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Abstract. In this paper, we introduce two new types of enriched contractions, viz., enrichedA-contraction
and enrichedA′-contraction. Then we obtain fixed points of mappings satisfying such contractions using
the fixed point property of the average operator of the mappings. Further, we study the well-posedness and
limit shadowing property of the fixed point problem involving the contractions, and give some examples
to validate the results proved. Our work improves Berinde and Păcurar’s recent results on different kinds
enriched contractions and some well known classical fixed point results. As an application, we prove an
existence and uniqueness theorem for an integro-differential equation.

1. Introduction and preliminaries

Fixed point theory is one of the most rapidly growing branch of mathematics due to its applicability in
different areas of pure and applied mathematics. Several researchers are engaged in this field to study fixed
point of a self-map by generalizing the underlying space as well as the contraction condition. One of the
main focus of this study is to find a set of sufficient condition(s) to ensure the existence of a fixed point which
is the self image of the map under consideration. To reach such conditions, several mathematicians have
introduced a number of contractions and used these in several structures to obtain fixed point, common
fixed point, coincidence point of a map. Some of such contractions are introduced recently and looks very
interesting to study. One such contraction is enriched contraction, which is introduced very recently by
Berinde and Păcurar, see [5]. We first recall the definition of enriched contraction.

Definition 1.1. ([5, p. 2, Definition 2.1]). Let (X, ‖ · ‖) be a normed linear space. A self map T on X is called an
enriched contraction if there exist b ∈ [0,∞) and θ ∈ [0, b + 1) such that

‖b(u − v) + Tu − Tv‖ ≤ θ‖u − v‖

for all u, v ∈ X. In this case the mapping T is called a (b, θ)-enriched contraction. The class of enriched contractions
contains the Picard-Banach contractions as well as some non-expansive mappings, e.g., a Picard-Banach mapping
with constant k is a (0, k)-enriched contraction.
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Berinde and Păcurar showed that an enriched contraction T defined on a Banach space possesses a unique
fixed point. They obtained this result by using the fixed point property of the map Tλ, where Tλ(u) =
(1 − λ)u + λTu, 0 < λ < 1.

It is to be noted that the enriched contraction introduced by Berinde and Păcurar involves the displace-
ment ‖u−v‖only, which indicates that this contraction is basically the enriched version of Banach contraction.
We know that for two points u, v the other displacements are ‖u−Tu‖, ‖v−Tv‖, ‖u−Tv‖, ‖v−Tu‖ and there
are a lot of interesting contractions involving these displacements, some of them are due to Bianchini [6],
Chatterjea [7], Ćirić [8, 9], Kannan [10], Khan [11], and Reich [12] etc. (see [13] for more contractions of this
type). So it will be attractive to apply enrichment technique to the contractions by the above mentioned
mathematicians. Berinde and Păcurar did this task for Kannan and Chatterjea mappings, see [3, 4]. So it is
open in the literature to apply enrichment technique to the contractions of Bianchini [6], Ćirić [8, 9], Khan
[11], Reich [12] etc. If we want to apply this technique to the above-named contractions separately, then
we have to prove a handful number of results. So if we can establish a very few results involving enriched
contractions, from which all the enriched versions of the aforesaid contractions can be deduced, then it will
be simple and concise to the literature. Motivated by this observation, in the present article, we introduce
two new types of enriched contractions, viz., enriched A-contraction and enriched A′-contraction. Then
we prove two fixed point results showing that a self mapping T satisfying anyone of these two contractions
admits a fixed point if the underlying space is a Banach space. Further, we show that from our obtained
results, the enriched versions of the contractions due to Kannan, Chatterjea, Reich, Bianchini, Khan and
many other contractions can be deduced. Along with these, we show that the fixed point problems related
to these two contractions are well-posed and possess limit shadowing property. We give few examples to
support the validity of our results. Next, we study Ulam-Hyers stability of fixed point equation related to
enrichedA-contraction. Finally, we apply one of our result to find a solvability condition to a certain kind
of integro-differential equation.

Throughout the paper, R+ denote the set of all non-negative real numbers.
Before going to our main work, we first recollect a few result and definitions, which will be useful in

our next sections. At first, we recall the following result due to Akram et al. [1].

Theorem 1.2. cf. ([1, p. 29, Theorem 5]). Let a self map T on a complete metric space (X, d) satisfies the condition:

d(Tu,Tv) ≤ α(d(u, v), d(u,Tu), d(v,Tv))

for all u, v ∈ X and some α ∈ A, where A is the collection of all functions α : R3
+ → R+ satisfying

(i) α is continuous on the set R3
+ (with respect to the Euclidean metric on R3).

