On the Rank of Semigroup of Transformations with Restricted Partial Range

Jiulin Jin ${ }^{\text {a }}$
${ }^{a}$ School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China

Abstract

Let $\mathcal{T}(X)$ be the full transformation semigroup on a nonempty set X. For $\emptyset \neq Z \subseteq Y \subseteq X$, let $\mathcal{T}(X, Y, Z)=\{\alpha \in \mathcal{T}(X): Y \alpha \subseteq Z\}$. It is not difficult to see that it is a generalized form of three well-known semigroups. This paper obtains an isomorphism theorem of $\mathcal{T}(X, Y, Z)$. In addition, when X is finite and $Z \subset Y \subset X$, the rank of the semigroup $\mathcal{T}(X, Y, Z)$ is calculated.

1. Introduction

Transformation semigroups are ubiquitous in the semigroup theory because of Cayley's Theorem which states that every semigroup is embedded in some transformation semigroup (see [1, Theorem 1.1.2]). It is well known that rank is a crucia concept in the semigroup theory. As usual, the rank of a semigroup S is the smallest number of elements required to generate S defined by $\operatorname{rank}(S)=\min \{|A|: A \subseteq S,\langle A\rangle=S\}$.

For a nonempty set X, let $\mathcal{T}(X)$ be the full transformation semigroup on X that is, the semigroup under composition of all maps from X into itself. We denote by $\mathcal{P T}(X)$ the monoid of all partial transformations of X, by $\mathcal{I}(X)$ the symmetric inverse semigroup on X, i.e., the submonoid of $\mathcal{P} \mathcal{T}(X)$ of all injective partial transformations of X, and by $\mathcal{S}(X)$ the symmetric group on X, i.e., the subgroup of $\mathcal{I}(X)$ of all injective full transformations (permutations) of X. When X is finite, we take $X=\{1,2, \cdots, n\}$ and write $\mathcal{P T}_{n}, \mathcal{T}_{n}, \mathcal{I}_{n}$, and \mathcal{S}_{n} instead of $\mathcal{P T}(X), \mathcal{T}(X), \mathcal{I}(X)$, and $\mathcal{S}(X)$, respectively. For $n \geq 3$, it is well known that the rank of $\mathcal{P T} \mathcal{T}_{n}$ $, \mathcal{T}_{n}, \mathcal{I}_{n}$, and \mathcal{S}_{n} are equal to $4,3,3$, and 2 , respectively. These are well known results, and they all have found strong support. See [1, pp. 39, 41, and 211], for example.

On the other hand, Gomes and Howie proved that the rank of the semigroup of singular mappings $\operatorname{Sing}_{n}=\left\{\alpha \in \mathcal{T}_{n}:|X \alpha| \leq n-1\right\}$ is equal to $n(n-1) / 2$ in [2]. This result was later generalized by Howie and McFadden [3] who showed that the rank of the semigroup $\mathcal{K}(n, r)=\left\{\alpha \in \mathcal{T}_{n}:|X \alpha| \leq r\right\}$ is equal to $S(n, r)$, the Stirling number of the second kind for $2 \leq r \leq n-1$. Recall that for $1 \leq r \leq n$ and $n \in \mathbb{N}^{+}$, the Stirling number of the second kind $S(n, r)$ is the number of r-partitions on a set of n elements, which may be defined by the recurrence relation $S(n, r)=S(n-1, r-1)+r S(n-1, r)$ with $S(n, 1)=S(n, n)=1$. In [4], Garba considered the semigroup $\mathcal{P T}(n, r)=\left\{\alpha \in \mathcal{P} \mathcal{T}_{n}:|X \alpha| \leq r\right\}$ and showed that, for $2 \leq r \leq n-1$, its rank is equal to $S(n+1, r+1)$, and showed that the rank of the semigroup $\mathcal{I}(n, r)=\left\{\alpha \in I_{n}:|X \alpha| \leq r\right\}$ for $3 \leq r \leq n-1$, is $\binom{n}{r}+1$. Recall that the number of ways that r objects can be chosen from n distinct objects written $\binom{n}{r}$ is given by $\binom{n}{r}=\frac{n!}{(n-r)!r!}$.

[^0]Given a nonempty subset Y of X, let

$$
\overline{\mathcal{T}}(X, Y)=\{\alpha \in \mathcal{T}(X): Y \alpha \subseteq Y\} \text { and } \mathcal{T}(X, Y)=\{\alpha \in \mathcal{T}(X): X \alpha \subseteq Y\}
$$

Then $\overline{\mathcal{T}}(X, Y)$ is a subsemigroup of $\mathcal{T}(X)$ and $\mathcal{T}(X, Y)$ is a subsemigroup of $\overline{\mathcal{T}}(X, Y)$. In 1966, Magill [5] introduced and studied the semigroup $\overline{\mathcal{T}}(X, Y)$. In 1975, Symons [6] introduced the semigroup $\mathcal{T}(X, Y)$, and also described all automorphisms of $\mathcal{T}(X, Y)$. The study of semigroups $\overline{\mathcal{T}}(X, Y)$ and $\mathcal{T}(X, Y)$ [7-24] includes the aspects of regularity and Green's relations (see [7-9]), abundance and starred Green's Relations (see [10, 11]), natural partial order (see [11, 12]), congruence relation (see [13, 14]), (maximal) subsemigroup with some properties (see [15-21]), and rank (see [22, 23]), etc.

In this paper, we consider the subsemigroup $\mathcal{T}(X, Y, Z)$ of $\mathcal{T}(X)$ defined by

$$
\mathcal{T}(X, Y, Z)=\{\alpha \in \mathcal{T}(X): Y \alpha \subseteq Z\}
$$

where $\emptyset \neq Z \subseteq Y \subseteq X$, and we call it the semigroup of transformations with restricted partial range on X. Clearly, the semigroup $\mathcal{T}(X, Y, Z)$ is a generalization of semigroups $\mathcal{T}(X), \overline{\mathcal{T}}(X, Y)$, and $\mathcal{T}(X, Z)$, that is,

- if $Z=Y$, then $\mathcal{T}(X, Y, Z)=\overline{\mathcal{T}}(X, Y)$;
- if $Y=X$, then $\mathcal{T}(X, Y, Z)=\mathcal{T}(X, Z)$;
- if $Z=Y=X$, then $\mathcal{T}(X, Y, Z)=\mathcal{T}(X)$.

For the case $Z=Y=X$ it is easy to see that $\operatorname{rank}(\mathcal{T}(X, Y, Z))=\operatorname{rank}(\mathcal{T}(X))$.
For the case $Z \subset Y=X$. Fernandes and Sanwong [22, Theorem 2.3] presented the following result.
Lemma 1.1. [22, Theorem 2.3] Let $|X|=n,|Z|=k$ and $k<n$. Then $\operatorname{rank}(\mathcal{T}(X, Z))=S(n, k)$.
For the case $Z=Y \subseteq X$. The author [23, Theorem 1] presented the following result.
Lemma 1.2. [23, Theorem 1] Let $|X|=n,|Y|=m$. Then

$$
\operatorname{rank}(\overline{\mathcal{T}}(X, Y))= \begin{cases}1, & \text { if } n=1 ; \\ 2, & \text { if }(n, m)=(2,1) \text { or } m=n=2 ; \\ 3, & \text { if }(n, m)=(3,1) \text { or }(n, m)=(3,2) \text { or } m=n \geq 3 ; \\ 4, & \text { if } n \geq 4 \text { and } m=1 \text { or } n \geq 4 \text { and } m=n-1 ; \\ 5, & \text { if } n \geq 4 \text { and } 2 \leq m \leq n-2 .\end{cases}
$$

The motivation of this study is to compute the rank of $\mathcal{T}(X, Y, Z)$ when X is finite and $Z \subset Y \subset X$.
Throughout this paper, we always assume that X is a chain with $n(n \geq 3)$ elements, say $X=\{1<2<$ $\cdots<n\}$. Also, we assume that $\emptyset \neq Z \subset Y \subset X$. We write functions on the right; in particular, this means that for a composition $\alpha \beta, \alpha$ is applied first. For any sets A and B, we denote by $|A|$ the cardinality of A, and write $A \backslash B=\{a \in A: a \notin B\}$.

2. Isomorphism of $\mathcal{T}(X, Y, Z)$

In this section, we aim to prove an isomorphism theorem of $\mathcal{T}(X, Y, Z)$ when $Z \subset Y \subset X$.
Let S be a subsemigroup of $\mathcal{T}(X)$. Then $S \cap \mathcal{H}(X)$ (where $\mathcal{H}(X)$ is the set of transformations whose image has cardinality one: the constant functions) will be abbreviated to $\mathcal{H}(S)$. Symons [6, Theorem 1.1] proved the following lemma.

Lemma 2.1. [6, Theorem 1.1] Let S, T are both subsemigroups of $\mathcal{T}(X)$ such that $\mathcal{H}(S), \mathcal{H}(T) \neq \emptyset$. If $\phi: S \rightarrow T$ is an isomorphism. Then $\mathcal{H}(S) \phi=\mathcal{H}(T)$.

We can now present the main result of this section.
Theorem 2.2. Let Z_{i}, Y_{i} are both nonempty subset of X with $Z_{i} \subset Y_{i} \subset X$ for $i=1,2$. Then $\mathcal{T}\left(X, Y_{1}, Z_{1}\right) \cong$ $\mathcal{T}\left(X, Y_{2}, Z_{2}\right)$ if and only if $\left|Y_{1}\right|=\left|Y_{2}\right|$ and $\left|Z_{1}\right|=\left|Z_{2}\right|$.

