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Abstract. In this work, we have introduced a tritrophic food-chain model where consumer hunt for prey
with Holling type-III functional response. The birth rate of the prey population has been reduced due to
the fear of predation, i.e., a fear effect is considered in the prey population. Moreover, a fraction of the prey
is available to the consumer for consumption and this has been done by incorporation of prey refuge term.
The predation between consumer and predator follows Beddington-DeAngelis response. Boundedness
and positivity of the system prove that the proposed model is well-posed. Also, there are some parametric
restrictions under which the system is permanent. Routh-Hurwitz criterion shows the local stability
conditions of the equilibrium points and on the other hand Lyapunov LaSalle theorem guarantees that
the locally stable equilibrium points are globally stable. Also, Matlab validates the analytical results with
the help of diagrams. The occurrence of transcritical bifurcations have been shown and conditions for the
existence of a limit cycle in the system through Hopf bifurcation also have been stated. Both the analytical
and numerical results suggest that a certain amount of fear can make the system steady. It is also noted
that the prey refuge has both stabilizing and destabilizing effect on the system.

1. Introduction

The most important biological processes in ecology and population biology is the interactions between
species with their corresponding environment [9, 27, 34, 42, 47] and mathematical modelling is a useful tool
to investigate the insight of these biological processes. So, the researchers from many years are developing
various models to study their behaviours [5, 8, 17, 29, 32].History says, in the population biology, the first
model was innovated by Malthus [26] and it was modified later by Verhulst [48]. Lotka and Volterra first
independently demonstrated the prey-predator interaction in biological populations [25, 49] with Malthus
growth term for the prey population and a Holling type-I functional response for the predator [16] and
Rosenzweig and MacArthur [37] later studied such model to present it as a more realistic predator-prey
system. Later researchers have modified the basic model with various types of functional responses to
study the characteristics of tri-trophic food chain model [11, 14].
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Predation rate plays a vital role in the prey-predator dynamics. Holling type-I functional response
and Holling type-II functional response have been used mostly in the models. Holling type III functional
response is almost similar to type II response at high prey density as for both cases saturation occurs. But
at low prey density levels, it is assumed that the number of prey consumed may not follow a linearly
increasing curve with prey density. This particular functional response is defined with the help of either
learning time or prey switching or a combination of both phenomena. The natural improvement of a
predator’s searching efficiency or even of their handling efficiency with increasing prey density is defined
as learning time. If there is a small amount of prey present in a system, then the predator finds it difficult
to search a sufficient amount of prey and they have to develop the best ways to capture the prey. This
mechanism can be observed in shrews and deer mice feeding on sawflies. At lower numbers of sawfly
cocoons, per capita growth rate of deer mice follows the exponential rule as the density of cocoons increased
but at a certain density of cocoons, the consumption rate of the deer mice reached a saturation amount.

Holling at the time of introducing the functional response assumed that there was no interference of
the predator in one another’s activities and so competition among predators for food occurs only via
the depletion or consumption of resource population [16]. But in 1975, Beddington and DeAngelis et al.
independently proposed, a functional response that considered the mutual interference among predator
(Huisman and De Boer [20] provides mathematical derivation). In their model, it is considered that
two or more predator population not only spend time to search for and process the resources but also
used some time encountering between predators. All these assumptions give a functional response as:
f (N,P) = aN

1+bN+cP where P is the predator population and c is a positive constant indicating the magnitude
of interference among predators. The Beddington-DeAngelis functional response is almost same as Holling
type-II functional response containing an extra term which denotes mutual interference between predators.

Inclusion of spatial prey refuge can make a predator-prey system more realistic as it protects a constant
proportion of prey from predation. Many research works [3, 19, 21, 38, 39, 45] have been done to observe
how the prey refuge controls the system dynamics of predator-prey system. It is evident that prey species
can save themselves from extinction if they successfully hide, i.e., they have a safe place to physically
hide from predation. Hassel [15], in his work, showed that if a system exhibits oscillating behaviour in
absence of refuge, then the inclusion of a large refuge to the model can replace the oscillatory behaviour
with an asymptotically stable equilibrium. It indicates that prey refugia may have a stabilizing effect on
predator-prey dynamics.

In ecology, predator-prey interaction is the most important factor as it maintains the biomass flow from
one trophic to other trophic levels, as well as regulates the overall population size. The predator may
have an effect on the prey population in a direct or indirect or both way. For direct effect, the predator
consumes prey [46] but in the case of indirect effect, predator creates fear in prey population and force
them to change their behaviour [24]. The fear effect of prey is a manifestation of sustained psychological
stress because the prey species are always worried about a possible attack. In fact, in some cases fear effect
work higher than direct killing to reduce prey or extinction of prey when the direct predation is absent. For
example, Pangle et al., in 2007, estimated the effects of predatory spiny water fleas (Bythotrephes longimanus)
on three different species of zooplankton in Lake Erie and Lake Michigan [30]. Their overall experiment
showed that fear effects worked more than seven times higher to reduce the growth rate than the effect
of direct predation. Some important aspects of prey behaviour that can change due to fear are hunting
and reproduction [33, 40, 54]. Prey animals always try to shift to such places where their predation risk
is lower but the availability of food is higher [35, 51]. Research reveals that due to fear of predator, prey
population forage in a less amount. For example, due to fear of older cannibalistic backswimmers, younger
backswimmers always try to keep themselves in a safe distance and feed in a safer place and also hunt less
[43]. Also, Mule deer spend less time for hunting because there is a predation risk of mountain lions [1].
Research proves that perceived predation risk affects the reproduction rate of the scared prey and Candolin
showed an interesting result in his work regarding this fact. He showed that three-spine stickleback males
are able to assess both the risk of predation as well as current versus future mating probability depending
on which they have to adjust their reproductive decisions [2]. Creel et al. observed that Elk changes their
reproductive physiology due to the predation risk of wolves [4]. The focus of research is changed these
days as the recent results prove that indirect approach on prey population is even more powerful to reduce
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the population than the direct killing [36, 44, 50, 54].
Research works have proved that fear effect is strong enough to affect the population dynamics in

ecological systems [44, 54]. Based on the experiments performed by Zanette et al. [54] it was observed that
the fear effect on song sparrows during the entire breeding season affected the birds’ reproduction even
when direct killing was excluded. In these experiments, direct predation was not considered as every nest
was protected with electric fencing and also seine netting and then only a recording of predator calls was
used many weeks before the first egg was laid and the broadcasts were continued for 130-days breeding
season. They observed that the numbers of eggs, hatchings, and even fledgelings were reduced in the next
generations. It was observed that fear of predators itself reduces almost 40% reproduction in the number of
offspring. Hua et al. [18], in their work, controlled vocal signals of predators and observed that bluebirds
which are reproducing can adjust their breeding strategies according to the signals. Experimental results
suggest that the effect of fear can control the populations like snowshoe hares [41] and dugongs [52] also.
Furthermore, Laundre et al. [23] showed that releasing wolves into Yellowstone Park made the moose more
alert.

In the proposed tritrophic food chain system, the main assumption is motivated by real-life biological
examples. In the aquatic ecosystem, it is observed that in the absence of predators like largemouth bass,
trout, turtle, etc., the average growth rate of bluegill can be increased by 27% than in its presence [53]. On the
other hand, fish kairomone (bluegill sunfish) reduces the growth rate of juvenile cladocerans like Daphnia
and Simocephalus [13]. In ecology, research works proved that playback of predator calls or sounds of
predators (raccoon, owl, hawk etc.) during the entire breeding season of female song sparrows reduced the
number of eggs and etc. even in the absence of direct killing. Moreover, mesocarnivores (raccoons) reduce
their foraging activities by 66% due to the fear of large carnivores (cougar, wolf, black bear) [44].