(ii) a ≤ kb for some k ∈ [0, 1) whenever a ≤ α(a, b, b) or a ≤ α(b, a, b) or a ≤ α(b, b, a) for all a, b.

Then T is a Picard operator.

Next, we recall the well-posedness and limit shadowing property of a mapping.

Definition 1.3. Let T be a self map defined on a metric space (X, d). Then the fixed point problem concerning T is
known as well-posed if the followings hold:

(i) T has a unique fixed point p ∈ X;

(ii) for any sequence {un} in X with lim
n→∞

d(un,Tun) = 0, we have

lim
n→∞

d(un, p) = 0 .

Definition 1.4. Let T be a self-map defined on a metric space (X, d). Then the fixed point problem involving T is said
to possess limit shadowing property in X if for any sequence {un} in X such that lim

n→∞
d(un,Tun) = 0, we have p ∈ X

with lim
n→∞

d(Tnp,un) = 0.
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Let us now recall the definition of Ulam–Hyers stability for the fixed point equation.

Definition 1.5. Let (X, d) be a metric space and let T : X → X be a mapping. The fixed point equation x = Tx is
Ulam-Hyers stable if there is a constant K > 0 such that for each ε > 0 and each v∗ ∈ X with d(v∗,Tv∗) ≤ ε, there
exists an u∗ ∈ X with u∗ = Tu∗ such that d(v∗,u∗) ≤ Kε.

2. EnrichedA-contraction and enrichedA′-contraction

In this section we give the formal definitions of enriched A-contraction and enriched A′-contraction
mappings. To do this, we need two family of mappings which satisfy certain properties. Let A be the
collection of all mappings f : R3

+ → R+ satisfying the following conditions:

(A1) f is continuous;

(A2) there exists k ∈ [0, 1) such that if r ≤ f (s, r, s) or r ≤ f (r, s, s), then r ≤ ks for all r, s ∈ R+;

(A3) for λ > 0 and for all r, s, t ∈ R+, λ f (r, s, t) ≤ f (λr, λs, λt).

LetA′ be the collection of all mappings f : R3
+ → R+ satisfying the following conditions:

(A′1) f is continuous;

(A′2) there exists k ∈ [0, 1) such that if r ≤ f (r, s, s) or r ≤ f (s, s, r) or r ≤ f (s, 0, r+s), then r ≤ ks for all r, s ∈ R+;

(A′3) for λ > 0 and for all r, s, t ∈ R+, λ f (r, s, t) ≤ f (λr, λs, λt);

(A′4) if t ≤ t1, then f (r, s, t) ≤ f (r, s, t1) for all r, s, t, t1 ∈ R+;

(A′5) if r ≤ f (r, r, r), then r = 0.

Below we present few example of mappings f belonging to the classA:

(i) f (r, s, t) = α(s + t), where 0 ≤ α < 1
2 ;

(ii) f (r, s, t) = αmax{s, t}, where 0 ≤ α < 1;

(iii) f (r, s, t) = αmax{r, s, t}, where 0 ≤ α < 1;

(iv) f (r, s, t) = α1r + α2s + α3t, where 0 ≤ α1, α2, α3 < 1 and α1 + α2 + α3 < 1.

The following mappings f belong to the classA′:

(i) f (r, s, t) = α(s + t), where 0 ≤ α < 1
2 ;

(ii) f (r, s, t) = α(r + s + t), where 0 ≤ α < 1
3 ;

(iii) f (r, s, t) = αmax{s, t}, where 0 ≤ α < 1.

Next, we define enrichedA-contraction and enrichedA′-contraction in the following ways:

Definition 2.1. Let (X, ‖ · ‖) be a normed linear space. Let T : X→ X be a mapping such that there exists an f ∈ A
with

‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖u − Tu‖, ‖v − Tv‖) (1)

for all u, v ∈ X and b ∈ [0,∞). Then T is said to be an enrichedA-contraction.

Definition 2.2. Let (X, ‖ · ‖) be a normed linear space. Let T : X→ X be a mapping such that there exists an f ∈ A′

with
‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖(b + 1)(u − v) + v − Tv‖, ‖(b + 1)(v − u) + u − Tu‖) (2)

for all u, v ∈ X and b ∈ [0,∞). Then T is said to be an enrichedA′-contraction.
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Next, we give some examples of the above two types of contractions.