Proof. Let $\mathcal{T}\left(X, Y_{1}, Z_{1}\right) \cong \mathcal{T}\left(X, Y_{2}, Z_{2}\right)$ and let $\phi: \mathcal{T}\left(X, Y_{1}, Z_{1}\right) \rightarrow \mathcal{T}\left(X, Y_{2}, Z_{2}\right)$ is an isomorphism. First observe that $\mathcal{T}\left(X, Y_{1}, Z_{1}\right), \mathcal{T}\left(X, Y_{2}, Z_{2}\right)$ are both subsemigroups of $\mathcal{T}(X)$ and $\mathcal{H}\left(\mathcal{T}\left(X, Y_{1}, Z_{1}\right)\right), \mathcal{H}\left(\mathcal{T}\left(X, Y_{2}, Z_{2}\right)\right) \neq$ \emptyset. Using Lemma 2.1, it follows that $\mathcal{H}\left(\mathcal{T}\left(X, Y_{1}, Z_{1}\right)\right) \phi=\mathcal{H}\left(\mathcal{T}\left(X, Y_{2}, Z_{2}\right)\right)$. Clearly, $\left|\mathcal{H}\left(\mathcal{T}\left(X, Y_{1}, Z_{1}\right)\right)\right|=$ $\left|\mathcal{H}\left(\mathcal{T}\left(X, Y_{2}, Z_{2}\right)\right)\right|$ and $\left|\mathcal{H}\left(\mathcal{T}\left(X, Y_{i}, Z_{i}\right)\right)\right|=\left|Z_{i}\right|$ for $i=1,2$. Hence $\left|Z_{1}\right|=\left|Z_{2}\right|$. It is easy to compute that $\left|\mathcal{T}\left(X, Y_{i}, Z_{i}\right)\right|=\left|Z_{i}\right|^{\left|Y_{i}\right|} \cdot n^{n-\left|Y_{i}\right|}$ for $i=1,2(n=|X|)$. By hypothesis, we have $\left|\mathcal{T}\left(X, Y_{1}, Z_{1}\right)\right|=\left|\mathcal{T}\left(X, Y_{2}, Z_{2}\right)\right|$ and so $\left|Z_{1}\right|^{\left|Y_{1}\right|} \cdot n^{n-\left|Y_{1}\right|}=\left|Z_{2}\right|^{\left|Y_{2}\right|} \cdot n^{n-\left|Y_{2}\right|}$, which can be simplified to $\left|Z_{1}\right|^{\left|Y_{1}\right|-\left|Y_{2}\right|}=n^{\left|Y_{1}\right|-\left|Y_{2}\right|}$ (by $\left|Z_{1}\right|=\left|Z_{2}\right|$). Since $\left|Z_{1}\right|<n$. It follows that $\left|Y_{1}\right|=\left|Y_{2}\right|$.

Conversely, let $\left|Y_{1}\right|=\left|Y_{2}\right|$ and $\left|Z_{1}\right|=\left|Z_{2}\right|$. Since $Z_{1} \subset Y_{1} \subset X$ (or $Z_{2} \subset Y_{2} \subset X$). Then there exist some bijections

$$
f: Z_{1} \rightarrow Z_{2}, g: Y_{1} \backslash Z_{1} \rightarrow Y_{2} \backslash Z_{2} \text { and } h: X \backslash Y_{1} \rightarrow X \backslash Y_{2}
$$

For each $\alpha \in \mathcal{T}\left(X, Y_{1}, Z_{1}\right)$, we define

$$
x \bar{\alpha}= \begin{cases}x f^{-1} \alpha f, & \text { if } x \in Z_{2} ; \\ x g^{-1} \alpha f, & \text { if } x \in Y_{2} \backslash Z_{2} ; \\ x h^{-1} \alpha f, & \text { if } x \in X \backslash Y_{2} \text { and } x h^{-1} \alpha \in Z_{1} ; \\ x h^{-1} \alpha g, & \text { if } x \in X \backslash Y_{2} \text { and } x h^{-1} \alpha \in Y_{1} \backslash Z_{1} \\ x h^{-1} \alpha h, & \text { if } x \in X \backslash Y_{2} \text { and } x h^{-1} \alpha \in X \backslash Y_{1}\end{cases}
$$

It is easy to verify that $\bar{\alpha} \in \mathcal{T}\left(X, Y_{2}, Z_{2}\right)$. Define $\phi: \mathcal{T}\left(X, Y_{1}, Z_{1}\right) \rightarrow \mathcal{T}\left(X, Y_{2}, Z_{2}\right)$ by $\alpha \phi=\bar{\alpha}\left(\alpha \in \mathcal{T}\left(X, Y_{1}, Z_{1}\right)\right)$. Clearly, ϕ is well defined. Next, we verify that ϕ is a bijection. Let $\alpha, \beta \in \mathcal{T}\left(X, Y_{1}, Z_{1}\right)$ such that $\alpha \neq \beta$, then $x_{0} \alpha \neq x_{0} \beta$ for some $x_{0} \in X$. To do this, we distinguish three cases:

Case 1: $x_{0} \in Z_{1}$. Then $x_{0} f \in Z_{2}$ and so $\left(x_{0} f\right) \bar{\alpha}=x_{0} f f^{-1} \alpha f=x_{0} \alpha f \neq x_{0} \beta f=x_{0} f f^{-1} \beta f=\left(x_{0} f\right) \bar{\beta}$.
Case 2: $x_{0} \in Y_{1} \backslash Z_{1}$. Then $x_{0} g \in Y_{2} \backslash Z_{2}$ and so $\left(x_{0} g\right) \bar{\alpha}=x_{0} g g^{-1} \alpha f=x_{0} \alpha f \neq x_{0} \beta f=x_{0} g g^{-1} \beta f=\left(x_{0} g\right) \bar{\beta}$.
Case 3: $x_{0} \in X \backslash Y_{1}$. Then $x_{0} h \in X \backslash Y_{2}$ and so

$$
\left(x_{0} h\right) \bar{\alpha}= \begin{cases}x_{0} h h^{-1} \alpha f=x_{0} \alpha f \neq x_{0} \beta f=x_{0} h h^{-1} \beta f=\left(x_{0} h\right) \bar{\beta}, & \text { if } x_{0} \alpha, x_{0} \beta \in Z_{1} ; \\ x_{0} h h^{-1} \alpha f=x_{0} \alpha f \neq x_{0} \beta g=x_{0} h h^{-1} \beta g=\left(x_{0} h\right) \bar{\beta}, & \text { if } x_{0} \alpha \in Z_{1}, x_{0} \beta \in Y_{1} \backslash Z_{1} ; \\ x_{0} h h^{-1} \alpha f=x_{0} \alpha f \neq x_{0} \beta h=x_{0} h h^{-1} \beta h=\left(x_{0} h\right) \bar{\beta}, & \text { if } x_{0} \alpha \in Z_{1}, x_{0} \beta \in X \backslash Y_{1} ; \\ x_{0} h h^{-1} \alpha g=x_{0} \alpha g \neq x_{0} \beta f=x_{0} h h^{-1} \beta f=\left(x_{0} h\right) \bar{\beta}, & \text { if } x_{0} \alpha \in Y_{1} \backslash Z_{1}, x_{0} \beta \in Z_{1} ; \\ x_{0} h h^{-1} \alpha g=x_{0} \alpha g \neq x_{0} \beta g=x_{0} h h^{-1} \beta g=\left(x_{0} h\right) \bar{\beta}, & \text { if } x_{0} \alpha, x_{0} \beta \in Y_{1} \backslash Z_{1} ; \\ x_{0} h h^{-1} \alpha g=x_{0} \alpha g \neq x_{0} \beta h=x_{0} h h^{-1} \beta h=\left(x_{0} h\right) \overline{\bar{\beta}}, & \text { if } x_{0} \alpha \in Y_{1} \backslash Z_{1}, x_{0} \beta \in X \backslash Y_{1} ; \\ x_{0} h h^{-1} \alpha h=x_{0} \alpha h \neq x_{0} \beta f=x_{0} h h^{-1} \beta f=\left(x_{0} h\right) \bar{\beta}, & \text { if } x_{0} \alpha \in X \backslash Y_{1}, x_{0} \beta \in Z_{1} ; \\ x_{0} h h^{-1} \alpha h=x_{0} \alpha h \neq x_{0} \beta g=x_{0} h h^{-1} \beta g=\left(x_{0} h\right) \bar{\beta}, & \text { if } x_{0} \alpha \in X \backslash Y_{1}, x_{0} \beta \in Y_{1} \backslash Z_{1} ; \\ x_{0} h h^{-1} \alpha h=x_{0} \alpha h \neq x_{0} \beta h=x_{0} h h^{-1} \beta h=\left(x_{0} h\right) \bar{\beta}, & \text { if } x_{0} \alpha, x_{0} \beta \in X \backslash Y_{1} .\end{cases}
$$

Thus, we have $\bar{\alpha} \neq \bar{\beta}$ and so ϕ is one-to-one. Since $\left|\mathcal{T}\left(X, Y_{i}, Z_{i}\right)\right|=\left|Z_{i}\right|^{\left|Y_{i}\right|} \cdot n^{n-\left|Y_{i}\right|}$ for $i=1,2$ and $\left|Z_{1}\right|=\left|Z_{2}\right|$, $\left|Y_{1}\right|=\left|Y_{2}\right|$, it follows that $\left|\mathcal{T}\left(X, Y_{1}, Z_{1}\right)\right|=\left|\mathcal{T}\left(X, Y_{2}, Z_{2}\right)\right|$. Therefore, we obtain that ϕ is a bijection.

Finally, we verify that ϕ is a morphism, that is, $(\alpha \phi)(\beta \phi)=(\alpha \beta) \phi$ for all $\alpha, \beta \in \mathcal{T}\left(X, Y_{1}, Z_{1}\right)$. We distinguish five cases:

Case 1: $x \in Z_{2}$. Then $x \bar{\alpha}=x f^{-1} \alpha f \in Z_{2}$ and so $x(\alpha \phi)(\beta \phi)=x \bar{\alpha} \bar{\beta}=(x \bar{\alpha}) f^{-1} \beta f=x f^{-1} \alpha f f^{-1} \beta f=x f^{-1} \alpha \beta f=$ $x \overline{\alpha \beta}=x(\alpha \beta) \phi$.

Case 2: $x \in Y_{2} \backslash Z_{2}$. Then $x \bar{\alpha}=x g^{-1} \alpha f \in Z_{2}$ and so $x(\alpha \phi)(\beta \phi)=x \bar{\alpha} \bar{\beta}=(x \bar{\alpha}) f^{-1} \beta f=x g^{-1} \alpha f f^{-1} \beta f=$ $x g^{-1} \alpha \beta f=x \overline{\alpha \beta}=x(\alpha \beta) \phi$.