This work is organized as follows: section 2 describes the mathematical formulation along with positive
initial conditions while section 3 shows that the model is well-posed. Extinction conditions for the prey,
predator and top-predator have been analyzed in section 4 and equilibria with feasibility conditions are
stated in Section 5. Local stability analysis and persistence of the system are described in sections 6 and
section 7 respectively. The equilibria change their stability through transcritical and Hopf bifurcation
which are analyzed in section 8. Section 9 gives the global stability of the equilibrium points and section 10
provides the numerical figures which support the analytical calculations. The last section provides a brief
conclusion about the system dynamics.

2. Mathematical Model: Basic Equations

Modelling a biological system in terms of mathematical equations is an easy way to obtain the basic
dynamics of the system. In this work, the main purpose is to observe the system dynamics of a tritrophic
food chain model in the presence of fear. It is also true that any ecological system is not so easy to describe
in terms of mathematics as there are many factors present in the system which can fluctuate with time to
regulate the dynamics. So, for the sake of simplicity, we need to make some assumptions to reduce complex
dynamics into a simpler model.
The system is a three species food chain model consists of a prey (resource) population (X),middle-predator
(consumer) population (Y) and top-predator (or, simply predator) population (Z). We incorporate the cost
of fear in the prey population only. Due to fear of middle-predator, the birth rate of the prey population

reduces. The modified birth rate of prey may be taken as
RX

1 + K1Y
[6, 7, 28, 50], which is a monotonic

decreasing function of K1 and Y. In the model, it is assumed that the predation between prey and middle-
predator follows Holling type-III functional response. Also, the predation rate of top-predator depends not
only on middle-predator but also on the interference of the top-predator population. Hence we have taken
Beddington-DeAngelis functional response to describe the predation term of top-predator on consumer. It
is assumed that when the middle-predator is not present, the prey population grows in a logistic way with
intrinsic birth rate R, carrying capacity K and natural death rate D. The parameters C and P represent the
coefficients of predation of consumer on prey species and top-predator on consumer species respectively.
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As the middle-predator need some time to search and handle the prey species, let Th be the average handling
time of middle-predator for each prey. The terms ξ (0 < ξ < 1) and σ (0 < σ < 1) are the biomass conversion
coefficients and G, N are the death rates of the middle and top predators. The parameter E is a saturation
constant and F is the impact of top-predator interference. The term K1 (≥ 0) represents the level of fear
that rises the anti-predator behaviour of prey [50]. So, K1 = 0 represents the absence of fear among the
individuals of prey popoulation. Here, it is assumed that R > D, otherwise if R ≤ D, then the growth rate
of prey population becomes negative and ultimately the prey population go extinct. Also, mX is taken as
the capacity of refuge at time T, i.e., mX of prey able to protect themselves in a safer place (0 < m < 1).
Therefore, (1 −m)X of prey available to the middle-predator for consumption.
So, considering all the above assumptions, we get the system as:

dX(T)
dT

=
RX

1 + K1Y
−DX −

(R −D)
K

X2
−

C(1 −m)2X2Y
1 + ThC(1 −m)2X2 , X(0) > 0,

dY(T)
dT

=
ξC(1 −m)2X2Y

1 + ThC(1 −m)2X2 −
PYZ

1 + EY + FZ
− GY, Y(0) > 0,

dZ(T)
dT

=
σPYZ

1 + EY + FZ
−NZ, Z(0) > 0.

(2.1)

The model parameters R, D, ξ, C, Th, K, m, D, E, F, G, σ, N are all assumed as positive constants and K1 ≥ 0.

Using the scaling x =
(R −D)X

RK
, y =

(R −D)Y
RK

, z =
(R −D)Z

RK
and t=RT, system (2.1) becomes

dx(t)
dt

=
x

1 + ky
− dx − x2

−
c(1 −m)2x2y

1 + a(1 −m)2x2 , x0 = x(0) > 0,

dy(t)
dt

=
ξc(1 −m)2x2y

1 + a(1 −m)2x2 −
pyz

e + y + f z
− 1y, y0 = y(0) > 0,

dz(t)
dt

=
σpyz

e + y + f z
− nz, z0 = z(0) > 0,

(2.2)

where k = KK1R
R−D , d = D

R , c = CRK2

(R−D)2 , a = ThCR2K2

(R−D)2 , p = P
ER , e =

(R−D)
KER , f = F

E , 1 = G
R , n = N

R .

3. Positivity and Boundedness

Now we ensure the model (2.2) is well-posed by showing the positivity and boundedness of the system
variables.

Theorem 3.1. All solutions of system (2.2) which start in R3
+ are positive for all time.

Proof. Right hand side of system (2.2) is continuous and locally Lipschitzian on C (space of continuous
functions) and hence it implies the solution (x(t), y(t), z(t)) of (2.2) exists and is unique on the interval [0, κ),
where 0 < κ ≤ +∞ [12]. From the first equation of (2.2), we get

dx(t)
dt

=
x

1 + ky
− dx − x2

−
c(1 −m)2x2y

1 + a(1 −m)2x2 ,

i.e., x(t) = x0 exp
[∫ t

0

{
1

1 + ky(s)
− d − x(s) −

c(1 −m)2x(s)y(s)
1 + a(1 −m)2x(s)2

}
ds

]
> 0, for x0 > 0.
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Similarly,

y(t) = y0 exp
(∫ t

0

[
ξc(1 −m)2x2(s)

1 + a(1 −m)2x(s)2 −
pz(s)

e + y(s) + f z(s)
− 1

]
ds

)
> 0, for y0 > 0,

z(t) = z0 exp
(∫ t

0

[
σpy(s)

e + y(s) + f z(s)
− n

]
ds

)
> 0, for z0 > 0.

Theorem 3.2. All solutions of system (2.2) which start in R3
+ are uniformly bounded.

Proof. From the first equation of (2.2):

dx(t)
dt

=
x

1 + ky
− dx − x2

−
c(1 −m)2x2y

1 + a(1 −m)2x2

≤
x

1 + ky
− x2

< x(1 − x)
⇒ lim sup

t→∞
x(t) ≤ 1.

Let, N(t) = x(t) + 1
ξ y(t) + 1

ξσz(t)
So,

dN
dt

=
dx
dt

+
1
ξ

dy
dt

+
1
ξσ

dz
dt

=
x

1 + ky
− dx − x2

−
1

ξ
y −

n
ξσ

z

≤ x − τN, where τ = min{d, 1,n}
< 1 − τN, (for large time)

∴ N(t) ≤
1
τ

(1 − exp(−τt)) + N(x0, y0, z0) exp(−τt).

As t→∞, 0 < N(t) ≤ 1
τ . Hence, all solutions of system (2.2) will enter into region:

∆ =
{
(x, y, z) : 0 ≤ x(t) ≤ 1; 0 ≤ N(t) ≤

1
τ

+ ε, ε > 0
}
.

4. Extinction Scenarios

This section provides the conditions for which prey and predators (both middle and top) will go extinct
from the system in long time.
Let us adopt the following notations: x = lim sup

t→∞
x(t); y = lim sup

t→∞
y(t); z = lim sup

t→∞
z(t). Similarly,

x = lim inf
t→∞

x(t); y = lim inf
t→∞

y(t); z = lim inf
t→∞

z(t).

Here we also use the facts that (for large time): x ≤ 1 and y, z ≤M (say) (because all solutions are uniformly
bounded).
The first two theorems give the extinction criterion of prey population while the later two theorems provide
the extinction criterion of middle-predator population and the last theorem gives the condition for extinc-
tion of top-predator.
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Theorem 4.1. If d > 1, then lim
t→∞

x(t) = 0.

Proof.

dx(t)
dt

=
x

1 + ky
− dx − x2

−
c(1 −m)2x2y

1 + a(1 −m)2x2

≤ (1 − d)x
< 0

⇒ x(t)→ 0 as t→∞.

