‖C α
0 (H) + ‖LU‖C α

0 (H) ≤ K(λ1, δ)
(

1
α(1 − α)

‖F‖C α
0 (H) + ‖Lµ‖H

)
,

where K(λ1, δ) is independent of α, µ, and F. Here, C α
0 (H) (0 < α < 1) is the Banach space which is the completion of

of smooth functions U : [0, 1]→ H in the norm

‖U‖C α
0 (H) = ‖U‖C (H) + sup

0≤t<t+τ≤1

tα ‖U (t + τ) −U (t)‖H
τα

and ‖U‖C (H) equals to max
0≤t≤1

‖U(t)‖H.

3.2. Nonlocal BVP for parabolic equation on a relatively compact domain Ω ⊂ Sn

Let (ai, bi) ⊂ (0, π), i = 1, . . . ,n − 1 and (an, bn) ⊂ (0, 2π). Let us consider the domain

Ω = ξ((a1, b1) × · · · × (an−1, bn−1) × (an, bn)) ⊂ Sn. (7)

Here, ξ : (0, π)n−1
× (0, 2π)→ Sn is the geodesic polar parametrization (3).

Clearly, Ω ⊂ Sn is a normal domain with the property Sn
−Ω is open in Sn.

We consider the nonlocal boundary value problem for parabolic equation

ut (t, x) + ∆Sn u(t, x) + δu(t, x) = f (t, x), 0 ≤ t ≤ 1, x ∈ Ω,

u(0, x) =

p∑
i=1

αiu(λi, x) + µ(x), x ∈ Ω, 0 < λ1 < · · · < λp ≤ 1,

u(t, x) = 0, 0 ≤ t ≤ 1, x ∈ ∂Ω.

(8)
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Here, ∆Sn is the Laplace-Beltrami operator on Sn, δ > 0, and
p∑

i=1

|αi| ≤ 1.

We have

Theorem 3.3. The following stability inequality

‖ ut ‖C α
0 (L2(Ω,dV1)) + ‖ u ‖C α

0 (W 2
2 (Ω,dV1))

≤ K(λ1, δ)
(
‖ f ‖Cα

0 (L2(Ω,dV1 ))

α(1−α) + ‖µ‖W 2
2 (Ω,dV1)

)
is valid for the solutions of (8), where K(λ1, δ) does not depend on µ(x), f (t, x).

We consider problem (8) as the nonlocal boundary value problem (6) in the Hilbert space H = L2

(
Ω, dV1

)
with the self-adjoint and positive definite operator L = ∆Sn + δI.

Theorem 3.2 with H = L2

(
Ω, dV1

)
and the following result (Theorem 3.4) which is about the coercivity

inequality for the solution of the elliptic differential problem in L2(Ω, dV1) prove Theorem 3.3.

Theorem 3.4. If we consider the following elliptic differential problem
∆Sn u(ξ(

−→
θ )) = ω(ξ(

−→
θ )),
−→
θ = (θ1, . . . , θn) ∈ (a1, b1) × · · · × (an, bn),

u(ξ(
−→
θ )) = 0,

−→
θ in boundary o f [a1, b1] × · · · × [an, bn],

then we have the coercivity inequality

n∑
i=1

∥∥∥uθiθi

∥∥∥
L2(Ω,dV1)

≤ K1||ω||L2(Ω,dV1).

The proof of Theorem 3.4 is based on the following theorem.

Theorem 3.5. [4] For the solutions of the elliptic differential problem
Aξu(ξ) = ω(ξ), ξ ∈ (α1, β1) × · · · × (αn, βn),

u(ξ) = 0, ξ in boundary [α1, β1] × · · · × [αn, βn]

the coercivity inequality holds:

n∑
r=1

∥∥∥uξrξr

∥∥∥
L2((α1,β1)×···×(αn,βn))

≤ K2||ω||L2((α1,β1)×···×(αn,βn)).