Example 2.3. Let X = R and take the usual norm on X. Consider the mappings T1,T2 : X→ X defined by

T1u = −2u

for all u ∈ X and

T2u =

u + 16, if u ∈ [1, 2]
16, if u < [1, 2].

Then T1 is an enriched A-contraction for b = 5
4 and f (r, s, t) = s+t

3 , and T2 is an enriched A′-contraction for b = 1
3

and f (r, s, t) = 1
3 r + 1

4 s + 1
4 t.

Next, we present an example which is not an enrichedA-contraction.

Example 2.4. Let X = R be the Banach space equipped with usual norm. Define

Tu =

{
1 + u if u ≥ 0
0 if u < 0

for all u ∈ X.
We claim that T is not an enriched A-contraction on X. If possible, let T be an enriched A-contraction on X.

Then there exists b ∈ [0,∞) such that

‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖u − Tu‖, ‖v − Tv‖)

for all u, v ∈ X.
Let us take u, v ∈ X be such that u, v ≥ 0. Then

‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖u − Tu‖, ‖v − Tv‖)
=⇒ ‖(b + 1)(u − v)‖ ≤ f ((b + 1)‖u − v‖, 1, 1).

Then there exists k ∈ [0,∞) such that

|(b + 1)||u − v| ≤ k · 1

=⇒ |u − v| ≤
k

b + 1

for all u, v ≥ 0 with u , v, which is a contradiction.
Hence T is not an enrichedA-contraction on X. Note that T admits no fixed point in X.

3. Main Results

In this section, we present the following two results that ensure the existence of fixed point of the two
contractions, mentioned here, if the domain of the mapping is a Banach space.

Theorem 3.1. Let X be Banach space and T be an enrichedA-contraction. Then T has a unique fixed point in X and
there exists λ ∈ (0, 1] such that the sequence {un} defined by un+1 = (1 − λ)un + λTun, n ≥ 0 converges to that fixed
point, for any u0 ∈ X.

Proof. Let b > 0. Set λ = 1
b+1 > 0. Then from (1), we get

‖Tλu − Tλv‖ ≤ λ f
( 1
λ
‖u − v‖, ‖u − Tu‖, ‖v − Tv‖

)
≤ f (‖u − v‖, ‖u − Tλu‖, ‖v − Tλv‖) (3)
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for all u, v ∈ X with u , v.
Let u0 ∈ X be arbitrary. Define un = Tn

λu0 for all n ≥ 1. Let us put u = un and v = un−1 in (3). Then we
have

‖un+1 − un‖ ≤ f (‖un − un−1‖, ‖un − un+1‖, ‖un−1 − un‖).

Therefore, by (A2), there exists k ∈ [0, 1) such that

‖un+1 − un‖ ≤ k‖un − un−1‖.

Continuing in such way, we get
‖un+1 − un‖ ≤ kn

‖u1 − u0‖.

Now for all m,n ≥ 1, we have

‖un+m − un‖ ≤ ‖un+m − un+m−1‖ + ‖un+m−1 − un+m−2‖ + · · · + ‖un+1 − un‖

≤ (kn+m−1 + kn+m−2 + · · · + kn)‖u1 − u0‖

= kn 1 − km

1 − k
‖u1 − u0‖

which implies that ‖un+m − un‖ → 0 as m,n → ∞. Hence {un} is a Cauchy sequence in X and hence there
exists an element p ∈ X such that un → p as n→∞.

Now
‖Tλp − un+1‖ ≤ f (‖p − un‖, ‖p − Tλp‖, ‖un − un+1‖).

Taking limit as n→∞, we get

‖Tλp − p‖ ≤ f (‖p − p‖, ‖p − Tλp‖, ‖p − p‖)

which implies that
‖Tλp − p‖ ≤ k · ‖p − p‖ = 0.

This implies that Tλp = p and consequently Tp = p. Therefore, p is a fixed point of T.
Let q ∈ X be another fixed point of T and consequently a fixed point of Tλ. Then

‖p − q‖ = ‖Tλp − Tλq‖
≤ f (‖p − q‖, ‖p − Tλp‖, ‖q − Tλq‖)
= f (‖p − q‖, ‖p − p‖, ‖q − q‖)
= f (‖p − q‖, 0, 0).

This implies that ‖p − q‖ ≤ k · 0 = 0. Hence p = q.
If b = 0, then (1) reduces to the form

‖Tu − Tv‖ ≤ f (‖u − v‖, ‖u − Tu‖, ‖v − Tv‖)

for all u, v ∈ X with u , v. Hence the result follows from Theorem 1.2.