Remark 4.2. If d > 1⇔ death rate of prey is greater than its birth rate, then the prey population will be washed out
from the system as time goes (obeying Malthus growth law).

Theorem 4.3. If 1 + ky > 1
d , then lim

t→∞
x(t) = 0.

Proof. Choose ε such that for 0 < ε < y − (1−d)
kd , there exists T > 0, s.t. y(t) > y − ε for all t > T.

For all t > T :

dx
dt

=
x

1 + ky
− dx − x2

−
c(1 −m)2x2y

1 + a(1 −m)2x2

<

{
1

1 + ky
− d

}
x

<

 1
1 + k(y − ε)

− d

 x

= −µx, where µ = d −
1

1 + k(y − ε)
> 0

Hence, lim
t→∞

x(t) = 0.

Remark 4.4. If the growth of prey population decreases due to fear effect of middle-predator and also the mortality
rate of prey starts to increase, then ultimately the prey population will go extinct from the system in long run.

Theorem 4.5. If ξc(1 −m)2 < 1, then lim
t→∞

y(t) = 0.

Proof.

dy(t)
dt

=
ξc(1 −m)2x2y

1 + a(1 −m)2x2 −
pyz

e + y + f z
− 1y,

<
ξc(1 −m)2x2y

1 + a(1 −m)2x2 − 1y

< {ξc(1 −m)2
− 1}y

< 0
⇒ y(t)→ 0 as t→∞.

Remark 4.6. If the growth rate of middle-predator (by consuming prey) fails to exceed the mortality rate of the
population, then the middle-predator population will be washed out from the system in long run.



S. Saha, G. P. Samanta / Filomat 35:15 (2021), 4971–4999 4977

Theorem 4.7. If pz
e+M+ f M > ξc(1 −m)2

− 1, then lim
t→∞

y(t) = 0.

Proof. Choose ε such that 0 < ε < z − 1
p {ξc(1 − m)2

− 1}{e + M(1 + f )}. Then there exists T > 0, such that
z > z − ε, for all t > T.
For all t > T :

dy(t)
dt

=
ξc(1 −m)2x2y

1 + a(1 −m)2x2 −
pyz

e + y + f z
− 1y,

<

{
ξc(1 −m)2x2

−
pz

e + y + f z
− 1

}
y,

<

{
ξc(1 −m)2

−
p(z − ε)

e + M + f M
− 1

}
y,

= −µy, where µ =
p(z − ε)

e + M + f M
+ 1 − ξc(1 −m)2 > 0

Hence, lim
t→∞

y(t) = 0.

Remark 4.8. If the consumption rate of top-predator exceeds the overall middle-predator population, then the con-
sumer will automatically be washed out from the system with time.

Theorem 4.9. If σp < n, then lim
t→∞

z = 0.

Proof.

dz(t)
dt

=
σpyz

e + y + f z
− nz

< (σp − n)z, (∵ e + y + f z > y)
< 0

⇒ z(t)→ 0 as t→∞.

Remark 4.10. If the mortality rate of top-predator is higher than its conversion rate, then the top-predator will
ultimately go extinct from the system.

5. Equilibrium Points

Here we obtain the equilibrium points of system (2.2) by solving the nullclines which are as follows:

1. Trivial Equilibrium Point: E0(0, 0, 0).
2. Axial Equilibrium Point: E1(1 − d, 0, 0).

3. Planar Equilibrium Point: E2(x̃, ỹ, 0),where x̃= 1
1−m

√
1

cξ−a1 and ỹ is the positive solution of the equation:

A1y2 + A2y + A3 = 0

where A1 = kc(1−m)2x̃, A2 = c(1−m)2x̃ + k(d + x̃){1 + a(1−m)2x̃2
} and A3 = (d + x̃− 1){1 + a(1−m)2x̃2

}.
If A3 > 0, we won’t get any feasible planer equilibrium point as A1, A2 are already positive for any
feasible x̃. So, we get only one planer equilibrium E2 if A3 < 0 along with cξ > a1.
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4. Interior Equilibrium Point E∗(x∗, y∗, z∗) satisfies the following equations:

1
1 + ky∗

− d − x∗ −
c(1 −m)2x∗y∗

1 + a(1 −m)2x∗2
= 0,

ξc(1 −m)2x∗2

1 + a(1 −m)2x∗2
−

pz∗

e + y∗ + f z∗
− 1 = 0,

σpy∗

e + y∗ + f z∗
= n.

Solving we have:

y∗ =
−B2 +

√
B2

2 − 4B1B3

2B1
, z∗ =

1
f n

[(σp − n)y∗ − ne]

where, B1 = kc(1−m)2x∗, B2 = c(1−m)2x∗ + k(d + x∗){1 + a(1−m)2x∗2}, B3 = (d + x∗ − 1){1 + a(1−m)2x∗2}.
Let, P =

pσ−n
fσ + 1. Then, x∗ is the positive root of the equation:

G(x) ≡ C1x5 + C2x4 + C3x3 + C4x2 + C5x + C6 = 0, (5.1)

where

C1 = fσ(1 −m)4(Pa − ξc){neka + fσ(Pa − ξc)},

C2 = fσ(1 −m)4(Pa − ξc){nekda + fσ(d − 1)(Pa − ξc)},

C3 = n2e2kca(1 −m)4 + ne fσ(1 −m)2[Pka + (Pa − ξc){k + c(1 −m)2
}]

+ 2 f 2σ2P(1 −m)2(Pa − ξc),

C4 = ne fσkd(1 −m)2(2Pa − ξc) + 2P f 2σ2(d − 1)(1 −m)2(Pa − ξc),

C5 = n2e2kc(1 −m)2 + ne fσP{k + c(1 −m)2
} + f 2P2σ2,

C6 = fσP{nekd + fσP(d − 1)}

For E∗, y∗ exists only when d + x∗ < 1 and z∗ is feasible when y∗ >
ne

σp − n
.

6. Local Stability Analysis

This section contains the local stability criterion of the equilibrium points which can be determined by
the eigenvalues of the corresponding Jacobian matrices and applying Routh-Hurwitz criterion. Now, the
Jacobian matrix of system (2.2) is

J =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (6.1)

where a11 =
1

1 + ky
− d − 2x −

2c(1 −m)2xy
{1 + a(1 −m)2x2}2

; a12 = −
kx

(1 + ky)2 −
c(1 −m)2x2

1 + a(1 −m)2x2 ;

a13 = 0; a21 =
2ξc(1 −m)2xy

{1 + a(1 −m)2x2}2)2 ; a22 =
ξc(1 −m)2x2

1 + a(1 −m)2x2 −
pz(e + f z)

(e + y + f z)2 − 1;

a23 = −
py(e + y)

(e + y + f z)2 ; a31 = 0; a32 =
σpz(e + f z)

(e + y + f z)2 ; a33 =
σpy(e + y)

(e + y + f z)2 − n.
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For E0 = (0, 0, 0):

J|E0 =

 1 − d 0 0
0 −1 0
0 0 −n

 .
So, λ1 = 1 − d, λ2 = −1, λ3 = −n. Here λ2, λ3 are always negative.
So we have the following theorem:

Theorem 6.1. E0 is locally asymptotically stable (LAS) when d > 1.

For E1 = (1 − d, 0, 0):

J|E1 =


−(1 − d) −

(
k(1 − d) +

c(1−m)2(1−d)2

1+a(1−m)2(1−d)2

)
0

0 ξc(1−m)2(1−d)2

1+a(1−m)2(1−d)2 − 1 0
0 0 −n

 .
So, λ1 = −(1 − d), λ2 =

ξc(1 −m)2(1 − d)2

1 + a(1 −m)2(1 − d)2 − 1, λ3 = −n. Here λ1, λ3 are always negative.