Case 3: $x \in X \backslash Y_{2}$ and $x h^{-1} \alpha \in Z_{1}$. Then $x \bar{\alpha}=x h^{-1} \alpha f \in Z_{2}, x h^{-1} \alpha \beta \in Z_{1}$ and so $x(\alpha \phi)(\beta \phi)=x \bar{\alpha} \bar{\beta}=$ $(x \bar{\alpha}) f^{-1} \beta f=x h^{-1} \alpha f f^{-1} \beta f=x h^{-1} \alpha \beta f=x \overline{\alpha \beta}=x(\alpha \beta) \phi$.

Case 4: $x \in X \backslash Y_{2}$ and $x h^{-1} \alpha \in Y_{1} \backslash Z_{1}$. Then $x \bar{\alpha}=x h^{-1} \alpha g \in Y_{2} \backslash Z_{2}, x h^{-1} \alpha \beta \in Z_{1}$ and so $x(\alpha \phi)(\beta \phi)=$ $x \bar{\alpha} \bar{\beta}=(x \bar{\alpha}) g^{-1} \beta f=x h^{-1} \alpha g g^{-1} \beta f=x h^{-1} \alpha \beta f=x \overline{\alpha \beta}=x(\alpha \beta) \phi$.

Case 5: $x \in X \backslash Y_{2}$ and $x h^{-1} \alpha \in X \backslash Y_{1}$. Then $x \bar{\alpha}=x h^{-1} \alpha h \in X \backslash Y_{2}$ and so

$$
x(\alpha \phi)(\beta \phi)=x \bar{\alpha} \bar{\beta}= \begin{cases}(x \bar{\alpha}) h^{-1} \beta f=x h^{-1} \alpha h h^{-1} \beta f=x h^{-1} \alpha \beta f=x \overline{\alpha \beta}=x(\alpha \beta) \phi, & \text { if } x h^{-1} \alpha \beta \in Z_{1} ; \\ (x \bar{\alpha}) h^{-1} \beta g=x h^{-1} \alpha h h^{-1} \beta g=x h^{-1} \alpha \beta g=x \overline{\alpha \beta}=x(\alpha \beta) \phi, & \text { if } x h^{-1} \alpha \beta \in Y \backslash Z_{1} ; \\ (x \bar{\alpha}) h^{-1} \beta h=x h^{-1} \alpha h h^{-1} \beta h=x h^{-1} \alpha \beta h=x \alpha \beta=x(\alpha \beta) \phi, & \text { if } x h^{-1} \alpha \beta \in X \backslash Y_{1} .\end{cases}
$$

In summary, $\phi: \mathcal{T}\left(X, Y_{1}, Z_{1}\right) \rightarrow \mathcal{T}\left(X, Y_{2}, Z_{2}\right)$ is an isomorphism. Therefore, it follows that $\mathcal{T}\left(X, Y_{1}, Z_{1}\right) \cong$ $\mathcal{T}\left(X, Y_{2}, Z_{2}\right)$, as desired.

3. Rank of $\mathcal{T}(X, Y, Z)$

For each $p \in \mathbb{N}^{+}$, we denote by X_{p} the set $\{1<2<\cdots<p\}$. If $\emptyset \neq Z \subset Y \subset X$ with $|Y|=m,|Z|=k$. By Theorem 2.2, we have $\mathcal{T}(X, Y, Z) \cong \mathcal{T}\left(X_{n}, X_{m}, X_{k}\right)$. Based on that, we shall enough to consider the semigroup $\mathcal{T}\left(X_{n}, X_{m}, X_{k}\right)$. For convenience, we will write $\mathcal{T}_{n, m, k}$ for the semigroup $\mathcal{T}\left(X_{n}, X_{m}, X_{k}\right)$, where $k<m<n$.

If $\alpha \in \mathcal{T}_{n, m, k}$, we will write $\operatorname{im}(\alpha)$ for the image of α. The kernel of α is the equivalence $\operatorname{ker}(\alpha)=\{(x, y) \in$ $\left.X_{n} \times X_{n}: x \alpha=y \alpha\right\}$. From Fountain [25], on the semigroup S the relation \mathscr{L}^{*} (respectively \mathscr{R}^{*}) is defined by the rule that $(a, b) \in \mathscr{L}^{*}$ (respectively $\left.\mathscr{R}^{*}\right)$ if and only if the elements a, b are related by the Green's relation \mathscr{L} (respectively \mathscr{R}) in some oversemigroup of S. The intersection of the equivalences \mathscr{L}^{*} and \mathscr{R}^{*} is denoted by \mathscr{H}^{*}. Since $\mathcal{T}_{n, m, k}$ is a subsemigroup of \mathcal{T}_{n}, the starred Green's relations in $\mathcal{T}_{n, m, k}$ can be characterized as: For $\alpha, \beta \in \mathcal{T}_{n, m, k}$,

- $(\alpha, \beta) \in \mathscr{L}^{*}$ if and only if $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$;
- $(\alpha, \beta) \in \mathscr{R}^{*}$ if and only if $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$;
- $(\alpha, \beta) \in \mathscr{H}^{*}$ if and only if $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$ and $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$.

Moreover, we define a equivalence \mathscr{J}^{*} by

- $(\alpha, \beta) \in \mathscr{J}^{*}$ if and only if $|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)|$.

Then $\mathscr{L}^{*}, \mathscr{R}^{*} \subseteq \mathscr{J}^{*}$. Let $\alpha \in \mathcal{T}_{n, m, k}$. We denote by $\mathcal{L}_{\alpha}^{*}, \mathcal{R}_{\alpha}^{*}$, and \mathcal{H}_{α}^{*} the \mathscr{L}^{*}-class, \mathscr{R}^{*}-class, and \mathscr{H}^{*}-class of α, respectively.

Let $\alpha \in \mathcal{T}_{n, m, k}$. From $X_{m} \alpha \subseteq X_{k}$ we obtain that $\operatorname{im}(\alpha)=X_{m} \alpha \cup\left(X_{n} \backslash X_{m}\right) \alpha \subseteq X_{k} \cup\left(X_{n} \backslash X_{m}\right) \alpha$. Then $1 \leq|\operatorname{im}(\alpha)| \leq n-m+k$. Thus $\mathcal{T}_{n, m, k}$ has $n-m+k \mathcal{J}^{*}$-classes, namely $\mathcal{J}_{1}^{*}, \mathcal{J}_{2}^{*}, \cdots, \mathcal{J}_{n-m+k^{*}}^{*}$, where

$$
\mathcal{J}_{r}^{*}=\left\{\alpha \in \mathcal{T}_{n, m, k}:|\operatorname{im}(\alpha)|=r\right\}
$$

for $1 \leq r \leq n-m+k$. If $|\operatorname{im}(\alpha)|=r$ with $1 \leq r \leq n-m+k$, then there exists $s \in X_{r}$ such that α can be expressed as

$$
\alpha=\left[\begin{array}{c}
A_{i} \tag{1}\\
a_{i}
\end{array}\right]_{1 \leq i \leq r}^{s}
$$

where

- $A_{i} \alpha=a_{i}$ for all $1 \leq i \leq r$;
- $\left\{A_{1}, A_{2}, \cdots, A_{r}\right\}$ is a r-partition of X_{n} such that for $1 \leq j \leq s, A_{j} \cap X_{m} \neq \emptyset$, and for $l \geq s+1, A_{l} \cap X_{m}=\emptyset$; and
- $a_{1}, a_{2}, \cdots, a_{r}$ are distinct elements of X_{n} such that for $1 \leq j \leq s, a_{j} \in X_{k}$.

Lemma 3.1. Let $n-m+k \geq 3$. Then $\mathcal{J}_{r}^{*} \subseteq\left\langle\mathcal{J}_{r+1}^{*}\right\rangle$ for all $1 \leq r \leq n-m+k-2$.
Proof. Suppose first that $1 \leq r \leq n-m+k-2$ and $\alpha \in \mathcal{J}_{r}^{*}$. Then α can be expressed as (1). Recall that $\operatorname{im}(\alpha) \subset X_{n}$, we can choose $y_{0} \in X_{n} \backslash \operatorname{im}(\alpha)$. If $j \geq s+1$, we also choose $b_{j} \in A_{j}$. We distinguish two cases:

Case 1: $s=k$. By formula (1) we obtain that $\left\{a_{1}, a_{2}, \cdots, a_{s}\right\}=X_{k}$. Note that $\alpha \in \mathcal{J}_{r}^{*}$ where $1 \leq r \leq$ $n-m+k-2$. Then there exist $x_{0} \in X_{n} \backslash X_{m}, i \in X_{r}$ such that $x_{0} \in A_{i}$ with $\left|A_{i}\right| \geq 2$.
(a) If $1 \leq i \leq s$. Then define two mappings $\beta: X_{n} \rightarrow X_{n}$ and $\gamma: X_{n} \rightarrow X_{n}$ by

$$
x \beta=\left\{\begin{array}{ll}
l, & \text { if } x \in A_{l} \text { for } 1 \leq l \leq s, l \neq i ; \tag{2}\\
i, & \text { if } x \in A_{i} \backslash\left\{x_{0}\right\} ; \\
s+1, & \text { if } x=x_{0} ; \\
b_{t,}, & \text { if } x \in A_{t} \text { for } s+1 \leq t \leq r .
\end{array} \quad x \gamma= \begin{cases}a_{x}, & \text { if } 1 \leq x \leq s ; \\
a_{i,}, & \text { if } s+1 \leq x \leq m ; \\
a_{t,}, & \text { if } x=b_{t} \text { for } s+1 \leq t \leq r ; \\
y_{0}, & \text { otherewise }\end{cases}\right.
$$