Here, Aξ =
n∑

r=1

∂
∂ξr

(
ar(ξ) ∂

∂ξr

)
and ar(ξ) ≥ a > 0, r = 1, . . . ,n.

Proof. [Proof of Theorem 3.4] Note that boundary of Ω is the image ξ(
−→
θ ) of the boundary of [a1, b1] × · · · ×

[an, bn]. Note also that this parametrization sends the interior of [a1, b1] × · · · × [an, bn] to the interior of Ω. If
u : Ω→ R and vanishes on the boundary of Ω, then v = u ◦ ξ : [a1, b1]× · · · × [an, bn]→ R and v vanishes on
the boundary of [a1, b1] × · · · × [an, bn].

There exist k,K > 0 so that on Ω we have 0 < k ≤
n−1∏̀
=1

(sinθ`)
n−`
≤ K.
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From equation (4) and Theorem 3.5 it follows

∫
Ω

∣∣∣∆
Sn u(x)

∣∣∣2 dV1(x) =

∫ b1

a1

· · ·

∫ bn

an

{∑n
j=1

∂
∂θ j

(
a j(
−→
θ ) ∂u◦ξ(

−→
θ )

∂θ j

)}2

(
n−1∏̀
=1

sinθ`

)n−` dθn · · · dθ1

≥
1
K

∫ b1

a1

· · ·

∫ bn

an


n∑

j=1

∂
∂θ j

a j(
−→
θ )
∂u ◦ ξ(

−→
θ )

∂θ j




2

dθn · · · dθ1

=
1
K

∥∥∥A(θ1,...,θn)u ◦ ξ
∥∥∥2

L2((a1,b1)×···×(an,bn))

=
1
K

∥∥∥A(θ1,...,θn)v
∥∥∥2

L2((a1,b1)×···×(an,bn))

≥
1

K · K2
2

 n∑
i=1

∥∥∥vθiθi

∥∥∥
L2((a1,b1)×···×(an,bn))


2

.

Hence, we get
∫
Ω

∣∣∣∆
Sn u(x)

∣∣∣2 dV1(x)


1/2

≥
1
√

KK2

n∑
i=1

∥∥∥vθiθi

∥∥∥
L2((a1,b1)×···×(an,bn)) . (9)

Let us now note that for i = 1, . . . ,n, we have

∥∥∥vθiθi

∥∥∥
L2((a1,b1)×···×(an,bn)) =


b1∫
a1

· · ·

bn∫
an

∣∣∣vθiθi (θ1, . . . , θn)
∣∣∣2 dθn · · · dθ1


1/2

≥


b1∫
a1

· · ·

bn∫
an

∣∣∣vθiθi (θ1, . . . , θn)
∣∣∣2

n−1∏̀
=1

(sinθ`)
n−`

K
dθn · · · dθ1


1/2

=
1
√

K


b1∫
a1

· · ·

bn∫
an

∣∣∣vθiθi (θ1, . . . , θn)
∣∣∣2 n−1∏
`=1

(sinθ`)
n−` dθn · · · dθ1


1/2

=
1
√

K


b1∫
a1

· · ·

bn∫
an

∣∣∣(u ◦ ξ)θiθi (θ1, . . . , θn)
∣∣∣2 n−1∏
`=1

(sinθ`)
n−` dθn · · · dθ1


1/2

=
1
√

K

∥∥∥uθiθi

∥∥∥
L2(Ω,dV1) . (10)

Equations (9) and (10) yield
∫
Ω

∣∣∣∆
Sn u(x)

∣∣∣2 dV1(x)


1/2

≥
1

K · K2

n∑
i=1

∥∥∥uθiθi

∥∥∥
L2(Ω,dV1) .