So we have the following theorem:

Theorem 6.2. E1 is locally asymptotically stable (LAS) when (ξc − a1)(1 −m)2(1 − d)2 < 1.

For E2 = (x̃, ỹ, 0) :

J|E2 =

 a11 a12 0
a21 0 a23
0 0 a33

 ,
where a11 = −x̃ +

c(1 −m)2x̃ỹ{a(1 −m)2x̃2
− 1}

{1 + a(1 −m)2x̃2}2
; a12 = −

kx̃
(1 + kỹ)2

−
c(1 −m)2x̃2

{1 + a(1 −m)2x̃2
;

a21 =
2ξc(1 −m)2x̃ỹ
{1 + a(1 −m)2x̃2}2

; a23 = −
pỹ

(e + ỹ)
; a33 =

σpỹ
(e + ỹ)

− n.

One eigenvalue will be

λ1 =
σpỹ

(e + ỹ)
− n

and other two will be the roots of the quadratic equation:

λ2 + D1λ + D2 = 0,

where D1 = −a11, D2 = −a21a12 > 0.

So, E2 will be stable if λ1 < 0 and D1 > 0
(
i.e., 1 −

c(1 −m)2 ỹ{a(1 −m)2x̃2
− 1}

{1 + a(1 −m)2x̃2}2
> 0

)
.

Therefore we have the following theorem:

Theorem 6.3. E2 is locally asymptotically stable if (σp−n)ỹ < ne holds along with cξ2 > (1−m)2(cξ−a1)(2a1−cξ)ỹ.

Now, for E∗(x∗, y∗, z∗):

J|E∗ =

 a11 a12 0
a21 a22 a23
0 a32 a33

 ,
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where a11 = −x∗ +
c(1 −m)2x∗y∗{a(1 −m)2x∗2 − 1}

{1 + a(1 −m)2x∗2}2
; a12 = −

kx∗

(1 + ky∗)2 −
c(1 −m)2x∗2

1 + a(1 −m)2x∗2
;

a21 =
2ξc(1 −m)2x∗y∗

{1 + a(1 −m)2x∗2}2
; a22 =

py∗z∗

(e + y∗ + f z∗)2 ; a23 = −
py∗(e + y∗)

(e + y∗ + f z∗)2 ;

a32 =
σpz∗(e + f z∗)

(e + y∗ + f z∗)2 ; a33 = −
f nz∗

e + y∗ + f z∗
.

Characteristic equation for E∗(x∗, y∗, z∗) is

λ3 + G1λ
2 + G2λ + G3 = 0, (6.2)

where G1 = −(a11 + a22 + a33), G2 = a11a22 + a11a33 + a22a33 − a12a21 − a23a32,
G3 = a11a23a32 − a33(a11a22 − a12a21).
Let ∆ = G1G2 − G3.
By Routh-Hurwitz criterion all the roots of equation (6.2) have negative real parts if G1 > 0, G3 > 0 and
G1G2 − G3 > 0. Hence, we have the following theorem:

Theorem 6.4. E∗(x∗, y∗, z∗) will be LAS by Routh-Hurwitz criterion if G1 > 0, G3 > 0 and ∆ = G1G2 − G3 > 0.

7. Persistence

In the ecological context, permanence means the long term survival of all species which exist initially.

Theorem 7.1. System (2.2) is permanent if the following conditions hold:
(i) 1 − d > 0;
(ii) (ξc − a1)(1 −m)2(1 − d)2 > 1;
(iii) (σp − n)ỹ > ne.

Proof. Let the average Lyapunov function be V(x, y, z) = xβ1 yβ2 zβ3 where βi for i = 1, 2, 3 are positive. In the
interior of R3

+, we have

V̇
V

= φ(x, y, z) = β1

[
1

1 + ky
− d − x −

c(1 −m)2xy
1 + a(1 −m)2x2

]
+ β2

[
ξc(1 −m)2x2

1 + a(1 −m)2x2 −
pz

e + y + f z
− 1

]
+ β3

[
σpy

e + y + f z
− n

]
If the system is permanent, then φ(x, y, z) > 0 for all boundary equilibria of the system. The values of
φ(x, y, z) at the boundary equilibria E0, E1 and E2 are as follows:
E0 : φ(0, 0, 0) = β1(1 − d) − β21 − β3n.

E1 : φ(1 − d, 0, 0) = β2

[
ξc(1 −m)2(1 − d)2

1 + a(1 −m)2(1 − d)2 − 1

]
− β3n.

E3 : φ(x̃, ỹ, 0) = β3

[
σpỹ
e + ỹ

− n
]
.

Now, φ(0, 0, 0) is positive for some positive βi for i = 1, 2, 3 if 1 − d > 0. And if the inequalities stated in
(i) − (iii) hold, then φ is positive at E0,E1 and E2 for some βi > 0 for i = 1, 2, 3. So, system (2.2) is permanent
[10] if the conditions (i) − (iii) are satisfied.

Remark: Conditions (i), (ii) and (iii) guarantee the instability of the boundary equilibria of system (2.2).



S. Saha, G. P. Samanta / Filomat 35:15 (2021), 4971–4999 4981

8. Bifurcation Analysis

In the section, we have mainly discussed the bifurcation analysis around the equilibrium points and for that
we have used Sotomayor’s Theorem [31] and the Hopf Bifurcation Theorem [29]. To apply Sotomayor’s
Theorem, one of the eigenvalues of the Jacobian matrix at the bifurcating equilibrium point need to be zero.
Let V = (v1, v2, v3)T and W = (w1,w2,w3)T be the eigenvectors of J|(eq. point) and J|T(eq. point) corresponding to

zero eigenvalue of the equilibrium point respectively.
Let F = (F1,F2,F3)T, where

F1 =
x

1 + ky
− dx − x2

−
c(1 −m)2x2y

1 + a(1 −m)2x2 ,

F2 =
ξc(1 −m)2x2y

1 + a(1 −m)2x2 −
pyz

e + y + f z
− 1y,

F3 =
σpyz

e + y + f z
− nz.

Theorem 8.1. System (2.2) undergoes a transcritical bifurcation w.r.to the bifurcation parameter d around E0(0, 0, 0)
if d = 1.

Proof.

J|E0 =

 1 − d 0 0
0 −1 0
0 0 −n


Let d[TC1] be the value of d s.t J|E0 has a simple zero eigenvalue at d = d[TC1].
So, at d = d[TC1] :

J|E0 =

 0 0 0
0 −1 0
0 0 −n

 .
Here, λ1 = −1 < 0 and λ2 = −n < 0.
After some calculations: V = (1, 0, 0)T and W = (1, 0, 0)T.
Therefore,

Ω1 = WT.Fd(E0, d[TC1]) = −x|E0 = 0,

Ω2 = WT [
DFd(E0, d[TC1])V

]
= −1 , 0

and Ω3 = WT
[
D2F(E0, d[TC1])(V,V)

]
= −2 , 0

By Sotomayor’s Theorem, system (2.2) undergoes a transcritical bifurcation around E0 at d = d[TC1].

Theorem 8.2. System (2.2) undergoes a transcritical bifurcation w.r.to the bifurcation parameter 1 around E1(1 −
d, 0, 0) if (ξc − a1)(1 −m)2(1 − d)2 = 1.

Proof.

J|E1 =


−(1 − d) −

(
k(1 − d) +

c(1−m)2(1−d)2

1+a(1−m)2(1−d)2

)
0

0 ξc(1−m)2(1−d)2

1+a(1−m)2(1−d)2 − 1 0
0 0 −n


Let 1[TC2] be the value of 1 s.t J|E1 has a simple zero eigenvalue at 1 = 1[TC2].
So, at 1 = 1[TC2] :

J|E1 =

 −(1 − d) −

(
k(1 − d) +

c(1−m)2(1−d)2

1+a(1−m)2(1−d)2

)
0

0 0 0
0 0 −n

 .