According to the given conditions, it is easy to see that $A_{i}(\beta \gamma)=a_{i}$ for all $1 \leq i \leq r$. Then $\alpha=\beta \gamma$. Next, we verify that $\beta, \gamma \in \mathcal{J}_{r}^{*}$. Note that $y_{0} \gamma^{-1}=X_{n} \backslash\left\{1, \cdots, s, s+1, \cdots, m, b_{s+1}, \cdots, b_{r}\right\}$. Since $1 \leq r \leq n-m+k-2$ and $s=k$, we have $\left|y_{0} \gamma^{-1}\right|=n-(m+r-s) \geq n-m-r+k \geq n-m-(n-m+k-2)+k=2$ and so $y_{0} \gamma^{-1} \neq \emptyset$. Clearly, $\operatorname{im}(\beta)=\left\{1, \cdots, s, s+1, b_{s+1}, \cdots, b_{r}\right\}$ and $\operatorname{im}(\gamma)=\left\{a_{1}, \cdots, a_{r}, y_{0}\right\}$. Combining formula (1), it follows that $X_{m} \beta, X_{m} \gamma \subseteq X_{k}$ and thus $\beta, \gamma \in \mathcal{J}_{r}^{*}$.
(b) If $s+1 \leq i \leq r$. Then define two mappings $\beta: X_{n} \rightarrow X_{n}$ and $\gamma: X_{n} \rightarrow X_{n}$ by

$$
x \beta=\left\{\begin{array}{ll}
l, & \text { if } x \in A_{l} \text { for } 1 \leq l \leq s ; \\
x_{0}, & \text { if } x=x_{0} ; \\
b_{t}, & \text { if } x \in A_{t} \text { for } s+1 \leq t \leq r, t \neq i ; \\
b_{i} \in A_{i} \backslash\left\{x_{0}\right\}, & \text { if } x \in A_{i} \backslash\left\{x_{0}\right\} .
\end{array} \quad x \gamma= \begin{cases}a_{x}, & \text { if } 1 \leq x \leq s ; \\
a_{s}, & \text { if } s+1 \leq x \leq m ; \\
a_{i}, & \text { if } x=x_{0} ; \\
a_{t}, & \text { if } x=b_{t} \text { for } s+1 \leq t \leq r ; \\
y_{0}, & \text { otherwise. }\end{cases}\right.
$$

Case 2: $s<k$. By formula (1) we obtain that $\left\{a_{1}, a_{2}, \cdots, a_{s}\right\} \subset X_{k}$. Then there exist $x_{0} \in X_{m}, i \in X_{s}$ such that $x_{0} \in A_{i}$ with $\left|A_{i}\right| \geq 2$.
(a) If $\operatorname{im}(\alpha) \cap X_{k} \subset X_{k}$. Then we can take $a_{0} \in X_{k} \backslash\left(\operatorname{im}(\alpha) \cap X_{k}\right)$. Let β be defined as (2) and define a mapping $\gamma: X_{n} \rightarrow X_{n}$ by

$$
x \gamma= \begin{cases}a_{x}, & \text { if } 1 \leq x \leq s \\ a_{i}, & \text { if } x=s+1 \\ a_{t}, & \text { if } x=b_{t} \text { for } s+1 \leq t \leq r \\ a_{0}, & \text { otherwise }\end{cases}
$$

(b) If $\operatorname{im}(\alpha) \cap X_{k}=X_{k}$. Then there exist $k-s$ elements $a_{i_{1}}, \cdots, a_{i_{k-s}} \in\left\{a_{s+1}, \cdots, a_{r}\right\}$ such that $\left\{a_{1}, \cdots, a_{s}, a_{i_{1}}, \cdots\right.$, $\left.a_{i_{k-s}}\right\}=X_{k}$. We define two mappings $\beta: X_{n} \rightarrow X_{n}$ and $\gamma: X_{n} \rightarrow X_{n}$ by

$$
\begin{aligned}
& x \beta= \begin{cases}l, & \text { if } x \in A_{l} \text { for } 1 \leq l \leq s, l \neq i ; \\
i, & \text { if } x \in A_{i} \backslash\left\{x_{0}\right\} ; \\
s+1, & \text { if } x=x_{0} ; \\
s+p+1, & \text { if } x \in A_{i_{p}} \text { for } 1 \leq p \leq k-s ; \\
b_{t}, & \text { if } x \in A_{t} \text { for } s+1 \leq t \leq r, t \notin\left\{i_{1}, \cdots, i_{k-s}\right\} .\end{cases} \\
& x \gamma= \begin{cases}a_{x}, & \text { if } 1 \leq x \leq s ; \\
a_{i,}, & \text { if } x=s+1 \text { or } k+2 \leq x \leq m ; \\
a_{i_{p}}, & \text { if } x=s+p+1 \text { for } 1 \leq p \leq k-s ; \\
a_{t}, & \text { if } x=b_{t} \text { for } s+1 \leq t \leq r, t \notin\left\{i_{1}, \cdots, i_{k-s}\right\} ; \\
y_{0}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

For both cases, similar to case 1 (a), it is easy to verify that $\beta, \gamma \in \mathcal{J}_{r+1}^{*}$ and $\alpha=\beta \gamma$. Hence, $\mathcal{J}_{r}^{*} \subseteq\left\langle\mathcal{J}_{r+1}^{*}\right\rangle$.
For $k, m, n \in \mathbb{N}^{+}$such that $k<m<n$, we define a mapping $\lambda: X_{n} \rightarrow X_{n}$ by

$$
x \lambda= \begin{cases}k, & \text { if } k+1 \leq x \leq m ; \tag{3}\\ n-1, & \text { if } x=n ; \\ x, & \text { otherwise }\end{cases}
$$

Now we state and prove the following lemma.

Lemma 3.2. Let λ be defined as (3). Then the following statements hold:
(i) for $n-m=1, \mathcal{J}_{n-m+k-1}^{*} \subseteq\left\langle\mathcal{J}_{n-m+k}^{*}\right\rangle$;
(ii) for $n-m \geq 2, \mathcal{J}_{n-m+k-1}^{*} \subseteq\left\langle\mathcal{J}_{n-m+k}^{*} \cup\{\lambda\}\right\rangle$.

Proof. Suppose first that $\alpha \in \mathcal{J}_{n-m+k-1}^{*}$. Then α can be expressed as (1) (Here, we take $r=n-m+k-1$), that is

$$
\alpha=\left[\begin{array}{c}
A_{i} \tag{4}\\
a_{i}
\end{array}\right]_{1 \leq i \leq n-m+k-1}^{s}
$$

Clearly, $\operatorname{im}(\alpha) \subset X_{n}$, so we can choose $y_{0} \in X_{n} \backslash \operatorname{im}(\alpha)$. If $j \geq s+1$, we also choose $b_{j} \in A_{j}$.
(i) Let $n-m=1$. Then $n-m+k-1=k$ in (4). We distinguish two cases:

Case 1:s $=k$. Then $\operatorname{im}(\alpha)=\left\{a_{1}, a_{2}, \cdots, a_{s}\right\}=X_{k}$ and so there exists $i \in X_{s}$ such that $n \in A_{i}$ with $\left|A_{i}\right| \geq 2$.
We define two mappings $\beta: X_{n} \rightarrow X_{n}$ and $\gamma: X_{n} \rightarrow X_{n}$ by

$$
x \beta=\left\{\begin{array}{rl}
l, & \text { if } x \in A_{l} \text { for } 1 \leq l \leq s, l \neq i ; \\
i, & \text { if } x \in A_{i} \backslash\{n\} ; \\
m, & \text { if } x=n .
\end{array} \quad x \gamma=\left\{\begin{aligned}
a_{x}, & \text { if } 1 \leq x \leq s ; \\
a_{i}, & \text { if } s+1 \leq x \leq m ; \\
y_{0}, & \text { if } x=n
\end{aligned}\right.\right.
$$

Case 2: $s=k-1$. Then $A_{k}=A_{s+1}=\{n\}$ and so there exist $x_{0} \in X_{m}, i \in X_{s}$ such that $x_{0} \in A_{i}$ with $\left|A_{i}\right| \geq 2$.
(a) If $a_{k} \in X_{k}$. Then $\operatorname{im}(\alpha)=X_{k}$. We define two mappings $\beta: X_{n} \rightarrow X_{n}$ and $\gamma: X_{n} \rightarrow X_{n}$ by

$$
x \beta=\left\{\begin{array}{ll}
l, & \text { if } x \in A_{l} \text { for } 1 \leq l \leq s, l \neq i ; \\
i, & \text { if } x \in A_{i} \backslash\left\{x_{0}\right\} ; \\
s+1, & \text { if } x=x_{0} ; \\
s+2, & \text { if } x=n .
\end{array} \quad x \gamma=\left\{\begin{array}{ll}
a_{x,} & \text { if } 1 \leq x \leq s ; \\
a_{i,} & \text { if } x=s+1 ; \\
a_{k,} & \text { if } s+2 \leq x \leq m ; \\
y_{0}, & \text { if } x=n .
\end{array} .\right.\right.
$$

(b) If $a_{k} \notin X_{k}$. We may take $a_{0} \in X_{k} \backslash \operatorname{im}(\alpha)$ and define two mappings $\beta: X_{n} \rightarrow X_{n}$ and $\gamma: X_{n} \rightarrow X_{n}$ by

$$
x \beta=\left\{\begin{array}{ll}
l, & \text { if } x \in A_{l} \text { for } 1 \leq l \leq s, l \neq i ; \\
i, & \text { if } x \in A_{i} \backslash\left\{x_{0}\right\} ; \\
s+1, & \text { if } x=x_{0} ; \\
n, & \text { if } x=n .
\end{array} \quad x \gamma= \begin{cases}a_{x,}, & \text { if } 1 \leq x \leq s \\
a_{i}, & \text { if } x=s+1 \\
a_{k,} & \text { if } x=n ; \\
a_{0}, & \text { otherwise }\end{cases}\right.
$$

For both cases, it is easy to verify that $\beta, \gamma \in \mathcal{J}_{n-m+k^{\prime}}^{*} \alpha=\beta \gamma$, and this is clearly equivalent to $\alpha \in\left\langle\mathcal{J}_{n-m+k}^{*}\right\rangle$, establishing (i).
(ii) To show that $\mathcal{J}_{n-m+k-1}^{*} \subseteq\left\langle\mathcal{J}_{n-m+k}^{*} \cup\{\lambda\}\right\rangle$ for $n-m \geq 2$. We distinguish two cases:

Case 1:s $=k$. Then $\left\{a_{1}, a_{2}, \cdots, a_{s}\right\} \stackrel{=}{=} X_{k}$ and there exist $x_{0} \in X_{n} \backslash X_{m}, i \in X_{n-m+k-1}$ such that $x_{0} \in A_{i}$ with $\left|A_{i}\right| \geq 2$.
(a) If $1 \leq i \leq s$. Then β, γ be defined as (2) (Here, we take $r=n-m+k-1$). Clearly, $\alpha=\beta \gamma$ and $\beta, \gamma \in \mathcal{J}_{n-m+k}^{*}$.
(b) If $s+1 \leq i \leq n-m+k-1$. We define two mappings $\beta: X_{n} \rightarrow X_{n}$ and $\gamma: X_{n} \rightarrow X_{n}$ by

$$
\begin{aligned}
& x \beta= \begin{cases}l, & \text { if } x \in A_{l} \text { for } 1 \leq l \leq s ; \\
n, & \text { if } x=x_{0} ; \\
n-1, & \text { if } x \in A_{i} \backslash\left\{x_{0}\right\} ; \\
m+t-k, & \text { if } x \in A_{t} \text { for } s+1 \leq t \leq i-1 ; \\
m+p-k-1, & \text { if } x \in A_{p} \text { for } i+1 \leq p \leq n-m+k-1 .\end{cases} \\
& x \gamma= \begin{cases}a_{x}, & \text { if } 1 \leq x \leq s ; \\
a_{s}, & \text { if } s+1 \leq x \leq m ; \\
a_{t}, & \text { if } x=m+t-k \text { for } s+1 \leq t \leq i-1 ; \\
a_{p}, & \text { if } x=m+p-k-1 \text { for } i+1 \leq p \leq n-m+k-1 ; \\
a_{i,} & \text { if } x=n-1 ; \\
y_{0}, & \text { if } x=n .\end{cases}
\end{aligned}
$$

Clearly, $\alpha=\beta \lambda \gamma$ and $\beta, \gamma \in \mathcal{J}_{n-m+k}^{*}$
Case 2:s 2 : $k-1$. Using a similar proof of case 2 of Lemma 3.1, $\alpha=\beta \gamma$ and $\beta, \gamma \in \mathcal{J}_{n-m+k}^{*}$
For both cases, $\alpha \in\left\langle\mathcal{J}_{n-m+k}^{*} \cup\{\lambda\}\right\rangle$, giving (ii)
Using Lemma 3.1 and Lemma 3.2, we have the following corollary:
Corollary 3.3. Let λ be defined as (3). Then the following statements hold:
(i) for $n-m=1, \mathcal{T}_{n, m, k}=\left\langle\mathcal{J}_{n-m+k}^{*}\right\rangle$.
(ii) for $n-m \geq 2, \mathcal{T}_{n, m, k}=\left\langle\mathcal{J}_{n-m+k}^{*} \cup\{\lambda\}\right\rangle$.

For $k, m, n \in \mathbb{N}^{+}$such that $k<m<n$, we define a mapping $\epsilon: X_{n} \rightarrow X_{n}$ by

$$
x \in= \begin{cases}x, & \text { if } 1 \leq x \leq k \text { or } m+1 \leq x \leq n \tag{5}\\ k, & \text { if } k+1 \leq x \leq m\end{cases}
$$

Then $\epsilon \in \mathcal{J}_{n-m+k}^{*}$ and

$$
\mathcal{H}_{\epsilon}^{*}=\left\{\left(\begin{array}{cccc|ccc}
\{1\} & \cdots & \{k-1\} & X_{m} \backslash X_{k-1} & \{m+1\} & \cdots & \{n\} \tag{6}\\
1 \sigma & \cdots & (k-1) \sigma & k \sigma & (m+1) \rho & \cdots & n \rho
\end{array}\right): \sigma \in \mathcal{S}\left(X_{k}\right), \rho \in \mathcal{S}\left(X_{n} \backslash X_{m}\right)\right\}
$$

is a group \mathscr{H}^{*}-class containing ϵ. Clearly, $\mathcal{H}_{\epsilon}^{*} \cong \mathcal{S}\left(X_{k}\right) \times \mathcal{S}\left(X_{n} \backslash X_{m}\right)$.
The following lemma was proved by Toker and Ayık [26, Lemma 3].
Lemma 3.4. [26, Lemma 3] Let $p, q \in \mathbb{N}^{+}$. Then

$$
\operatorname{rank}\left(\mathcal{S}\left(X_{p}\right) \times \mathcal{S}\left(X_{q}\right)\right)= \begin{cases}1, & \text { if }(p, q)=(1,1),(1,2) \text { or }(2,1) ; \\ 2, & \text { otherwise }\end{cases}
$$

If $(k, n-m)=(1,1),(1,2)$ or $(2,1)$. We know from Lemma 3.4 that there exists $\theta_{n, m, k} \in \mathcal{H}_{\epsilon}^{*}$ such that

$$
\begin{equation*}
\mathcal{H}_{\epsilon}^{*}=\left\langle\left\{\theta_{n, m, k}\right\}\right\rangle . \tag{7}
\end{equation*}
$$

Otherwise there exist two elements $v_{n, m, k}, v^{\prime}{ }_{n, m, k} \in \mathcal{H}_{\epsilon}^{*}$ such that

$$
\begin{equation*}
\mathcal{H}_{\epsilon}^{*}=\left\langle\left\{v_{n, m, k}, v \prime_{n, m, k}\right\}\right\rangle . \tag{8}
\end{equation*}
$$

Obviously, there are $\sigma_{1}, \sigma_{2} \in \mathcal{S}\left(X_{k}\right), \rho_{1}, \rho_{2} \in \mathcal{S}\left(X_{n} \backslash X_{m}\right)$ such that $v_{n, m, k}, v^{\prime}{ }_{n, m, k}$ are expressed respectively as

$$
\begin{align*}
& v_{n, m, k}=\left(\begin{array}{cccc|ccc}
\{1\} & \cdots & \{k-1\} & X_{m} \backslash X_{k-1} & \{m+1\} & \cdots & \{n\} \\
1 \sigma_{1} & \cdots & (k-1) \sigma_{1} & k \sigma_{1} & (m+1) \rho_{1} & \cdots & n \rho_{1}
\end{array}\right) \tag{9}\\
& v_{n, m, k}=\left(\begin{array}{cccc|ccc}
\{1\} & \cdots & \{k-1\} & X_{m} \backslash X_{k-1} & \{m+1\} & \cdots & \{n\} \\
1 \sigma_{2} & \cdots & (k-1) \sigma_{2} & k \sigma_{2} & (m+1) \rho_{2} & \cdots & n \rho_{2}
\end{array}\right) \tag{10}
\end{align*}
$$

We write

$$
\tau_{n, m, k}=\left(\begin{array}{cccc|ccc}
\{1\} \cup\left(X_{m} \backslash X_{k}\right) & \{2\} & \cdots & \{k\} & \{m+1\} & \cdots & \{n\} \tag{11}\\
1 \sigma_{1}^{-1} \sigma_{2} & 2 \sigma_{1}^{-1} \sigma_{2} & \cdots & k \sigma_{1}^{-1} \sigma_{2} & (m+1) \rho_{1}^{-1} \rho_{2} & \cdots & n \rho_{1}^{-1} \rho_{2}
\end{array}\right)
$$

Clearly, $v \prime_{n, m, k}=v_{n, m, k} \tau_{n, m, k}$ and $\tau_{n, m, k} \in \mathcal{L}_{\epsilon}^{*}$. By formula (8) we get that

$$
\begin{equation*}
\mathcal{H}_{\epsilon}^{*} \subseteq\left\langle\left\{v_{n, m, k}, \tau_{n, m, k}\right\}\right\rangle \tag{12}
\end{equation*}
$$

Let ϵ be defined as (5), we denote by \mathfrak{P} the set of a single arbitrary element from each \mathscr{H}^{*}-class contained in $\mathcal{L}_{\epsilon}^{*}$. In addition, we denote by \mathfrak{R} the set of a single arbitrary element from each \mathscr{H}^{*}-class contained in $\mathcal{R}_{\epsilon}^{*} \backslash \mathcal{H}_{\epsilon}^{*}$. In fact,

- $\mathfrak{L} \subseteq \mathcal{L}_{\epsilon}^{*}$, and for all $\alpha \in \mathcal{L}_{\epsilon}^{*}$, the intersection of \mathfrak{L} and \mathcal{H}_{α}^{*} has exactly one element;
- $\Re \subseteq \mathcal{R}_{\epsilon}^{*} \backslash \mathcal{H}_{\epsilon}^{*}$, and for all $\beta \in \mathcal{R}_{\epsilon}^{*} \backslash \mathcal{H}_{\epsilon}^{*}$, the intersection of \mathfrak{R} and \mathcal{H}_{β}^{*} has exactly one element.

Lemma 3.5. Let $\mathcal{H}_{\epsilon}^{*}$ be defined as (6). Then the following statements hold:
(i) $\mathcal{H}_{\alpha}^{*} \subseteq \alpha \mathcal{H}_{\epsilon}^{*}$ for all $\alpha \in \mathfrak{R}$.
(ii) $\mathcal{H}_{\beta}^{*} \subseteq \mathcal{H}_{\epsilon}^{*} \beta$ for all $\beta \in \mathfrak{R}$.