This ends the proof of Theorem 3.4.
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3.3. Nonlocal reverse parabolic differential equation

Let (M, 1) be a smooth closed orientable Riemannian manifold. Let us consider the boundary value
problem of nonlocal parabolic type

ut (t, x) − ∆Mu(t, x) − δu(t, x) = f (t, x), 0 ≤ t ≤ 1, x ∈ M,

u(1, x) =

p∑
i=1

αiu(λi, x) + ϕ(x), x ∈ M, 0 ≤ λ1 < · · · < λp < 1.
(11)

Here, ∆M denotes the Laplace-Beltrami operator on the Riemannian manifold (M, 1), δ > 0, and
p∑

i=1
|αi| ≤ 1.

We prove

Theorem 3.6. For the solutions of (11), the following stability inequality

‖ ut ‖C α
1 (L2(M,dV1)) + ‖ Lu ‖C α

1 (L2(M,dV1))

≤ K(λp, δ)
(
‖ f ‖Cα

1 (L2(M,dV1 ))

α(1−α) + ‖Lϕ‖L2(M,dV1)

)
is valid. Here, K(λp, δ) is independent of ϕ(x), f (t, x).

Problem (11) is considered as the nonlocal boundary value problem
U′(t) − LU(t) = F(t), 0 ≤ t ≤ 1,

U(1) =

p∑
i=1

αiU(λi) + ϕ, 0 ≤ λ1 < · · · < λp < 1
(12)

in H = L2

(
M, dV1

)
with self-adjoint and positive definite operator L = ∆M + δI.

The proof of Theorem 3.6, we use the following result.

Theorem 3.7. [21] If A is a self-adjoint positive definite operator on a Hilbert space H, ϕ ∈ D(A), F(t) ∈ C α
1 (H) and

p∑
i=1
|αi| ≤ 1, then problem


v′(t) − Av(t) = 1(t), 0 ≤ t ≤ 1,

v(1) =

p∑
i=1

αiv(λi) + ϕ, 0 ≤ λ1 < · · · < λp < 1
(13)

is well-posed in C α
1 (H) and the coercivity estimate holds:

‖v′‖C α
1 (H) + ‖Av‖C α

1 (H) ≤ K(λp, δ)
(

1
α(1 − α)

‖1‖C α
1 (H) + ‖Aϕ‖H

)
,

where K(λp, δ) is independent of ϕ and 1(t), t ∈ [0, 1]. Here, C α
1 (H) is the Banach space which is the completion of

smooth funtions v : [0, 1]→ H with the norm

‖v‖C α
1 (H) = ‖v‖C (H) + sup

0≤t<t+τ≤1

(1 − t)α‖v(t + τ) − v(t)‖H
τα

.
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3.4. Nonlocal reverse parabolic differential equation on a relatively compact domain Ω ⊂ Sn

We consider the normal domain Ω ⊂ Sn in (7).
We consider the nonlocal boundary value problem of parabolic type

ut (t, x) − ∆Sn u(t, x) − δu(t, x) = f (t, x), 0 ≤ t ≤ 1, x ∈ Ω,

u(1, x) =

p∑
i=1

αiu(λi, x) + ϕ(x), x ∈ Ω, λ1 < · · · < λp ≤ 1,

u(t, x) = 0, x ∈ ∂Ω, 0 ≤ t ≤ 1.

(14)

Here, ∆Sn denotes the Laplace-Beltrami operator on the Riemannian manifold (Sn, 1Sn ), δ > 0, and
p∑

i=1
|αi| ≤ 1.

We have

Theorem 3.8. For the solutions of (14), we have the following stability estimate

‖ ut ‖C α
1 (L2(Ω,dV1)) + ‖ u ‖C α

1 (W 2
2 (Ω,dV1))

≤ K(λp, δ)
(

1
α(1−α) ‖ f ‖C α

1 (L2(Ω,dV1)) +‖ϕ‖W 2
2 (Ω,dV1)

)
.

Here, K(λp, δ) does not depend on ϕ(x), f (t, x).