Theorem 3.2. Let X be Banach space and T be an enriched A′-contraction. Then T has a unique fixed point in X
and there exists λ ∈ (0, 1] such that the sequence {un} defined by un+1 = (1 − λ)un + λTun, n ≥ 0 converges to that
fixed point, for any u0 ∈ X.

Proof. Let b > 0. Set λ = 1
b+1 so that 0 < λ < 1. Now note that

u − Tλv = (u − v) + λ(v − Tv) and v − Tλu = (v − u) + λ(u − Tu).
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Then from (2), we get

‖Tλu − Tλv‖ ≤ λ f
( 1
λ
‖u − v‖,

∥∥∥∥∥ 1
λ

(u − v) + v − Tv
∥∥∥∥∥ , ∥∥∥∥∥ 1

λ
(v − u) + u − Tu

∥∥∥∥∥)
≤ f (‖u − v‖, ‖(u − v) + λ(v − Tv)‖, ‖(v − u) + λ(u − Tu)‖)
= f (‖u − v‖, ‖u − Tλv‖, ‖v − Tλu‖) (4)

for all u, v ∈ X with u , v.
Let u0 ∈ X be arbitrary. Define un = Tn

λu0 for all n ≥ 1. Let us put u = un and v = un−1 in (4). Then we
have

‖un+1 − un‖ ≤ f (‖un − un−1‖, ‖un − un‖, ‖un−1 − un+1‖)
≤ f (‖un − un−1‖, ‖un − un‖, ‖un−1 − un‖ + ‖un − un+1‖)

and hence by (A′2), there exists k ∈ [0, 1) such that

‖un+1 − un‖ ≤ k‖un − un−1‖.

Proceeding in such way, we get
‖un+1 − un‖ ≤ kn

‖u1 − u0‖.

Now for all m,n ≥ 1, we have

‖un+m − un‖ ≤ ‖un+m − un+m−1‖ + ‖un+m−1 − un+m−2‖ + · · · + ‖un+1 − un‖

≤ (kn+m−1 + kn+m−2 + · · · + kn)‖u1 − u0‖

= kn 1 − km

1 − k
‖u1 − u0‖

which implies that ‖un+m − un‖ → 0 as m,n → ∞. Hence {un} is a Cauchy sequence in X and hence there
exists an element p ∈ X such that un → p as n→∞.

Now
‖Tλp − un+1‖ ≤ f (‖p − un‖, ‖p − un+1‖, ‖un − Tλp‖).

Taking limit as n→∞, we get

‖Tλp − p‖ ≤ f (‖p − p‖, ‖p − p‖, ‖p − Tλp‖)

which implies that
‖Tλp − p‖ ≤ k · ‖p − p‖ = 0.

Hence Tλp = p and consequently, Tp = p. Thus p is a fixed point of T.
Let q ∈ X be another fixed point of T and hence a fixed point of Tλ. Then

‖p − q‖ = ‖Tλp − Tλq‖
≤ f (‖p − q‖, ‖p − Tλq‖, ‖q − Tλp‖)
= f (‖p − q‖, ‖p − q‖, ‖q − p‖)

which implies, by (A′5), that ‖p − q‖ = 0. Hence p = q.
If b = 0, then (2) reduces to the form

‖Tu − Tv‖ ≤ f (‖u − v‖, ‖u − Tv‖, ‖v − Tu‖)

for all u, v ∈ X with u , v.
Let u0 ∈ X. Define the sequence {un} by un = Tnu0 for all n ≥ 1. Then just replacing Tλ by T in the above

proof, the result follows.
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We now note an important observation about the above two results, which is presented in the following
remark.

Remark 3.3. In most of the contractions for Banach space valued mappings, we see that if the domain of the mapping
is a closed subset (not necessarily a subspace) of a Banach space, then the mapping possesses a fixed point. But this fact
is not true in case of enriched contractions. More precisely, in the above two theorems, if the domain of the mapping T
is a closed subset of a Banach space, then T may not acquire a fixed point. To support this, we consider the following
example.

Example 3.4. Choose X = R with usual norm and take C = (−∞,−1] ∪ [1,∞). Define T : C→ C by Tu = −2u for
all u ∈ C. Then T is an enrichedA-contraction for b = 5

4 and f (r, s, t) = s+t
3 but T is fixed point free.

In view of Remark 3.3., we pose the following open question:

Open Question 3.5. Does there exist a self map defined on a subspace (not necessarily closed) of a Banach space
satisfying enrichedA-contraction (resp. enrichedA′-contraction) having a fixed point?