Proof. Let $\alpha \in \mathfrak{L}$. From definition of \mathfrak{Z} we know that $\alpha \in \mathcal{L}_{\epsilon}^{*}$ and so $\operatorname{im}(\alpha)=\operatorname{im}(\epsilon)$. Then α can be expressed as

$$
\alpha=\left(\begin{array}{ccc|ccc}
A_{1} & \cdots & A_{k} & \{m+1\} & \cdots & \{n\} \\
1 \sigma & \cdots & k \sigma & (m+1) \rho & \cdots & n \rho
\end{array}\right)
$$

where $\left\{A_{1}, \cdots, A_{k}\right\}$ is a k-partition of $X_{m}, \sigma \in \mathcal{S}\left(X_{k}\right)$ and $\rho \in \mathcal{S}\left(X_{n} \backslash X_{m}\right)$. For each $\gamma \in \mathcal{H}_{\alpha}^{*}$, there exist $\phi \in \mathcal{S}\left(X_{k}\right), \varphi \in \mathcal{S}\left(X_{n} \backslash X_{m}\right)$ such that γ can be expressed as

$$
\gamma=\left(\begin{array}{ccc|ccc}
A_{1} & \cdots & A_{k} & \{m+1\} & \cdots & \{n\} \\
1 \phi & \cdots & k \phi & (m+1) \varphi & \cdots & n \varphi
\end{array}\right)
$$

Let

$$
\zeta=\left(\begin{array}{ccc|ccc}
\{1\} & \cdots & X_{m} \backslash X_{k-1} & \{m+1\} & \cdots & \{n\} \\
1 \sigma^{-1} \phi & \cdots & k \sigma^{-1} \phi & (m+1) \rho^{-1} \varphi & \cdots & n \rho^{-1} \varphi
\end{array}\right) .
$$

Clearly, $\gamma=\alpha \zeta$ and $\zeta \in \mathcal{H}_{\epsilon}^{*}$. It is immediate that $\gamma \in \alpha \mathcal{H}_{\epsilon}^{*}$ and so $\mathcal{H}_{\alpha}^{*} \subseteq \alpha \mathcal{H}_{\epsilon}^{*}$ as required. (ii) follows in similar way.

Let $\mathcal{H}_{\epsilon}^{*}, \theta_{n, m, k}, v_{n, m, k}, v \prime_{n, m, k}, \tau_{n, m, k}$ be respectively defined as (6), (7), (9), (10), (11), and let

$$
\Theta_{n, m, k}= \begin{cases}\left([\mathcal{L} \cup \mathfrak{R}] \backslash \mathcal{H}_{\epsilon}^{*}\right) \cup\left\{\theta_{n, m, k}\right\}, & \text { if }(k, n-m)=(1,1),(1,2) \text { or }(2,1) ; \tag{13}\\ \left([\mathfrak{L} \cup \mathfrak{R}] \backslash \mathcal{H}_{\epsilon}^{*}\right) \cup\left\{v_{n, m, k}, v \prime_{n, m, k}\right\}, & \text { if } k=1 \text { and } n-m \geq 3 ; \\ \left([\mathfrak{L} \cup \mathfrak{R}] \backslash\left[\mathcal{H}_{\epsilon}^{*} \cup \mathcal{H}_{\tau_{n, m, k}}^{*}\right]\right) \cup\left\{v_{n, m, k}, \tau_{n, m, k}\right\}, & \text { otherwise. }\end{cases}
$$

Using formulas (7), (8), (12), and Lemma 3.5, we have the following corollary.
Corollary 3.6. $\mathcal{L}_{\epsilon}^{*} \cup \mathcal{R}_{\epsilon}^{*} \subseteq\left\langle\Theta_{n, m, k}\right\rangle$.
Lemma 3.7. Let $\Theta_{n, m, k}$ be defined as (13). Then $\mathcal{J}_{n-m+k}^{*} \subseteq\left\langle\Theta_{n, m, k}\right\rangle$.
Proof. For each $\alpha \in \mathcal{J}_{n-m+k}^{*}$, there exist a k-partition $\left\{A_{1}, \cdots, A_{k}\right\}$ of X_{m}, a subset $\left\{a_{1}, \cdots, a_{n-m}\right\}$ of $X_{n} \backslash X_{k}$ and $\delta \in \mathcal{S}\left(X_{k}\right)$ such that α can be expressed as

$$
\alpha=\left(\begin{array}{ccc|ccc}
A_{1} & \cdots & A_{k} & \{m+1\} & \cdots & \{n\} \\
1 \delta & \cdots & k \delta & a_{1} & \cdots & a_{n-m}
\end{array}\right)
$$

Let

$$
\beta=\left(\begin{array}{ccc|ccc}
A_{1} & \cdots & A_{k} & \{m+1\} & \cdots & \{n\} \\
1 & \cdots & k & m+1 & \cdots & n
\end{array}\right), \quad \gamma=\left(\begin{array}{ccc|ccc}
\{1\} & \cdots & X_{m} \backslash X_{k-1} & \{m+1\} & \cdots & \{n\} \\
1 \delta & \cdots & k \delta & a_{1} & \cdots & a_{n-m}
\end{array}\right) .
$$

Clearly, $\beta \in \mathcal{L}_{\epsilon}^{*}, \gamma \in \mathcal{R}_{\epsilon}^{*}$, where ϵ be defined as (5). It is easy to versify that $\alpha=\beta \gamma$. From Corollary 3.6, we have $\beta, \gamma \in\left\langle\Theta_{n, m, k}\right\rangle$ and thus $\alpha \in\left\langle\Theta_{n, m, k}\right\rangle$. Therefore, $\mathcal{J}_{n-m+k}^{*} \subseteq\left\langle\Theta_{n, m, k}\right\rangle$, as required.

By Lemma 3.7 and Corollary 3.3, we have the following corollary.
Corollary 3.8. Let $\lambda, \Theta_{n, m, k}$ be defined as (3), (13), respectively. Then the following statements hold:
(i) for $n-m=1, \mathcal{T}_{n, m, k}=\left\langle\Theta_{n, m, k}\right\rangle$.
(ii) for $n-m \geq 2, \mathcal{T}_{n, m, k}=\left\langle\Theta_{n, m, k} \cup\{\lambda\}\right\rangle$.

Recall that

- if $(k, n-m)=(1,1),(1,2)$ or $(2,1), \theta_{n, m, k} \in \mathcal{H}_{\epsilon}^{*}$;
- if $k=1$ and $n-m \geq 3, v_{n, m, k}, v \prime_{n, m, k} \in \mathcal{H}_{\epsilon}^{*}$ and $v_{n, m, k} \neq v \prime_{n, m, k}$;
- otherwise $v_{n, m, k} \in \mathcal{H}_{\epsilon}^{*}$ and $\tau_{n, m, k} \in \mathcal{L}_{\epsilon}^{*} \backslash \mathcal{H}_{\epsilon}^{*}$.

By definitions of \mathcal{L} and \mathfrak{R}, we have $\mathfrak{Z} \cap \mathfrak{R}=\emptyset,\left|\mathfrak{Z} \cap \mathcal{H}_{\epsilon}^{*}\right|=1$ and $\mathfrak{R} \cap \mathcal{H}_{\epsilon}^{*}=\emptyset$. It is also easy to show that $|\mathfrak{L}|=S(m, k)$ (recall that $S(m, k)$ is the Stirling number of the second kind) and $|\mathfrak{R}|=\binom{n-k}{n-m}-1$. Thus $|\mathfrak{L} \cup \mathfrak{R}|=S(m, k)+\binom{n-k}{n-m}-1$. Combining formula (13), we have

$$
\left|\Theta_{n, m, k}\right|= \begin{cases}|\mathfrak{Q} \cup \mathfrak{R}|+1=\binom{n-1}{n-m}+1, & \text { if } k=1 \text { and } n-m \geq 3 \\ |\mathfrak{Z} \cup \mathfrak{R}|=S(m, k)+\binom{n-k}{n-m}-1, & \text { otherwise. }\end{cases}
$$

Using Corollary 3.8, we obtain the following corollary.

Corollary 3.9.

$$
\operatorname{rank}\left(\mathcal{T}_{n, m, k}\right) \leq \begin{cases}S(m, k)+n-k-1, & \text { if } n-m=1 ; \\ \binom{n-1}{n-m}+2, & \text { if } k=1 \text { and } n-m \geq 3 ; \\ S(m, k)+\binom{n-k}{n-m}, & \text { otherwise. }\end{cases}
$$

Let A is a generating set of $\mathcal{T}_{n, m, k}$, and let $\alpha \in \mathcal{J}_{n-m+k}^{*}$. Then there are $\alpha_{1}, \cdots, \alpha_{s} \in A(s \geq 2)$ such that

$$
\begin{equation*}
\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{s} \tag{14}
\end{equation*}
$$

Then we can claim that

- for all $i, \alpha_{i} \in \mathcal{J}_{n-m+k}^{*}$ (if not, there exists j such that $\alpha_{j} \notin \mathcal{J}_{n-m+k^{*}}^{*}$, then $\left|\operatorname{im}\left(\alpha_{j}\right)\right|<n-m+k$ and so $|\operatorname{im}(\alpha)|=\left|\operatorname{im}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{s}\right)\right|<n-m+k$, contradicting the fact that $\left.\alpha \in \mathcal{J}_{n-m+k}^{*}\right) ;$
- $\operatorname{ker}(\alpha)=\operatorname{ker}\left(\alpha_{1}\right)\left(\operatorname{By} \operatorname{ker}\left(\alpha_{1}\right) \subseteq \operatorname{ker}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{s}\right)=\operatorname{ker}(\alpha)\right.$ and $\left.\left|\operatorname{im}\left(\alpha_{1}\right)\right|=|\operatorname{im}(\alpha)|\right) ;$
$\bullet \operatorname{im}(\alpha)=\operatorname{im}\left(\alpha_{s}\right)\left(\operatorname{By} \operatorname{im}(\alpha)=\operatorname{im}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{s}\right) \subseteq \operatorname{im}\left(\alpha_{s}\right)\right.$ and $\left.\left|\operatorname{im}\left(\alpha_{s}\right)\right|=|\operatorname{im}(\alpha)|\right)$.
Hence, we proved the following:
Lemma 3.10. Let A is a generating set of $\mathcal{T}_{n, m, k}$, and let $\alpha \in \mathcal{J}_{n-m+k}^{*}$. Then there are $\alpha_{1}, \cdots, \alpha_{s} \in A(s \geq 2)$ such that $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{s}$ and the following statements hold:
(i) for all $i, \alpha_{i} \in \mathcal{J}_{n-m+k}^{*}$.
(ii) $\operatorname{ker}(\alpha)=\operatorname{ker}\left(\alpha_{1}\right)$.
(iii) $\operatorname{im}(\alpha)=\operatorname{im}\left(\alpha_{s}\right)$.

Lemma 3.11. Let A is a generating set of $\mathcal{T}_{n, m, k}$, and let $\alpha \in \mathcal{J}_{n-m+k}^{*}$ such that $\operatorname{im}(\alpha)=X_{k} \cup\left(X_{n} \backslash X_{m}\right)$. Then $A \cap \mathcal{H}_{\alpha}^{*} \neq \emptyset$.