S. Saha, G. P. Samanta / Filomat 35:15 (2021), 4971–4999 4982

Here, λ1 = −(1 − d) < 0 and λ2 = −n < 0.

After some calculations: V = (v1, v2, v3)T =
(
−

[
k +

c(1−m)2(1−d)
1+a(1−m)2(1−d)2

]
, 1, 0

)T
and W = (0, 1, 0)T.

Therefore,

Ω1 = WT.F1(E1, 1[TC2]) = −y|E1 = 0,

Ω2 = WT
[
DF1(E1, 1[TC2])V

]
= −1 , 0

and Ω3 = WT
[
D2F(E1, 1[TC2])(V,V)

]
=

4ξc(1 −m)2(1 − d)
{1 + a(1 −m)2(1 − d)2}2

v1v2 , 0

By Sotomayor’s Theorem, system (2.2) undergoes a transcritical bifurcation around E1 at 1 = 1[TC2].

Theorem 8.3. System (2.2) undergoes a transcritical bifurcation w.r.to the bifurcation parameter n around E2(x̃, ỹ, 0)
if (σp − n)ỹ = ne but cξ2 > (1 −m)2(cξ − a1)(2a1 − cξ)ỹ.

Proof.

J|E2 =

 a11 a12 0
a21 0 a23
0 0 a33

 ,
where a11 = −x̃ +

c(1−m)2x̃ỹ{a(1−m)2x̃2
−1}

{1+a(1−m)2x̃2}2
; a12 = − kx̃

(1+kỹ)2 −
c(1−m)2x̃2

{1+a(1−m)2x̃2 ;

a21 =
2ξc(1−m)2x̃ỹ
{1+a(1−m)2x̃2}2

; a23 = −
pỹ

(e+ỹ) ; a33 =
σpỹ

(e+ỹ) − n.
Let n[TC3] be the value of n s.t J|E2 has a simple zero eigenvalue at n = n[TC3].
So, at n = n[TC3] :

J|E2 =

 a11 a12 0
a21 0 a23
0 0 0

 .
For cξ2 > (1−m)2(cξ− a1)(2a1− cξ)ỹ we shall get other two eigenvalues with negative real part at n = n[TC3].
After some calculations:
V = (a12a23,−a11a23,−a21a12)T and W = (0, 0, 1)T.
Therefore,

Ω1 = WT.Fn(E2,n[TC3]) = −z|E2 = 0,

Ω2 = WT [
DFn(E2,n[TC3])V

]
= −v3 , 0

and Ω3 = WT
[
D2F(E2,n[TC3])(V,V)

]
=

2σpv3

(e + ỹ)2
(ev2 − f ỹv3) , 0.

By Sotomayor’s Theorem, system (2.2) undergoes a transcritical bifurcation around E2 at n = n[TC3].

• Hopf Bifurcation at equilibrium points

Let us consider b as bifurcation parameter of a system where the characteristic equation of an equilibrium
point E(x, y, z) is

λ3 + G1(b)λ2 + G2(b)λ + G3 = 0, (8.1)

then Hopf Bifurcation Theorem is stated as follows:
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Theorem 8.4. (Hopf Bifurcation Theorem) Suppose Gi(b); i = 1, 2, 3 are continuous functions of b in Nε(b0), (ε >
0), b0 ∈ R such that the characteristic equation (8.1) has
(i) a pair of complex eigenvalues λ = k(b) ± il(b) (with k(b), l(b) ∈ R) which become purely imaginary when b = b0

and
dk
db

∣∣∣
b=b0
, 0,

(ii) the other eigenvalue is negative when b = b0.
Then a Hopf Bifurcation occurs around E when b = b0.

• Hopf Bifurcation at E∗(x∗, y∗, z∗)

Here, let us consider k as bifurcation parameter to check the instability of the equilibrium point E∗. The
characteristic equation of system (2.2) at E∗(x∗, y∗, z∗) is

λ3 + G1(k)λ2 + G2(k)λ + G3(k) = 0, where (8.2)

G1 = −(a11 + a22 + a33)

= −

[
−x∗ +

c(1 −m)2x∗y∗{a(1 −m)2x∗2 − 1}
{1 + a(1 −m)2x∗2}2

+
py∗z∗

(e + y∗ + f z∗)2 −
f nz∗

e + y∗ + f z∗

]
,

G2 = a11a22 + a11a33 + a22a33 − a12a21 − a23a32

=

[
−x∗ +

c(1 −m)2x∗y∗{a(1 −m)2x∗2 − 1}
{1 + a(1 −m)2x∗2}2

] {
py∗z∗

(e + y∗ + f z∗)2 −
f nz∗

e + y∗ + f z∗

}
−

p f ny∗z∗2

(e + y∗ + f z∗)3 +
2ξc(1 −m)2x∗y∗

{1 + a(1 −m)2x∗2}2

[
kx∗

(1 + ky∗)2 +
c(1 −m)2x∗2

1 + a(1 −m)2x∗2

]
+
σp2z∗(e + f z∗)y∗(e + y∗)

(e + y∗ + f z∗)4 ,

G3 = a11a23a32 − a33(a11a22 − a12a21)

=

[
−x∗ +

c(1 −m)2x∗y∗{a(1 −m)2x∗2 − 1}
{1 + a(1 −m)2x∗2}2

]
σp2z∗(e + f z∗)y∗(e + y∗)

(e + y∗ + f z∗)4

+
f nz∗

e + y∗ + f z∗

[{
−x∗ +

c(1 −m)2x∗y∗{a(1 −m)2x∗2 − 1}
{1 + a(1 −m)2x∗2}2

}{
py∗z∗

(e + y∗ + f z∗)2 −
f nz∗

e + y∗ + f z∗

}
+

2ξc(1 −m)2x∗y∗

{1 + a(1 −m)2x∗2}2

{
kx∗

(1 + ky∗)2 +
c(1 −m)2x∗2

1 + a(1 −m)2x∗2

}]
Theorem 8.5. If E∗ exists with the feasibility conditions, then a simple Hopf bifurcation occurs at unique k = k0,
where k0 is the unique positive root of the equation: G1(k)G2(k) − G3(k) = 0 with G1(k0),G2(k0) > 0.

Proof. For k = k0, the characteristic equation of system (2.2) at E∗ is (λ2 + G2)(λ + G1) = 0
which gives roots: λ1 = i

√
G2, λ2 = −i

√
G2 and λ3 = −G1. So, there exists a pair of purely imaginary

eigenvalues and a strictly negative real eigenvalue. Also, Gi(k) are continuous functions of k.
So, for k in a neighbourhood of k0, the roots have the form:
λ1 = p1(k) + ip2(k), λ2 = p1(k) − ip2(k), λ3 = −p3(k); p j(k) are real for j = 1, 2, 3.

Next to check the transversality condition:
d
dk

[Re(λ j(k))]
∣∣∣
k=k0
, 0, for j = 1, 2.

Put λ(k) = p1(k) + ip2(k) in (8.2), we get

(p1 + ip2)3 + G1(p1 + ip2)2 + G2(p1 + ip2) + G3 = 0. (8.3)

Taking derivative w.r.to k, we get

3(p1 + ip2)2(ṗ1 + iṗ2) + 2G1(p1 + ip2)(ṗ1 + iṗ2) + G2(ṗ1 + iṗ2) + Ġ1(p1 + ip2)2 + Ġ2(p1 + ip2) + Ġ3 = 0.
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Comparing real and imaginary parts:

S1ṗ1 − S2ṗ2 + S3 = 0, (8.4)

S2ṗ1 + S1ṗ2 + S4 = 0, (8.5)

where S1 = 3(p2
1 − p2

2) + 2G1p1 + G2; S2 = 6p1p2 + 2G1p2;
S3 = Ġ1(p2

1 − p2
2) + Ġ2p1 + Ġ3; S4 = 2Ġ1p1p2 + Ġ2p2.