Theorem 3.9. If
∑n
`=1(a`(x)ϕx` (x))x` − δϕ = f (1, x) −

∑p
i=1 αi f (λi, x), then the solutions of problem (14) satisfy the

stability inequality:

‖ ut ‖C α(L2(Ω,dV1)) + ‖ u ‖C α(W 2
2 (Ω,dV1))≤

K(λp, δ)
α(1 − α)

‖ f ‖C α(L2(Ω,dV1)) .

Here, K(λp, δ) is independent of ϕ(x), f (t, x).

We consider problem (14) as the boundary value problem of nonlocal type (12) in H = L2

(
Ω, dV1

)
with

the self-adjoint and positive definite operator L = ∆Sn + δI.
The proofs of Theorem 3.8 and Theorem 3.9, we use the symmetry properties of the operator L defined

by (14), Theorem 3.4, Theorem 3.7, and also the following result.

Theorem 3.10. [21] If 1(t) ∈ C α(H), 1(1)−
∑p

i=1 αi1(λi) + Aϕ ∈ Hα and
p∑

i=1
|αi| ≤ 1, then problem (13) is well-posed

in C α(H) and moreover for the solutions the following coercivity estimate

‖ v′‖C α(H) + ‖Av‖C α(H) + ‖v′‖C (Hα)

≤ K

 1
α

∥∥∥∥∥∥∥1(1) −
p∑

i=1

αi1(λi) + Aϕ

∥∥∥∥∥∥∥
Hα

+
K(λp, δ)
α(1 − α)

‖1‖C α(H)


is valid, where K is independent of ϕ and 1(t), t ∈ [0, 1]. Here, Hα = Hα,∞(H,A) is the fractional space consisting all
v ∈ H for which the following norm ‖v‖Hα = ‖v‖H + supλ>0 ‖λ

1−αAe−λAv‖H is finite.
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4. Hyperbolic differential equations on manifolds

4.1. Nonlocal hyperbolic differential equation
Suppose (M, 1) is a smooth closed orientable Riemannian manifold. Consider the mixed boundary

value problem for hyperbolic equations

utt (t, x) + ∆
M

u (t, x) + δu(t, x) = f (t, x), (t, x) ∈ [0, 1] ×M,

u(0, x) =

p∑
j=1

α ju
(
λ j, x

)
+ ϕ(x), x ∈ M,

ut(0, x) =

p∑
j=1

βkut (λk, x) + ψ(x), x ∈ M,

0 < λ1 ≤ · · · ≤ λp ≤ 1.

(15)

Here, ∆
M

is the Laplace-Beltrami operator on the manifold (M, 1), δ > 0. We assume

p∑
j=1

|α j + β j| +

p∑
j=1

|α j|

p∑
m=1, m, j

|βm| <

∣∣∣∣∣∣∣∣1 +

p∑
j=1

α jβ j

∣∣∣∣∣∣∣∣ . (16)

We have

Theorem 4.1. The solutions of (15) satisfy the stability inequalities

max
0≤t≤1

‖ u(t, ·) ‖L2(M,dV1) ≤ K
[
‖ ϕ ‖L2(M,dV1)

+ ‖ L−1/2ψ ‖L2(M,dV1) +max
0≤t≤1

‖ L−1/2 f (t, ·) ‖L2(M,dV1)

]
,

max
0≤t≤1

‖ L1/2u(t, ·) ‖L2(M,dV1) ≤ K
[
‖ L1/2ϕ ‖L2(M,dV1)

+ ‖ ψ ‖L2(M,dV1) +max
0≤t≤1

‖ f (t, ·) ‖L2(M,dV1)

]
,

max
0≤t≤1

‖ utt(t, ·) ‖L2(M,dV1) +max
0≤t≤1

‖ Lu(t, ·) ‖L2(M,dV1)≤ K
[
‖ Lϕ ‖L2(M,dV1)

+ ‖ L1/2ψ ‖L2(M,dV1) + ‖ f (0, ·) ‖L2(M,dV1)

∫ t

0
‖ ft(t, ·) ‖L2(M,dV1) dt

]
,

where K is independent of f (t, x), ϕ(x), and ψ(x).