Proof. Note that $\operatorname{im}(\alpha)=X_{k} \cup\left(X_{n} \backslash X_{m}\right)$ and $X_{m} \alpha \subseteq X_{k}$. Then $X_{m} \alpha=X_{k}$ and $\left(X_{n} \backslash X_{m}\right) \alpha=X_{n} \backslash X_{m}$. Since A is a generating set of $\mathcal{T}_{n, m, k}$, there are $\alpha_{1}, \cdots, \alpha_{s} \in A(s \geq 2)$ such that formula (14) holds. From Lemma 3.10 we obtain that $\operatorname{ker}(\alpha)=\operatorname{ker}\left(\alpha_{1}\right)$. In fact, $\operatorname{im}(\alpha)=\operatorname{im}\left(\alpha_{1}\right)$ (if not, there exists $a \in \operatorname{im}\left(\alpha_{1}\right)$ such that $a \notin \operatorname{im}(\alpha)=X_{k} \cup\left(X_{n} \backslash X_{m}\right)$. Then $a \in X_{m} \backslash X_{k}$ and so there exists $a \prime \in X_{n} \backslash X_{m}$ such that $a \prime \alpha_{1}=a$. Note that $X_{m} \alpha_{i} \subseteq X_{k}$ for all i. Thus, $a \prime \alpha=a \wedge \alpha_{1} \alpha_{2} \cdots \alpha_{s}=a \alpha_{2} \cdots \alpha_{s} \in X_{k}$, this contradicts the fact that $\left.\left(X_{n} \backslash X_{m}\right) \alpha=X_{n} \backslash X_{m}\right)$. Then $\alpha_{1} \in \mathcal{H}_{\alpha}^{*}$. Note that $\alpha_{1} \in A$. Hence, $A \cap \mathcal{H}_{\alpha}^{*} \neq \emptyset$ as required.

Lemma 3.12. Let $k=1, n-m \geq 3$ and let A is a generating set of $\mathcal{T}_{n, m, k}$. Then $\left|A \cap \mathcal{H}_{\epsilon}^{*}\right| \geq 2$ where $\mathcal{H}_{\epsilon}^{*}$ be defined as (5).

Proof. From formula (5) we know that $\operatorname{im}(\epsilon)=X_{k} \cup\left(X_{n} \backslash X_{m}\right)$. By Lemma 3.11, we have $A \cap \mathcal{H}_{\epsilon}^{*} \neq \emptyset$, in other words $\left|A \cap \mathcal{H}_{\epsilon}^{*}\right| \geq 1$.

To show that $\left|A \cap \mathcal{H}_{\epsilon}^{*}\right| \geq 2$. Assume that $\left|A \cap \mathcal{H}_{\epsilon}^{*}\right|=1$. Then there exists an element β of $\mathcal{T}_{n, m, k}$ such that $A \cap \mathcal{H}_{\epsilon}^{*}=\{\beta\}$. By formula (6), there exists $\rho_{1} \in \mathcal{S}\left(X_{n} \backslash X_{m}\right)$ such that

$$
\beta=\left(\begin{array}{c|ccc}
X_{m} & \{m+1\} & \cdots & \{n\} \\
1 & (m+1) \rho_{1} & \cdots & n \rho_{1}
\end{array}\right)
$$

For $k=1, n-m \geq 3$, from Lemma 3.4 we know that $\left\langle A \cap \mathcal{H}_{\epsilon}^{*}\right\rangle=\langle\{\beta\}\rangle \subset \mathcal{H}_{\epsilon}^{*}$ if β is unique element of A. Then $\langle A\rangle \neq \mathcal{T}_{n, m, k}$, contradicting the hypothesis of the lemma. Now, let $\alpha \in \mathcal{H}_{\epsilon}^{*}$. Since A is a generating set of $\mathcal{T}_{n, m, k}$, there are $\alpha_{1}, \cdots, \alpha_{s} \in A(s \geq 2)$ such that formula (14) holds. We can assert that, for all $i, \alpha_{i} \in \mathcal{H}_{\epsilon}^{*}$ (if not, there exists j such that $\alpha_{j} \notin \mathcal{H}_{\epsilon}^{*}$, from Lemma 3.10 we know that $\alpha_{j} \in \mathcal{J}_{n-m+k}^{*}$. Then there exist some distinct elements $a_{1}, \cdots, a_{n-m} \in X_{n} \backslash X_{k}$ with $\left\{a_{1}, \cdots, a_{n-m}\right\} \neq X_{n} \backslash X_{m}$ such that

$$
\alpha_{j}=\left(\begin{array}{c|ccc}
X_{m} & \{m+1\} & \cdots & \{n\} \\
1 & a_{1} & \cdots & a_{n-m}
\end{array}\right)
$$

Clearly, if $j=s$, then, by Lemma 3.10, $\{1\} \cup\left(X_{n} \backslash X_{m}\right)=\operatorname{im}(\alpha)=\operatorname{im}\left(\alpha_{s}\right)=\operatorname{im}\left(\alpha_{j}\right)=\left\{1, a_{1}, \cdots, a_{n-m}\right\}$. This is a contradiction; otherwise, from $\left\{a_{1}, \cdots, a_{n-m}\right\} \neq X_{n} \backslash X_{m}$ we know that there exists $l \in\{m+1, \cdots, n\}$ such that $a_{l} \in X_{m}$. Then $\left(X_{m} \cup\{l\}\right) \alpha_{j} \alpha_{j+1}=\left\{1, a_{l}\right\} \alpha_{j+1}=\{1\}$ and so $\left|\operatorname{im}\left(\alpha_{j} \alpha_{j+1}\right)\right|<n-m+k$. Hence $|\operatorname{im}(\beta)|=$ $\left|\operatorname{im}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{s}\right)\right|<n-m+k$. This is also a contradiction). Since $A \cap \mathcal{H}_{\epsilon}^{*}=\{\beta\}$, we have $\alpha_{1}, \cdots, \alpha_{s} \in\langle\{\beta\}\rangle$. It is immediate that $\alpha \in\langle\{\beta\}\rangle \subset \mathcal{H}_{\epsilon}^{*}$ and so $\mathcal{H}_{\epsilon}^{*} \backslash\langle\{\beta\}\rangle$ cannot be generated by the set A, contradicting the hypothesis of the lemma.

For each $\kappa \in \mathcal{J}_{n-m+k^{\prime}}^{*}$, let

$$
\begin{equation*}
\mathcal{L}_{k}^{* E}=\left\{\beta \in \mathcal{L}_{k}^{*}:\left(\forall i, j \in X_{k}, i \neq j\right) i \beta \neq j \beta\right\} . \tag{15}
\end{equation*}
$$

Lemma 3.13. Let A is a generating set of $\mathcal{T}_{n, m, k}$, and let $\alpha \in \mathcal{J}_{n-m+k}^{*}$ such that $\operatorname{im}(\alpha) \neq X_{k} \cup\left(X_{n} \backslash X_{m}\right)$. Then $A \cap \mathcal{L}_{\kappa}^{* E} \neq \emptyset$.

Proof. Let $\beta \in \mathcal{L}_{k}^{* E}$. By (15), $i \beta \neq j \beta$ for all $i, j \in X_{k}(i \neq j)$. Observe that $\beta \in \mathcal{L}_{\alpha}^{*}$ and $\operatorname{im}(\alpha) \neq X_{k} \cup\left(X_{n} \backslash X_{m}\right)$. Then $\operatorname{im}(\beta) \neq X_{k} \cup\left(X_{n} \backslash X_{m}\right)$ and so there exist a k-partition $\left\{B_{1}, \cdots, B_{k}\right\}\left(i \in B_{i}, i=1, \cdots, k\right)$ of $X_{m},(n-m)$ element subset $\left\{a_{1}, \cdots, a_{n-m}\right\}\left(\left\{a_{1}, \cdots, a_{n-m}\right\} \neq X_{n} \backslash X_{m}\right)$ of $X_{n} \backslash X_{k}$ and $\sigma \in \mathcal{S}\left(X_{k}\right)$ such that β can be expressed as

$$
\beta=\left(\begin{array}{ccc|ccc}
B_{1} & \cdots & B_{k} & \{m+1\} & \cdots & \{n\} \\
1 \delta & \cdots & k \delta & a_{1} & \cdots & a_{n-m}
\end{array}\right)
$$

Since A is a generating set of $\mathcal{T}_{n, m, k}$, there are $\beta_{1}, \cdots, \beta_{s} \in A(s \geq 2)$ such that $\beta=\beta_{1} \beta_{2} \cdots \beta_{s}$. By Lemma 3.10, $\operatorname{im}\left(\beta_{s}\right)=\operatorname{im}(\beta)$. Then there exists a k-partition $\left\{C_{1}, C_{2}, \cdots, C_{k}\right\}$ of X_{m} such that $X_{n} / \operatorname{ker}\left(\beta_{s}\right)=$ $\left\{C_{1}, C_{2}, \cdots, C_{k},\{m+1\}, \cdots,\{n\}\right\}$. Now, we assert that there exists $\rho \in \mathcal{S}\left(X_{k}\right)$ such that $i \rho \in C_{i}$ where $i=1, \cdots, k$ (if not, there are $p, q, j \in X_{k}(p \neq q)$ such that $p, q \in C_{j}$. Clearly, $p, q \in \operatorname{im}\left(\beta_{s-1}\right)$ and so $|\operatorname{im}(\beta)|=\left|\operatorname{im}\left(\beta_{1} \beta_{2} \cdots \beta_{s}\right)\right|<n-m+k$. This is a contradiction). Thus, $\beta_{s} \in \mathcal{L}_{k}^{* E}$. However, $\beta_{s} \in A$. Therefore $A \cap \mathcal{L}_{\kappa}^{* E} \neq \emptyset$, as required.