From (8.4) and (8.5):

ṗ1 = −
S2S4 + S1S3

S2
1 + S2

2

. (8.6)

Now, S3 = Ġ1(p2
1 − p2

2) + Ġ2p1 + Ġ3 , Ġ1(p2
1 − p2

2) + Ġ2p1 + Ġ1G2 + Ġ2G1
At k = k0 :
Case-(1): p1 = 0; p2 =

√
G2.

So, S1 = −2G2; S2 = 2G1
√

G2; S3 , G1Ġ2; S4 = Ġ2
√

G2
and S2S4 + S1S3 , 2G1G2Ġ2 − 2G1G2Ġ2 = 0.
Case-(2): p1 = 0; p2 = −

√
G2.

So, S1 = −2G2; S2 = −2G1
√

G2; S3 , G1Ġ2; S4 = −Ġ2
√

G2
and S2S4 + S1S3 , 2G1G2Ġ2 − 2G1G2Ġ2 = 0.

∴
d
dk

[Re(λi(k))]
∣∣∣∣∣
k=k0

= −
S2S4 + S1S3

S2
1 + S2

2

, 0.

Also, λ3 = −p3 = −G1(k0) < 0. Hence the theorem.

9. Global Stability

In this section we discuss the global stability of those equilibrium points which are locally asymptotically
stable (LAS) under some parametric conditions.

Theorem 9.1. The trivial equilibrium E0(0, 0, 0), if LAS, is globally asymptotically stable (GAS) also.

Proof. Consider the Lyapunov function as V1(x, y, z) = x + 1
ξ y + 1

ξσz Here, V1(x, y, z) is a positive definite
function for all (x, y, z) except (0, 0, 0).
Now time derivative of V1 computed along the solutions of system (2.2) is given by:

dV1

dt
=

dx
dt

+
1
ξ

dy
dt

+
1
ξσ

dz
dt

=

[
x

1 + ky
− dx − x2

−
c(1 −m)2x2y

1 + a(1 −m)2x2

]
+

1
ξ

[
ξc(1 −m)2x2y

1 + a(1 −m)2x2 −
pyz

e + y + f z
− 1y

]
+

1
ξσ

[
σpyz

e + y + f z
− nz

]
≤ x − dx −

1

ξ
y −

n
ξσ

z

≤ (1 − d)x

So, dV1
dt < 0 when it is LAS. Also dV1

dt = 0 when (x, y, z) = (0, 0, 0). Hence, dV1
dt is negative definite when it

is LAS. As the only solution of model (2.2) that satisfies x = 0, y = 0 and z = 0 is the equilibrium, LaSalle
theorem [22] implies global asymptotic stability of E0.

Theorem 9.2. The axial equilibrium E1(1 − d, 0, 0) is globally asymptotically stable if 1 − ξc(1 −m)2(1 − d)2 > 0.
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Proof. From 1st equation of system (2.2) we have

dx
dt

=
x

1 + ky
− dx − x2

−
c(1 −m)2x2y

1 + a(1 −m)2x2

≤ (1 − d)x
{
1 −

x
1 − d

}
Hence, lim

t→∞
x ≤ (1 − d).

Now consider

d
dt

(
y +

1
σ

z
)

=
dy
dt

+
1
σ

dz
dt

=
ξc(1 −m)2x2y

1 + a(1 −m)2x2 − 1y −
nz
σ

< −{1 − ξc(1 −m)2(1 − d)2
}y −

nz
σ

= −Py −
nz
σ
,
(
let, P = 1 − ξc(1 −m)2(1 − d)2

)
≤ −κ

(
y +

1
σ

z
)
, (where, κ = min{P,n})

Thus, y(t) + 1
σz(t) ≤

(
y0 + 1

σz0

)
exp(−κt) and the system is dissipative.

From above, we have, lim
t→∞

y = lim
t→∞

z = 0. And in the limit form, x(t) is a positive solution of the equation

ẋ(t) = (1 − d)x
{
1 −

x
1 − d

}
. As, x0 > 0, the theorem is proved.

Theorem 9.3. If the equilibrium E2(x̃, ỹ, 0) exists and is locally asymptotically stable, then it is globally asymptotically
stable if 1 − d + x̃ < 0, ξc(1 −m)2x̃ < 1 and dx̃ +

ỹ
ξ

( p
f + 1

)
−

n
ξσ < 0.

Proof. Consider the Lyapunov function as:

V2(x, y, z) =
[
x − x̃ − x̃ log

(x
x̃

)]
+

1
ξ

[
y − ỹ − ỹ log

(
y
ỹ

)]
+

1
ξσ

z

Here, V2(x, y, z) is a positive definite function for all (x, y, z) except (x̃, ỹ, 0).
Now time derivative of V2 computed along the solutions of system (2.2) is given by

dV2

dt
=

(
1 −

x̃
x

)
dx
dt

+
1
ξ

(
1 −

ỹ
y

)
dy
dt

+
1
ξσ

dz
dt

=
(
x − x̃

) [ 1
1 + ky

− d − x −
c(1 −m)2xy

1 + a(1 −m)2x2

]
+

1
ξ

(
y − ỹ

) [ ξc(1 −m)2x2

1 + a(1 −m)2x2 −
pz

e + y + f z
− 1

]
+

1
ξσ

[
σpyz

e + y + f z
− nz

]
≤ x{1 − d + x̃} +

{
c(1 −m)2x̃ −

1

ξ

}
y +

{
dx̃ +

ỹ
ξ

(
p
f

+ 1

)
−

n
ξσ

}
So, dV2

dt < 0 when 1−d+x̃ < 0, ξc(1−m)2x̃ < 1 and dx̃+
ỹ
ξ

( p
f + 1

)
−

n
ξσ < 0. Also dV2

dt = 0 when (x, y, z) = (x̃, ỹ, 0).
Hence, by LaSalle theorem [22] E2 is GAS when the stated conditions are fulfilled.

Theorem 9.4. If E∗ exists and is locally asymptotically stable, then it is globally asymptotically stable if x∗ <
d, pξσy∗ < neξ and 1 + dx∗ +

1y∗

ξ + nz∗
ξσ −

x∗
1+kM < 0.
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Parameter m a p e f σ ξ c
Value 0.5 5 0.05 0.5 0.1 0.3 0.8 5

Table 1: Parametric values used in numerical simulation

Proof. Consider an appropriate Lyapunov function:

V3(x, y, z) =
[
x − x∗ − x∗ log

( x
x∗

)]
+

1
ξ

[
y − y∗ − y∗ log

(
y
y∗

)]
+

1
ξσ

[
z − z∗ − z∗ log

( z
z∗

)]
.

Here V3(x, y, z) is a positive definite function for all (x, y, z) except (x∗, y∗, z∗).
The time derivative of V2 computed along the solutions of system (2.2) is given by

dV3

dt
=

(
1 −

x∗

x

) dx
dt

+
1
ξ

(
1 −

y∗

y

)
dy
dt

+
1
ξσ

(
1 −

z∗

z

) dz
dt

= (x − x∗)
[

1
1 + ky

− d − x −
c(1 −m)2xy

1 + a(1 −m)2x2

]
+

1
ξ

(
y − y∗

) [ c(1 −m)2x2

1 + a(1 −m)2x2 −
pz

e + y + f z
− 1

]
+

1
ξσ

(z − z∗)
[

σpy
e + y + f z

− n
]

< x − (d − x∗)x + dx∗ −
x∗

1 + kM
−
1

ξ
y −

c(1 −m)2y∗x2

1 + a(1 −m)2 − x2 +
py∗z

ξ(e + y + f z)
+
1y∗

ξ

−
nz
ξσ
−

σpz∗y
ξσ(e + y + f z)

+
nz∗

ξσ

< −(d − x∗)x +

(
1 + dx∗ +

1y∗

ξ
+

nz∗

ξσ
−

x∗

1 + kM

)
+ z

(
py∗

eξ
−

n
ξσ

)
So, dV3

dt < 0 when the stated conditions are satisfied. Also dV3
dt = 0 when (x, y, z) = (x∗, y∗, z∗). Hence dV3

dt is
negative definite under some parametric restrictions and LaSalle theorem [22] implies global asymptotic
stability of E∗.

