Symmetries in Yetter-Drinfel'd-Long Categories

Dongdong Yan ${ }^{\text {a }}$, Shuanhong Wang ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics, Southeast University, Nanjing 210096, Jiangsu, China.

Abstract

Let H be a Hopf algebra and $\mathcal{L} \mathcal{R}(H)$ the category of Yetter-Drinfel'd-Long bimodules over H. We first give sufficient and necessary conditions for $\mathcal{L} \mathcal{R}(H)$ to be symmetry and pseudosymmetry, respectively. We then introduce the definition of the u-condition in $\mathcal{L R}(H)$ and discuss the relation between the u-condition and the symmetry of $\mathcal{L R}(H)$. Finally, we show that $\mathcal{L} \mathcal{R}(H)$ over a triangular (cotriangular, resp.) Hopf algebra contains a rich symmetric subcategory.

1. Introduction

The notion of symmetric category is a classical concept in category theory. Cohen and Westreich [1] tested symmetries and the u-condition in the Yetter-Drinfel'd category ${ }_{H}^{H} \boldsymbol{y} \mathcal{D}$ over Hopf algebra H. Pareigis [7] found the necessary and sufficient condition for ${ }_{H}^{H} \boldsymbol{y} \mathcal{D}$ to be symmetric. Later, Panaite et al. [8] proposed the definition of pseudosymmetric braided categories which can be viewed as a kind of weakened symmetric braided categories, and showed that the category ${ }_{H} \mathcal{D}^{H}$ is pseudosymmetric if and only if H is commutative and cocommutative. The generalization of those classical structures and results have been introduced and discussed by many authors [5, 12, 13].

It is known that the Radford biproduct has a categorical interpretation (due to Majid): (H, A) is an admissible pair (see [11]) if and only if A is a bialgebra in the Yetter-Drinfel'd category ${ }_{H}^{H} \boldsymbol{y} \mathcal{D}$. Panaite and Van Oystaeyen [9] described a similar interpretation for L-R-admissible pairs and defined a prebraided category $\mathcal{L} \mathcal{R}(H)$ (which is braided if H has a bijective antipode) which contains ${ }_{H}^{H} \boldsymbol{y} \mathcal{D}$ and $\boldsymbol{y} \mathcal{D}_{H}^{H}$ as braided subcategories. They then showed that (H, B) is an L-R-admissible pair with an extra condition

$$
b_{(0)} \triangleleft b_{[-1]}^{\prime} \otimes b_{(1)} \triangleright b_{[0]}^{\prime}=b \otimes b^{\prime}, \quad \text { for any } b, b^{\prime} \in B
$$

is equivalent to B is a bialgebra in $\mathcal{L R}(H)$, where the L-R-admissible pair is the sufficient condition for L-R smash biproduct $B \bowtie H$ to be a bialgebra. The Radford biproduct is a particular case. Lu and Zhang in [4] discussed the equivalence on Hom-Hopf algebra.

The aim of the present paper is to discuss the symmetries, the pseudosymmetries and the u-condition in Yetter-Drinfel'd-Long categories.

[^0]This paper is organized as follows: In section 2, we recall some basic definitions and results related to Yetter-Drinfel'd-Long bimodules. Then we give some examples of Yetter-Drinfel'd-Long bimodules. In section 3, we show that the Yetter-Drinfel'd-Long category $\mathcal{L R}(H)$ is symmetric if and only if H is trivial in four different methods, and that $\mathcal{L} \mathcal{R}(H)$ is pseudosymmetric if and only if H is commutative and cocommutative. In section 4 , we introduce the definition of the u-condition in $\mathcal{L} \mathcal{R}(H)$ and give a necessary and sufficient condition for $H_{i}(i=1,2,3,4)$ to satisfy the u-condition, where H_{i} is defined in Example 2.4. Then we study the relation between the u-condition and the symmetry of $\mathcal{L} \mathcal{R}(H)$. In section 5 , we prove that the subcategory ${ }_{H} \mathcal{M}_{H}$ of $\mathcal{L R}(H)$ over triangular Hopf algebra H is symmetric. If we consider $M=H \otimes H$, we prove the converse. That is, assume that the braiding $\psi_{H \otimes H, H \otimes H}$ is symmetric forces H to be triangular. In section 6, we give the dual cases of section 5 . he total integral introduced by Chen and Wang in T-coalgebras setting.