By choosing particular f in above two theorems, we have the following remarks.

Remark 3.6. If we choose f (r, s, t) = αr, where 0 ≤ α < 1; f (r, s, t) = α(s + t), where 0 ≤ α < 1
2 ; f (r, s, t) =

α1r + α2s + α3t, where 0 ≤ α1, α2, α3 < 1 and α1 + α2 + α3 < 1; f (r, s, t) = αmax{s, t}, where 0 ≤ α < 1;
f (r, s, t) = α

√
st, where 0 ≤ α < 1 in Theorem 3.1, then we get the enriched versions of the contractions of Banach

[2], Kannan [10], Reich [12], Bianchini [6] and Khan [11] respectively.

Remark 3.7. If we choose f (r, s, t) = α(s + t), where 0 ≤ α < 1
2 in Theorem 3.2, then we get the enriched version of

the Chatterjea contraction [7]. Also, for f (r, s, t) = αmax{s, t}, where 0 ≤ α < 1; f (r, s, t) = α1r + α2s + α3t, where
0 ≤ α1, α2, α3 < 1 and α1 + α2 + α3 < 1 in Theorem 3.2, the enriched versions of the following two contractions
respectively, can be acquired:

• ‖Tu − Tv‖ ≤ αmax{‖u − Tv‖, ‖v − Tu‖}, 0 ≤ α < 1;

• ‖Tu − Tv‖ ≤ α1‖u − v‖ + α2‖u − Tv‖ + α3‖v − Tu‖, 0 ≤ α1, α2, α3 < 1 and α1 + α2 + α3 < 1.

Remark 3.8. One can perceive from the above remarks that Berinde and Păcurar’s results regarding existence of fixed
point of different types of enriched contractions [3–5] are particular cases of our results.

For b = 0 and some particular f in Theorem 3.1 and Theorem 3.2, we obtain some classical fixed point
results, which is presented in the next remarks.

Remark 3.9. In particular for b = 0 and for f (r, s, t) = α(s + t), where 0 ≤ α < 1
2 ; f (r, s, t) = α1r + α2s + α3t, where

0 ≤ α1, α2, α3 < 1 and α1 + α2 + α3 < 1; f (r, s, t) = αmax{s, t}, where 0 ≤ α < 1; f (r, s, t) = α
√

st, where 0 ≤ α < 1
in Theorem 3.1, we can obtain the classical fixed point results of Kannan [10], Reich [12], Bianchini [6] and Khan
[11] respectively as corollaries.

Remark 3.10. For b = 0 and f (r, s, t) = α(s + t), where 0 ≤ α < 1
2 in Theorem 3.2, the classical fixed point theorem

of Chatterjea [7] can be deduced as a corollary. Also for b = 0 and f (r, s, t) = αmax{s, t}, where 0 ≤ α < 1;
f (r, s, t) = α1r + α2s + α3t, where 0 ≤ α1, α2, α3 < 1 and α1 + α2 + α3 < 1 in Theorem 3.2, two fixed point results
concerning the following contractions respectively, can be deduced:

• ‖Tu − Tv‖ ≤ αmax{‖u − Tv‖, ‖v − Tu‖}, 0 ≤ α < 1;

• ‖Tu − Tv‖ ≤ α1‖u − v‖ + α2‖u − Tv‖ + α3‖v − Tu‖, 0 ≤ α1, α2, α3 < 1 and α1 + α2 + α3 < 1.

We now take a couple of examples in support of Theorem 3.1.
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Example 3.11. Let us consider the Banach space (X, ‖ · ‖), where X = C[0, 1] and ‖ · ‖ is the sup norm. Next, we
define a mapping T : X → X by (Tu)(t) = −2u(t) for all u ∈ X and t ∈ [0, 1]. We choose f ∈ A, defined by
f (r, s, t) = 1

3 (s + t) and b = 5
4 . Then for any u, v ∈ X, we have

f ((b + 1)‖u − v‖, ‖u − Tu‖, ‖v − Tv‖) =
1
3

(
‖u − Tu‖ + ‖v − Tv‖

)
= ‖u‖ + ‖v‖,

and

‖b(u − v) + Tu − Tv‖ = ‖b(u − v) − 2u + 2v‖

= |b − 2|‖u − v‖ =
3
4
‖u − v‖.

Therefore,
‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖u − Tu‖, ‖v − Tv‖)

holds for all u, v ∈ X. So T is an enrichedA-contraction. So by Theorem 3.1, T has a unique fixed point. Note that
u ∈ X defined by u(t) = 0 for all t ∈ [0, 1], is the unique fixed point of T.