10. Numerical Simulation

Numerical simulation help us to analyze the system dynamics with the help of some pictorial diagrams.
Here we vary some of the parameters to show the impact of those particular on the model system. Let us
fix some ecological parameters as described in Table 1.
In absence or even absence of fear, for d = 1.2, 1 = 0.5 and n = 0.03, Figure 1 shows that all the populations

in the system are going extinct with time and the trajectories converge to the trivial equilibrium E0(0, 0, 0).
As usual (in agreement with Malthus growth), if the death rate exceeds birth rate, then the prey population
cannot sustain in the system and they wash out resulting in the extinction of middle-predator and top-
predator populations. So, none of the fear effect and refuge parameters can control the stability of the trivial
equilibrium point. Only the parameter ‘d’ is sufficient to decide whether all species are going extinct or not.
But if we consider d = 0.2 along with 1 = 0.5 and n = 0.03, we get a consumer and top-predator free system
for absence or even for presence of fear term and the trajectories converge to E1(0.8, 0, 0) (see Figure 2).

As the stability criterion of E0 holds when d > 1 (⇔ death rate > birth rate for prey) and E1(1 − d, 0, 0)
exists only when d < 1. Thus at d[TC] = 1, E1 and E0 coincide each other and a transcritical bifurcation occurs
around E0 (see Figure 3).
Keeping d = 0.2 and n = 0.03 fixed, if we decrease the death rate coefficient of middle-predator (1) to 0.006,
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Figure 1: Stable behaviour of E0.
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Figure 2: Stable behaviour of E1.
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Figure 3: Transcritical Bifurcation around E0 taking d as bifurcation parameter.
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Figure 4: Stable behaviour of E2 without any fear effect.

then the trajectories converges to a top-predator free system E2 where the prey and consumer populations
exist as a steady state. In absence of fear effect, i.e., for k = 0, E2(x̃, ỹ, 0) ≡ (0.078, 7.49, 0) (see Figure 4) but if
we consider the fear coefficient k as 1.5, E2 becomes (0.078, 1.079, 0) (see Figure 5). So, it is observed that the
fear coefficient has an important impact on middle-predator’s growth and the middle-predator population
decreases rapidly with increasing fear coefficient.
It is observed that for a threshold value of 1, E2 coincides with E1. For 1 > 1[TC], E1 is stable and becomes

unstable when the value of 1 is lower than 1[TC] = 0.356.Also, E2 exists only when 1 < 1[TC]. So, a transcritical
bifurcation occurs around E1 at 1 = 1[TC] (see Figure 6).

From this state, if we fix d = 0.2 and 1 as 0.006, then for a decreasing value of n, we get a system
where all population exist as a steady state. For k = 0 and n = 0.01, the interior equilibrium point be
E∗ = (0.279, 1.639, 3.194) (Figure 7). Again, in presence of fear term, for k = 1.5 and n = 0.01, E∗ is
(0.0878, 1.0099, 0.0497) (Figure 8). So, it is evident that introduction of fear (k) in prey population affect the
growth of all population. Increasing value of k decreases the prey population resulting in the decreasing
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Figure 5: Stable behaviour of E2 in presence of fear (k = 1.5).
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Figure 7: Stable behaviour of E∗ without any fear effect.
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Figure 8: Stable behaviour of E∗ in presence of fear (k = 1.5).

growth of both middle and top-predator populations.
It is known that the planer equilibrium point E2 is stable (locally) when (σp − n)ỹ < ne and (1 − m)2(ξc −

a1)(2a1− ξc)ỹ < cξ2 hold. Numerical calculations already give that in absence of fear when n = 0.03 we get
a top-predator free steady state but a lesser value of n (n = 0.01) gives a system where all populations live
simultaneously. So, for some threshold value of n, E∗ and E2 coincide each other. The parametric values
give that at n = n[TC] = 0.0141, a transcritical bifurcation occurs around E2 and it loses its stability when n
becomes lower than n[TC] (Figure 9). Now if we consider the impact of fear in the system, then for k = 1.5,
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Figure 10: For k = 0: (10.a) Occurrence of limit cycle around E∗ for p > p[H]; (10.b) Stable behaviour around E∗ for p < p[H].

we get the threshold value of n as n[TC] = 0.0102. Thus, the fear coefficient has a stabilizing effect in the
system even in the absence of top-predator.
When k = 0, n = 0.01 if we start to increase the consumption rate of middle-predator (p) gradually, then it

is observed that after crossing p[H] = 0.125735, a stable limit cycle occurs around the unstable equilibrium
point and hence, a supercritical Hopf bifurcation occurs at p = p[H] (as 1st Lyapunov coefficient (L.E),
l1 = −0.063329 < 0) around E∗p[H]

(x∗p[H]
, y∗p[H]

, z∗p[H]
) ≡ (0.662, 0.258, 2.143). Figure (10.a) depicts that at p = 0.5, a

stable limit cycle occurs around the unstable interior point E∗(0.779, 0.039, 0.392) while Figure (10.b) depicts
that at p = 0.05 the trajectory converges to stable E∗(0.279, 1.639, 3.194).

In presence of fear coefficient (k = 0.5), taking 1 = 0.006, n = 0.01, d = 0.2, it is observed that there is a
threshold value of p above which the system exhibits a stable limit cycle around E∗. For these parameter
values we get p = pk

[H] = 0.401471 (1st L.E = −0.1865 < 0) with the coordinate E∗
pk

[H]
(x∗

pk
[H]
, y∗

pk
[H]
, z∗

pk
[H]

) ≡

(0.748, 0.0496, 0.482) and thus the system undergoes a supercritical Hopf bifurcation around E∗ at p =
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Figure 11: For k = 0.5: (11.a) Occurrence of limit cycle around E∗ for p > pk
[H]; (11.b) Stable behaviour around E∗ for p < pk
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pk
[H]. Figure (11.a) depicts that at p = 0.5, a stable limit cycle occurs around the unstable interior point

E∗(0.7599, 0.0384, 0.3797) while Figure (11.b) depicts that at p = 0.05 the trajectory converges to stable
E∗(0.1785, 1.1734, 0.8672).