We consider problem (15) as the following problem

Utt(t) + LU(t) = F(t), 0 ≤ t ≤ 1,

U(0) =

p∑
j=1

α jU
(
λ j

)
+ ϕ,

Ut(0) =

p∑
j=1

βkUt (λk) + ψ,

0 < λ1 ≤ · · · ≤ λp ≤ 1

(17)
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in H = L2(M, dV1) with the self-adjoint and positive definite operator L = ∆M + δI. Here, I denotes the

identity operator, ‖U‖L2(M,dV1) =
(∫
M

U2(x)dV1(x)
)1/2

, and dV1 is the natural volume element ofM obtained
from metric tensor 1.

The proof of Theorem 4.1 is based on the following result.

Theorem 4.2. ([8, 9]) If A is a self-adjoint positive definite operator on a Hilbert space H, ϕ ∈ D(A), ψ ∈ D(A1/2),
and 1(t) is in C1([0, 1],H), and the assumption (16) is valid, then there is a unique solution of

vtt(t) + Av(t) = 1(t), 0 ≤ t ≤ 1,

v(0) =

p∑
j=1

α jv
(
λ j

)
+ ϕ,

vt(0) =

p∑
j=1

βkvt (λk) + ψ,

0 < λ1 ≤ · · · ≤ λp ≤ 1

and the following stability inequalities hold:

‖ v ‖C(H) ≤ K
[
‖ ϕ ‖H + ‖ A−1/2ψ ‖H + ‖ A−1/21 ‖C(H)

]
,

‖ A1/2v ‖C(H) ≤ K
[
‖ A1/2ϕ ‖H + ‖ ψ ‖H + ‖ 1 ‖C(H)

]
,

‖ v′′ ‖C(H) + ‖ Av ‖C(H) ≤ K
[
‖ Aϕ ‖H + ‖ A1/2ψ ‖H + ‖ 1(0) ‖H

∫ t

0
‖ 1′(t) ‖H dt

]
,

where K is independent of 1(t), t ∈ [0, 1], and ϕ,ψ. Here, ‖v‖C(H) is equal to max
0≤t≤1

‖v(t)‖H.

4.2. Nonlocal hyperbolic differential equation on a relatively compact domain Ω ⊂ Sn

Let us consider the domain Ω ⊂ Sn in (7). We consider the mixed boundary value problem for hyperbolic
equations

utt (t, x) + ∆Sn u (t, x) = f (t, x), (t, x) ∈ [0, 1] ×Ω,

u(0, x) =

p∑
j=1

α ju
(
λ j, x

)
+ ϕ(x), x ∈ Ω,

ut(0, x) =

p∑
j=1

βkut (λk, x) + ψ(x), x ∈ Ω,

0 < λ1 ≤ · · · ≤ λp ≤ 1,

u(t, x) = 0, x ∈ ∂Ω, 0 ≤ t ≤ 1

(18)

under the assumption

p∑
j=1

|α j + β j| +

p∑
j=1

|α j|

p∑
m=1, m, j

|βm| <

∣∣∣∣∣∣∣∣1 +

p∑
j=1

α jβ j

∣∣∣∣∣∣∣∣ . (19)
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Here, ∆Sn denotes the Laplace-Beltrami operator on (Sn, 1Sn ).
We have

Theorem 4.3. For the solutions of (18), the following stability inequalities

max
0≤t≤1

(
‖ uφ(t, ·) ‖L2(Ω,dV1) + ‖ uθ(t, ·) ‖L2(Ω,dV1)

)
≤ K

[
max
0≤t≤1

‖ f (t, · ‖L2(Ω,dV1) +
(
‖ ϕφ ‖L2(Ω,dV1) + ‖ ϕθ ‖L2(Ω,dV1)

)
+ ‖ ψ ‖L2(Ω,dV1)