Example 3.12. Let X = R be the Banach space equipped with the usual norm. Define T : X→ X by Tu = 6 − u for
all u ∈ X.

Let us consider the mapping f : R3
+ → R+ defined by f (r, s, t) = 1

6 max{s, t} for r, s, t ∈ R+. Then f ∈ A. Let
b = 1. Then we have

‖b(u − v) + Tu − Tv‖ = 0

and
f ((b + 1)‖u − v‖, ‖u − Tu‖, ‖v − Tv‖) =

1
6

max{‖2u − 6‖, ‖2v − 6‖},

which shows that
‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖u − Tu‖, ‖v − Tv‖)

for all u, v ∈ X. Therefore, T is an enrichedA-contraction on X. It is to be noticed that 3 is the unique fixed point of
T.

Next, we present another couple of examples, which validate Theorem 3.2.

Example 3.13. Let us take the Banach space X = C[0, 1
4 ], equipped with sup norm. We define a mapping T : X→ X

by (Tu)(t) = tu(t) for all u ∈ X and for all t ∈ [0, 1
4 ]. We choose b = 1

4 and f ∈ A′, defined by f (r, s, t) = 9
20 max{r, s, t}.

Then for any u, v ∈ X, we have

‖b(u − v) + Tu − Tv‖
= sup

t∈[0, 1
4 ]

|bu(t) − bv(t) + tu(t) − tv(t)|

≤ sup
t∈[0, 1

4 ]

|b + t| sup
t∈[0, 1

4 ]

|u(t) − v(t)|

=
1
2
‖u − v‖

≤
9

20
(b + 1)‖u − v‖

≤ f ((b + 1)‖u − v‖, ‖(b + 1)(u − v) + v − Tv‖, ‖(b + 1)(v − u) + u − Tu‖).

Thus T is an enriched A′-contraction. So by Theorem 3.2, it follows that T possesses a unique fixed point in X and
note the fixed point is u′, where u′(t) = 0 for all t ∈ [0, 1

4 ].
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Example 3.14. Let X = R be the Banach space equipped with usual norm. Define T : X→ X by Tu = 2 − u for all
u ∈ X.

Let us consider the mapping f : R3
+ → R+ defined by f (r, s, t) = s+t

6 for r, s, t ∈ R+. Then f ∈ A′. Let us choose
b = 1. Then we have

‖b(u − v) + Tu − Tv‖ = 0

and

f ((b + 1)‖u − v‖, ‖(b + 1)(u − v) + v − Tv‖, ‖(b + 1)(v − u) + u − Tu‖) =
|u − 1| + |v − 1|

3
.

So
‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖(b + 1)(u − v) + v − Tv‖, ‖(b + 1)(v − u) + u − Tu‖)

for all u, v ∈ X. Therefore, T is an enrichedA′-contraction on X. It is to be noticed that 1 is the unique fixed point of
T.

Finally, we study well-posedness and limit shadowing property of fixed point problem for both types
of contractions defined in the present paper.

Theorem 3.15. Let X be Banach space and T be an enrichedA-contraction. Then the fixed point problem involving
T is well-posed.

Proof. Theorem 3.1 ensures us that T possesses a unique fixed point p, say.
It has been shown in Theorem 3.1 that if b ∈ (0,∞), then the contraction condition

‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖u − Tu‖, ‖v − Tv‖)

for all u, v ∈ X with u , v, can be reduced to the form

‖Tλu − Tλv‖ ≤ f (‖u − v‖, ‖u − Tλu‖, ‖v − Tλv‖)

for some λ > 0. In this case it is to be noted that ‖u − Tλu‖ = λ‖u − Tu‖ for all u ∈ X.
Therefore, lim

n→∞
‖un − Tun‖ = 0⇐⇒ lim

n→∞
‖un − Tλun‖ = 0.

Now let {un} be a sequence in X such that lim
n→∞
‖un − Tλun‖ = 0. Then

‖un − p‖ ≤ ‖un − Tλun‖ + ‖Tλun − p‖
= ‖un − Tλun‖ + ‖Tλun − Tλp‖
≤ ‖un − Tλun‖ + f (‖un − p‖, ‖un − Tλun‖, ‖p − Tλp‖).

Taking limit as n→∞, we get
lim
n→∞
‖un − p‖ ≤ f ( lim

n→∞
‖un − p‖, 0, 0).