Comparing the Hopf thresholds from calculations and Figure 12, it is observed that p[H] < pk
[H]. Thus,

increasing consumption rate delay the system oscillation in the presence of fear coefficient. In figure 13, we
have taken the scenarios when k = 0, 5.5 and k = 10.5 along with p = 0.05, 1 = 0.006 and n = 0.001. With
the increasing value of k, it is observed that the growth rate of prey (x) has decreased, i.e., prey density is
reduced in the presence of fear. Now if prey density starts to decrease, it results in a reduction of consumer’s
as well as top-predators densities. The pictures reflect the fact that the components of all population are
decreased with increasing fear coefficient.
The fear coefficient (k) is an important parameter to control the system dynamics. In figure 14, we have

drawn time series plots for different values of k taking p = 0.5 and n = 0.01. For k = 0.5, the trajectory forms
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Figure 13: Time series plot of E∗ for different value of k.
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Figure 14: Change of behaviour of E∗ for different value of k : − (14.a): oscillating behaviour for k = 0.5 and (14.b): stable behaviour
for k = 1.5;

a stable limit cycle around the unstable equilibrium point (0.7599, 0.0384, 0.3797) but for k = 5.5 the system
converges to stable equilibrium point (0.6086, 0.0377, 0.2796). So, the system undergoes a Hopf bifurcation
at k = k[H] = 0.559147, i.e., a stable limit cycle (1st L.E = −0.19423 < 0) occurs for k < k[H] but disappears for
k > k[H]. It implies a sufficient amount of fear is necessary for a steady coexistent state.
Now we analyze how the prey refuge makes an impact on the system. Figures 15 depicts the scenario of the

equilibrium point by varying prey refuge in presence of fear effect (k = 2.5). Figure 16 shows that the prey
population decreases whether the fear term is included or not but the slope of the curves become less sharp
in the presence of fear than the case of without fear. As the growth rate is decreased due to fear of predation,
so, a lesser number of prey is there in the system for consumption than the case of excluding fear effect. It
effects the growth of middle-predator and top-predator population also because we have considered them
to be specialist predators. The middle-predator and top-predator population show a significant declination
in presence of fear term for increasing prey refuge. Though it is true that if a large number of prey is going
as refuge, then the middle-predator population becomes small and the population becomes almost same
for both the cases. This is true for the growth of top-predator population also.
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Figure 15: Influence of prey refuge on E∗ in presence of fear effect (k = 2.5).
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Figure 16: Comparison of the components of E∗ for k = 0, 1.5 while varying the prey refuge (m).
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Figure 17: For k = 0: Bifurcation thresholds in m-x plane. Here “H1” and “H2” denote Hopf thresholds and “TC” denotes the
transcritical threshold where E∗ and E2 coincide.
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Figure 18: Stabilizing and destabilizing behaviour of system in absence of fear (k = 0) for different m: (18.a) Stable behaviour for
m = 0.4, (18.b) Oscillating behaviour for m = 0.7 and (18.c) Stable behaviour for m = 0.951384.

The prey refuge (m) can control the system dynamics as well. Here we take p = 0.05, 1 = 0.006 and
n = 0.001.Whether the fear effect is considered or not, for some threshold value of m the system can exhibit
oscillating behaviour but it is observed that the instability does not last longer. So, m has a stabilizing as well
as destabilizing effect. When there is no fear effect, it is observed that for m < m1

[H], we get interior steady
state where all population coexist but when m ∈ (m1

[H],m
2
[H]) = (0.578612, 0.951063) stable limit cycle occurs

and at m = m1
[H], m2

[H] the system undergoes a Hopf bifurcation around E∗. Figure 18 shows that for m = 0.4
the trajectory converges to (0.69, 0.16, 17.73) while for m = 0.7 stable limit cycle occurs around unstable
(0.78, 0.06, 2.8) and for m = 0.951384 the trajectory converges to (0.8, 0.04, 2.04 ∗ 10−6). When m > m2

[H], E∗

again becomes stable and ultimately at m = m[TC] = 0.951385, E∗ coincides with E2 and the equilibrium
point be (0.799665, 0.035714, 0). Thus the system undergoes a transcritical bifurcation around E∗ at m = m[TC]
(Figures 17,18).

Same thing can be observed if we even consider the fear coefficient in the system. Taking k = 0.5,
it is obtained from figures 19 and 20, for m < m1

[H] = 0.806773, the trajectory converges to E∗ whereas
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Figure 20: Stabilizing and destabilizing behaviour of system in presence of fear (k = 1.5) for different m: (20.a) Stable behaviour for
m = 0.4, (20.b) Oscillating behaviour for m = 0.85 and (20.c) Stable behaviour for m = 0.93.

for m1
[H] < m < m2

[H], oscillating behaviour occurs but after crossing m2
[H] = 0.901476, the system again

becomes stable. Figure 20 shows that for m = 0.4 the trajectory converges to (0.65, 0.13, 13.42) while for
m = 0.85 stable limit cycle occurs around unstable (0.78, 0.04, 0.53) and for m = 0.93 the trajectory converges
to (0.78, 0.04, 0.06). So, at m = m1

[H], m2
[H] Hopf bifurcation occurs and in (m1

[H],m
2
[H]) stable limit cycle

occurs around unstable equilibrium point and ultimately at m = m[TC] = 0.950294, it coincides with E2 with
component (0.782114, 0.035714, 0). So, at m = m[TC], a transcritical bifurcation occurs around E∗. So, it is
observed that inclusion of fear term decreases the range of refuge parameter where oscillation occurs in the
system.

11. Conclusion

Prey-predator interaction is a basic phenomenon of the biological system and this interaction often balance
the food web. It is evident that the predator can live by consuming the prey population and the searching
strategies depend on many factors. Sometimes, it is assumed that the predation term depends only on the
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resource population size and their availability but it is also true that not only the prey but the predator
density and their interference can also affect the predation term. In this work, a tritrophic food chain
model is considered where the predation terms between prey-consumer and consumer-predator have been
considered by Holling type-III and Beddington-DeAngelis functional responses respectively. At the time of
hunting, predators usually expose themselves to a higher risk of predation and also they prefer to consume
with higher fitness. But their behaviour effect other species’ consumption strategies, i.e., the interactions
between the forager’s predator and forager’s food. Zenette et al. [54] in their work have proved that
reproduction of song sparrow has reduced at a large rate due to fear of predation risk. In 2016, Suraci et
al. [44] have concluded that the fear of being consumed by large carnivores can decrease foraging time
as well as foraging behaviour of mesocarnivores by almost 66%. Here it is assumed that only the birth
rate of prey population is affected due to fear of predation. Also, only a fraction of prey is available to the
middle-predators as prey refuge term is present in the system. It is observed from the results that both the
fear effect and prey refuge play vital roles to control the system dynamics. The fear factor has a stabilizing
effect as increasing value of k can turn the oscillating behaviour of the population into a stable state. If
the fear coefficient starts to increase, the prey species decreases and it affects the other population as both
the middle and top-predator population start to decrease with increasing fear coefficient. On the other
hand, if a larger amount of prey successfully hides themselves, then the prey population starts to increase
resulting in the declination of middle-predator and top-predator populations. The interesting part is that
if we observe the influence of prey refuge in presence of fear, then it is obtained that the prey increases
for a higher value of refuge but the amount is lesser than the case for k = 0. Also, the middle-predator
and top-predator decrease with increasing m but the amount be always lesser than the case without any
fear effect. Moreover, the prey refuge has a stabilizing as well as a destabilizing effect. When there is a
small amount of refuge present in the system, the interior point is found to be as a steady state but for a
moderate value of refuge parameter, the system loses its stability through a Hopf bifurcation. Further for
a higher value of refuge, the system becomes stable again and ultimately the top-predator goes extinct and
we obtain a steady state consists of prey and consumer populations only. Moreover, the results reveal that
inclusion of fear term decreases the range of refuge parameter where oscillation occurs in the system.

As days go, more researchers are showing interest in fear effect problems but most of the cases are
limited within two dimensions. Here, we have taken a step further by considering three-dimensional
problem and incorporation of prey refuge has made the model more realistic. It can be concluded from the
analytical and numerical results that the model with prey refuge and fear effect exhibits a rich dynamics.
But, this model can be refined further. We can consider the fear term as a periodic function. Moreover, the
prey refuge term can also be taken as predator dependent function. Also, the consumption of food is not
a process of a fraction of time (i.e., not an instantaneous process); the predators take some time to digest
the consumed food, which is called ‘gestation delay’. So, the future work can be dealt with some models
considering all these facts to make the models more realistic.

Acknowledgements

The authors are grateful to the anonymous referees for their careful reading, valuable comments and
helpful suggestions, which have helped them to improve the presentation of this work significantly. The
first author (Sangeeta Saha) is thankful to the University Grants Commission, India for providing SRF.

References
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