Lemma 3.14. Let $n-m \geq 2$, and let $\alpha \in \mathcal{J}_{n-m+k-1}^{*}$ such that $X_{m} \alpha=X_{k}$ and $\left(X_{n} \backslash X_{m}\right) \alpha \cap X_{k}=\emptyset$. Then $\alpha \notin\left\langle\mathcal{J}_{n-m+k}^{*}\right\rangle$.
Proof. Assume that $\alpha \in\left\langle\mathcal{J}_{n-m+k}^{*}\right\rangle$. Then there are $\alpha_{1}, \cdots, \alpha_{s} \in \mathcal{J}_{n-m+k}^{*}(s \geq 2)$ such that formula (14) holds. We can assert that $\left(X_{n} \backslash X_{m}\right) \alpha_{i}=X_{n} \backslash X_{m}$ for all $1 \leq i \leq s-1$ (if not, there exists $1 \leq j \leq s-1$ such that $\left(X_{n} \backslash X_{m}\right) \alpha_{j} \neq\left(X_{n} \backslash X_{m}\right)$, that is, there exists $x_{0} \in X_{n} \backslash X_{m}$ such that $x_{0} \alpha_{j} \in X_{m}$. (a) If $j=1$. Then $x_{0} \alpha=x_{0} \alpha_{1} \cdots \alpha_{s} \in X_{m} \alpha_{2} \cdots \alpha_{s} \subseteq X_{k}$ and so contradicting the fact that $\left(X_{n} \backslash X_{m}\right) \alpha \cap X_{k}=\emptyset$; (b) If $j=2$. By (a), we have $\left(X_{n} \backslash X_{m}\right) \alpha=\left(X_{n} \backslash X_{m}\right) \alpha_{1} \cdots \alpha_{s}=\left(X_{n} \backslash X_{m}\right) \alpha_{2} \cdots \alpha_{s}$. However, $x_{0} \alpha_{2} \cdots \alpha_{s} \in X_{k}$, this contradicts the fact that $\left(X_{n} \backslash X_{m}\right) \alpha \cap X_{k}=\emptyset$; Introduce contradictions in this way). By $\alpha_{s} \in \mathcal{J}_{n-m+k^{\prime}}^{*}$, there exists a $(n-m)$-element subset V of $X_{n} \backslash X_{k}$ such that $\left(X_{n} \backslash X_{m}\right) \alpha=\left(X_{n} \backslash X_{m}\right) \alpha_{1} \cdots \alpha_{s}=\left(X_{n} \backslash X_{m}\right) \alpha_{s}=V$. From $X_{m} \alpha=X_{k}$, it follows that $\alpha \in \mathcal{J}_{n-m+k^{\prime}}^{*}$ contradicting the fact that $\alpha \in \mathcal{J}_{n-m+k-1}^{*}$.

Theorem 3.15. Let $|X|=n,|Y|=m$ and $|Z|=k$ such that $k<m<n$. Then

$$
\operatorname{rank}(\mathcal{T}(X, Y, Z))= \begin{cases}S(m, k)+n-k-1, & \text { if } n-m=1 ; \\ \binom{n-1}{n-m}+2, & \text { if } k=1 \text { and } n-m \geq 3 ; \\ S(m, k)+\binom{n-k}{n-m}, & \text { otherwise } .\end{cases}
$$

Proof. Since Theorem 2.2 and Corollary 3.9, we only need to prove that

$$
|A| \geq \begin{cases}S(m, k)+n-k-1, & \text { if } n-m=1 ; \\ \binom{n-1}{n-m}+2, & \text { if } k=1 \text { and } n-m \geq 3 \\ S(m, k)+\binom{n-k}{n-m}, & \text { if }(k, n-m)=(1,2) \text { or } k \geq 2 \text { and } n-m \geq 2\end{cases}
$$

for any generating set A of $\mathcal{T}_{n, m, k}$. Let

$$
\Sigma=\left\{\mathcal{H}_{\alpha}^{*}: \alpha \in \mathcal{J}_{n-m+k^{\prime}}^{*} \operatorname{im}(\alpha)=X_{k} \cup\left(X_{n} \backslash X_{m}\right)\right\}, \quad \Lambda=\left\{\mathcal{L}_{\beta}^{* E}: \beta \in \mathcal{J}_{n-m+k^{\prime}}^{*} \operatorname{im}(\beta) \neq X_{k} \cup\left(X_{n} \backslash X_{m}\right)\right\}
$$

With above notation, we have the following simple observation:

$$
\begin{equation*}
|\Sigma|=|\mathfrak{Z}|=S(m, k),|\Lambda|=|\mathfrak{R}|=\binom{n-k}{n-m}-1 \text { and }\left(\bigcup_{P \in \Sigma} P\right) \cap\left(\bigcup_{Q \in \Lambda} Q\right)=\emptyset \tag{16}
\end{equation*}
$$

We distinguish three cases:
Case $1: n-m=1$. Combining Lemma 3.11, Lemma 3.13 and formula (16), we have $|A| \geq S(m, k)+n-k-1$.
Case $2: k=1$ and $n-m \geq 3$. Combining Lemma 3.12, Lemma 3.13 and formula (16), $|A| \geq\binom{ n-1}{n-m}+1$. In fact, $|A| \geq\binom{ n-1}{n-m}+2$ (if not, $A \subseteq \mathcal{J}_{n-m+k}^{*}$. By Lemma 3.14, $\alpha \notin\left\langle\mathcal{J}_{n-m+k}^{*}\right\rangle$ where α be defined as in Lemma 3.14. Hence, $\alpha \notin\langle A\rangle$, contradicting the fact that A is a generating set of $\mathcal{T}_{n, m, k}$).

Case $3:(k, n-m)=(1,2)$ or $k \geq 2$ and $n-m \geq 2$. Combining Lemma 3.11, Lemma 3.13 and formula (16), $|A| \geq S(m, k)+\binom{n-k}{n-m}-1$. Using a similar proof of case $2,|A| \geq S(m, k)+\binom{n-k}{n-m}$.

Acknowledgement

The author is very grateful to the anonymous reviewers for their constructive comments and suggestions, which contributed to the improved version of this paper.

References

[1] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
[2] G.M.S. Gomes, J.M. Howie, On the ranks of certain finite semigroups of transformations, Math. Proc. Camb. Philos. Soc., 101(3)(1987), 395-403.
[3] J.M Howie, R.B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. R. Soc. Edinb. Sect. A, 114(3-4)(1990), 161-167.
[4] G.U. Garba, Idempotents in partial transformation semigroups, Proc. R. Soc. Edinb. Sect. A, 116(3-4)(1990), 359-366.
[5] K.D. Magill, Subsemigroups of $\mathcal{S}(X)$, Math. Japon, 11(1966), 109-115.
[6] J.S.V. Symons, Some results concerning a transformation semigroup, J. Aust. Math. Soc., 19(1975), 413-425.
[7] P. Honyam, J. Sanwong, Semigroups of transformations with invariant set, J. Korean Math. Soc., 48(2)(2011), 289-300.
[8] S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure Mathematics and Applications, 16(3)(2005), 307-314.
[9] J. Sanwong, W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci., Article ID 794013, 11 pages, 2008.
[10] L. Sun, A note on abundance of certain semigroups of transformations with restricted range, Semigroup Forum, 87(2013), 681-684.
[11] L. Sun, J.L. Sun, A natural partial order on certain semigroups of transformations with restricted range, Semigroup Forum, 92(1)(2016), 135-141.
[12] L. Sun, L.M. Wang, Natural Partial order in semigroups of transformations with invariant set, Bull. Aust. Math. Soc., 87(1)(2013), 94-107.
[13] Z.H. Feng, X.L. Yang, Minimal congruences on finite transformation semigroup of weak Y-stabilizer, Journal of Zhejiang University (Science Edition), 38(5)(2011), 495-496+507.
[14] J. Sanwong, B. Singha, R.P. Sullivan, Maximal and minimal congruences on some semigroups, Acta. Math. Sin. (Engl. Ser.), 25(3)(2009), 455-466.
[15] C. Pookpienlert, P. Honyam, J. Sanwong, Green's Relations on a Semigroup of Transformations with Restricted Range that Preserves an Equivalence Relation and a Cross-Section, Mathematics, 6(8)(2018), 134.
[16] V.H. Fernandes, P. Honyam, T.M. Quinteiro, B. Singha, On semigroups of orientation-preserving transformations with restricted range, Communications in Algebra, 44(1)(2016), 253-264.
[17] H.D. Ruan, T.J. You, P. Zhao, Maximal Regular Subsemibands of $Q(F, k)$, Journal of Northeast Normal University (Natural Science Edition), 50(2)(2018), 11-15.
[18] H.D. Ruan, T.J. You, P. Zhao, Maximal Regular Subsemibands of $Q(k)$, Journal of Jinlin University (Science Edition), 56(2)(2018), 242-248.
[19] J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum, 83(2011), 134-146.
[20] J. Zhang, Y.F. Luo, On certain order-preserving transformation semigroups, Communications in Algebra, 45(7)(2017), $2980-2995$.
[21] J.L. Jin, W. Teng, F.Y. Zhu, T.J. You, Y.Y. Qu, Maximal subsemigroups of the finite transformation semigroup of weak Y-stabilizer, Journal of Shandong University (Natural Science), 55(10)(2020), 55-62.
[22] V.H. Fernandes, J. Sanwong, On the ranks of semigroups of transformations on a finite set with restricted range, Algebra Colloquium, 21(3)(2014), 497-510.
[23] J.L. Jin, F.Y. Zhu, T.J. You, Y.Y. Qu, Rank of the finite transformation semigroup of weak Y-stabilizer, Journal of Northeast Normal University (Natural Science Edition), 52(3)(2020), 50-55.
[24] Q.F Yan, SF Wang, Some results on semigroups of transformations with restricted range, Open Mathematics, 19(1)(2021), 69-76.
[25] J. Fountain, Abundant semigroups, Proc. London Math. Soc., 44(3)(1982), 103-129.
[26] K. Toker, H.Ayık, On the rank of transformation semigroup $\mathcal{T}_{(n, m)}$, Turk. J. Math., 42(2018), 1970-1977.

[^0]: 2020 Mathematics Subject Classification. Primary 20M20
 Keywords. transformation semigroup, rank, restricted range, isomorphism theorem.
 Received: 10 December 2020; Revised: 22 March 2021; Accepted: 09 April 2021
 Communicated by Dijana Mosić
 Email address: JLJIN@gznu.edu.cn (Jiulin Jin)