Therefore there exist k ∈ [0, 1) such that lim
n→∞
‖un − p‖ ≤ k · 0 which implies that lim

n→∞
‖un − p‖ = 0.

Now, if b = 0, then the contraction condition reduces to

‖Tu − Tv‖ ≤ f (‖u − v‖, ‖u − Tu‖, ‖v − Tv‖)

for all u, v ∈ X with u , v.
In a similar way, it can be shown that lim

n→∞
‖un − p‖ = 0. Hence the result follows.

Theorem 3.16. Let X be Banach space and T be an enrichedA′-contraction. Then the fixed point problem involving
T is well-posed.
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Proof. Theorem 3.2 ensures us that T possesses a unique fixed point p, say.
It has been shown in Theorem 3.2 that if b ∈ (0,∞), then the contraction condition

‖b(u − v) + Tu − Tv‖ ≤ f ((b + 1)‖u − v‖, ‖(b + 1)(u − v) + v − Tv‖, ‖(b + 1)(v − u) + u − Tu‖)

for all u, v ∈ X with u , v, can be reduced to the form

‖Tλu − Tλv‖ ≤ f (‖u − v‖, ‖u − Tλv‖, ‖v − Tλu‖)

for some λ > 0. In this case it is to be noted that

‖u − Tλv‖ = ‖(u − v) + λ(v − Tv)‖

and
‖v − Tλu‖ = ‖(v − u) + λ(u − Tu)‖

for all u, v ∈ X.
Therefore, for any sequence {un} in X, we have

lim
n→∞
‖un − Tun‖ = 0⇐⇒ lim

n→∞
‖un − Tλun‖ = 0 .

Now let {un} be a sequence in X such that lim
n→∞
‖un − Tλun‖ = 0. Then

‖un − p‖ ≤ ‖un − Tλun‖ + ‖Tλun − p‖.

Now,

‖Tλun − p‖ = ‖Tλun − Tλp‖
≤ f (‖un − p‖, ‖un − Tλp‖, ‖p − Tλun‖)
= f (‖un − p‖, ‖un − p‖, ‖p − Tλun‖)

Then we get a k ∈ [0, 1) such that ‖Tλun − p‖ ≤ k · ‖un − p‖.
Therefore, we have

‖un − p‖ ≤ ‖un − Tλun‖ + k · ‖un − p‖

for some k ∈ [0, 1). This implies that

‖un − p‖ ≤
1

1 − k
‖un − Tλun‖

and therefore by taking limit as n→∞, we have lim
n→∞
‖un − p‖ = 0.

Now, if b = 0, then the contraction condition reduces to

‖Tu − Tv‖ ≤ f (‖u − v‖, ‖u − Tv‖, ‖v − Tu‖)

for all u, v ∈ X with u , v.
In a similar way, it can be shown that lim

n→∞
‖un − p‖ = 0. Hence the result follows.

Theorem 3.17. Let X be Banach space and T be an enrichedA-contraction (resp. an enrichedA′-contraction). Then
the fixed point problem involving T possesses limit shadowing property in X.

Proof. We have already shown in Theorem 3.1 (resp. in Theorem 3.2) that lim
n→∞
‖un − p‖ = 0, where p is the

unique fixed point of T. Then for any n ∈N, Tnp = p and therefore

lim
n→∞
‖un − Tnp‖ = 0.

That is
lim
n→∞
‖Tnp − un‖ = 0.

Hence the fixed point problems has limit shadowing property in both the cases.
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We close this section with the following theorem concerning Ulam-Hyers stability of the fixed point
equation of an enrichedA-contraction:

Theorem 3.18. Let X be Banach space and let T be an enrichedA-contraction on X. Suppose that there exists an α
with 0 < α < 1 such that f (r, s, t) ≤ αr + t for all r, s, t ∈ R+. Then the fixed point equation x = Tx is Ulam-Hyers
stable.

Proof. Theorem 3.1 ensures that T has a unique fixed point, say u∗ ∈ X.
Let ε > 0 and let v∗ ∈ X be an ε-solution i.e.,

‖v∗ − Tv∗‖ ≤ ε.

Since u∗ ∈ X and ‖u∗ − Tu∗‖ = 0 ≤ ε, it follows that u∗ is also an ε-solution.
Now,

‖u∗ − v∗‖
= ‖Tu∗ − v∗‖
≤ ‖Tu∗ − Tv∗‖ + ‖Tv∗ − v∗‖
≤ f (‖u∗ − v∗‖, ‖u∗ − Tu∗‖, ‖v∗ − Tv∗‖) + ε

≤ α‖u∗ − v∗‖ + ‖v∗ − Tv∗‖ + ε

which implies that
‖u∗ − v∗‖ ≤ Kε

where K = 2
1−α . Hence the result follows.