]
,

max
0≤t≤1

(
‖ uφφ(t, ·) ‖L2(Ω,dV1) + ‖ uθθ(t, ·) ‖L2(Ω,dV1)

)
+ max

0≤t≤1
‖ utt(t, ·) ‖L2(Ω,dV1)

≤ K
[
max
0≤t≤1

‖ ft(t, ·) ‖L2(Ω,dV1) + ‖ f (0, ·) ‖L2(Ω,dV1)

+
(
‖ ϕφφ ‖L2(Ω,dV1) + ‖ ϕθθ ‖L2(Ω,dV1)

)
+

(
‖ ψφ ‖L2(Ω,dV1) + ‖ ψθ ‖L2(Ω,dV1)

)]
are valid, where K does not depend on f (t, x), ϕ(x), and ψ(x).

Equation (18) can be considered as problem (17) in H = L2(Ω, dV1) with the self-adjoint and positive
definite operator L = ∆Sn .

To prove Theorem 4.3, we use Theorem 3.4 and Theorem 4.2 with H = L2(Ω, dV1).

5. Conclusion

In this article, we investigate the differential equations on smooth closed manifolds. We prove the
well-posedness of boundary value problems nonlocal type for parabolic equations and also hyperbolic
equations in Hölder spaces. Moreover, in various Hölder norms we obtain new coercivity estimates for the
solutions of such type parabolic boundary value problems on manifolds and hyperbolic boundary value
problems on manifolds as well. Some statements without proof were published in [10]. In future works,
following the techniques introduced in [11], we will investigate difference of equations associated to the
differential equations.
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Birkhäuser, Basel, 2004.
[12] A. Ashyralyev, Nonlocal boundary-value problems for abstract parabolic equations: well-posedness in Bochner spaces, Journal

of Evolution Equations 6 (2006) 1–28.



A. Ashyralyev et al. / Filomat 35:15 (2021), 5031–5043 5043

[13] Ph. Clement and S. Guerre-Delabrire, On the regularity of abstract Cauchy problems and boundary value problems, Atti della
Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e
Applicazioni 9 (1998) 245–266.

[14] A. V. Gulin, N. I. Ionkin, and V. A. Morozova, On the stability of a nonlocal finite-difference boundary value problem, Differential
Equations 37 (2001) 970–978.

[15] X. Z. Liu, X. Cui, and J. G. Sun, FDM for multi-dimensional nonlinear coupled system of parabolic and hyperbolic equations,
Journal of Computational and Applied Mathematics 186 (2006) 432–449.

[16] J. Martin-Vaquero, Two-level fourth-order explicit schemes for diffusion equations subject to boundary integral specifications,
Chaos, Solitons and Fractals 42 (2009) 2364–2372.

[17] J. Martin-Vaquero and J. Vigo-Aguiar, On the numerical solution of the heat conduction equations subject to nonlocal conditions,
Applied Numerical Mathematics 59 (2009) 2507–2514.

[18] M. Sapagovas, On stability of the finite difference schemes for a parabolic equations with nonlocal condition, Journal of Compu-
tational and Applied Mathematics 88 (2003) 89–98.

[19] M. Sapagovas, On the stability of finite-difference schemes for one-dimensional parabolic equations subject to integral conditions,
Journal of Computational and Applied Mathematics 92 (2005) 77–90.

[20] A. Ashyralyev, Y. Sozen, and F. Hezenci, A remark on elliptic differential equations on manifold, Bulletin of the Karaganda
University-Mathematics series 99 (2020) 75–85.

[21] A. Ashyralyev, A. Dural, and Y. Sozen, Multipoint nonlocal boundary value problems for reverse parabolic equations: well-
posedness, Vestnik of Odessa National University: Mathematics and Mechanics 13 (2008) 1–12.

[22] H. Urakawa, Geometry of Laplace-Beltrami operator on a complete Riemannian manifold, Advanced Studies in Pure Mathematics
22 (1993) 347–406.

[23] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.