4. Application to integro-differential equation

In this section, we study on solvability conditions of the following integro-differential equation:

x(4)(t) = F1(t, x(t)) +

∫ t

0
F2(s, x(s))ds, 0 < t < 1;

x(0) = x′(0) = x′′(1) = x′′′(1) = 0,

 (1)

where F1,F2 : [0, 1] ×R→ R are continuous functions.
Our main goal is to obtain sufficient conditions on K1,K2 in presence of which the equation (1) possesses

a unique solution. Equation (1) is equivalent to the following integral equation

x(t) =

∫ 1

0
G(t, s)F1(s, x(s))ds +

∫ t

0

(t − s)4

12
F2(s, x(s))ds, 0 < t < 1, (2)

where G : [0, 1] × [0, 1]→ R is the Green’s function, given by

G(t, s) =

 1
6 s2(t − s), if 0 ≤ s ≤ t ≤ 1;
1
6 t2(3s − t), if 0 ≤ t ≤ s ≤ 1.

We now have the following theorem:

Theorem 4.1. Suppose that there exist two positive constants α1, α2 such that

(i) |F1(t, a) − F1(t, b)| ≤ α1|a − b|;

(ii) |F2(t, a) − F2(t, b)| ≤ α2|a − b|,
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for all t ∈ [0, 1] and a, b ∈ R. Then equation (1) has a unique continuous solution if α1
20 + α2

60 ≤ 1.

Proof. Let us consider the Banach space C[0, 1] equipped with sup norm, and define a mapping T : C[0, 1]→
C[0, 1] by

(Tx)(t) =

∫ 1

0
G(t, s)F1(s, x(s))ds +

∫ t

0

(t − s)4

12
F2(s, x(s))ds

for all x ∈ C[0, 1] and t ∈ [0, 1]. Then an element u ∈ C[0, 1] is a solution of (1) if and only if u is a fixed point
of T.

Let x, y ∈ C[0, 1] be arbitrary. Then for each t ∈ [0, 1], we have

|(Tx)(t) − (Ty)(t)|

=

∣∣∣∣∣∣
∫ 1

0
G(t, s)F1(s, x(s))ds +

∫ t

0

(t − s)4

12
F2(s, x(s))ds −

∫ 1

0
G(t, s)F1(s, y(s))ds

−

∫ t

0

(t − s)4

12
F2(s, y(s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ 1

0
G(t, s)F1(s, x(s))ds −

∫ 1

0
G(t, s)F1(s, y(s))ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t

0

(t − s)4

12
F2(s, x(s))ds −

∫ t

0

(t − s)4

12
F2(s, y(s))ds

∣∣∣∣∣∣
≤

∫ 1

0
G(t, s)

∣∣∣F1(s, x(s)) − F1(s, y(s))
∣∣∣ds +

∫ t

0

(t − s)4

12

∣∣∣∣F2(s, x(s)) − F2(s, y(s))
∣∣∣∣ds

≤α1

∫ 1

0
G(t, s)

∣∣∣x(s) − y(s)
∣∣∣ds + α2

∫ t

0

(t − s)4

12

∣∣∣x(s) − y(s)
∣∣∣ds

≤α1‖x − y‖
∫ 1

0
G(t, s)ds + α2‖x − y‖

∫ t

0

(t − s)4

12
ds

≤
α1

20
‖x − y‖ +

α2

60
‖x − y‖ ≤ ‖x − y‖.

Thus for any b ∈ [0,∞) and t ∈ [0, 1], we have

|b(x − y)(t) + (Tx)(t) − (Ty)(t)| ≤ |b(x − y)(t)| + |(Tx)(t) − (Ty)(t)|
≤ (b + 1)‖x − y‖.

Therefore,

‖b(x − y) + Tx − Ty‖ ≤ (b + 1)‖x − y‖
=⇒ ‖b(x − y) + Tx − Ty‖ ≤ f ((b + 1)‖x − y‖, ‖x − Tx‖, ‖y − Ty‖),

where f (r, s, t) = r ( f ∈ A).
Thus T is an enriched A-contraction. Therefore, by Theorem 3.1, T has a unique fixed point in C[0, 1],

and hence the equation (1) possesses a unique continuous solution.

Acknowledgement: The authors appreciate the anonymous referee and the section editor for their con-
structive comments towards improvement of the first draft of the article.
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