2. Preliminaries

Throughout this paper, all algebraic systems are over a field \mathbb{k}. For a coalgebra C, the comultiplication will be denoted by Δ. We follow the Sweedler's notation $\Delta(c)=c_{1} \otimes c_{2}$, for any $c \in C$, in which we often omit the summation symbols for convenience. For any vector spaces M and N, we use $\tau: M \otimes N \rightarrow N \otimes M$ for the flip map.

Let A be a algebra, A right A-module is a pair (M, \triangleleft), in which M is a vector space and $\triangleleft: M \otimes A \rightarrow M$ is a linear map, called the action of A on M, with notation $\triangleleft(m \otimes a)=m \triangleleft a$, such that, for any $a, b \in A$ and $m \in M$:

$$
\left\{\begin{array}{l}
m \triangleleft a b=(m \triangleleft a) \triangleleft b, \\
m \triangleleft 1=m .
\end{array}\right.
$$

Similarly, we can define the left A-module. A right A-linear is a linear map $f: M \rightarrow N$ such that $f(m) \triangleleft a=f(m \triangleleft a)$, for any $a \in A$ and $m \in M$.

Let C be a coalgebra, A right C-comodule is a pair (M, ρ), in which M is a vector space and $\rho: M \rightarrow M \otimes C$ is a linear map, called the coaction of C on M, with notation $\rho(m)=m_{(0)} \otimes m_{(1)}$, such that, for any $m \in M$:

$$
\left\{\begin{array}{l}
m_{(0)(0)} \otimes m_{(0)(1)} \otimes m_{(1)}=m_{(0)} \otimes m_{(1) 1} \otimes m_{(1) 2} \\
m_{(0)} \varepsilon\left(m_{(1)}\right)=m
\end{array}\right.
$$

Similarly, we can define the left C-comodule. A right C-colinear is a linear map $f: M \rightarrow N$ such that $\rho_{N} \circ f=(f \otimes i d) \circ \rho_{M}$.

Let A be a algebra, and assume that M are both left A-module via $\triangleright: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m$ and right A-module via $\triangleleft: M \otimes A \rightarrow M, m \otimes b \mapsto m \triangleleft b$, then M is called an A-bimodule if

$$
\begin{equation*}
(a \triangleright m) \triangleleft b=a \triangleright(m \triangleleft b), \tag{2.1}
\end{equation*}
$$

for any $a, b \in A$ and $m \in M$.
Let C be a coalgebra, and assume that M are both left C-comodule via $\rho^{l}: M \rightarrow C \otimes M, m \mapsto m_{[-1]} \otimes m_{[0]}$ and right C-comodule via $\rho^{r}: M \rightarrow M \otimes C, m \mapsto m_{(0)} \otimes m_{(1)}$, then M is called a C-bicomodule if

$$
\begin{equation*}
m_{[-1]} \otimes m_{0} \otimes m_{[0](1)}=m_{(0)[-1]} \otimes m_{(0)[0]} \otimes m_{(1)} \tag{2.2}
\end{equation*}
$$

for any $m \in M$.
Let H be a Hopf algebra, we can denote those categories by ${ }_{H} \mathcal{M}_{H}$ and ${ }^{H} \mathcal{M}^{H}$. Take ${ }_{H} \mathcal{M}_{H}$ whose objects are all H -bimodules, the morphisms in the category are morphisms of H -bilinear.

Definition 2.1. ([9]) Let H be a Hopf algebra. A Yetter-Drinfel'd-Long bimodule over H is a vector space M endowed with H-bimodule and H-bicomodule structures (denoted by $h \otimes m \mapsto h \triangleright m, m \otimes h \mapsto m \triangleleft h, m \mapsto m_{[-1]} \otimes m_{[0]}, m \mapsto$
$m_{(0)} \otimes m_{(1)}$, for any $h \in H$ and $\left.m \in M\right)$, such that M is a left-left Yetter-Drinfel'd module, a left-right Long module, a right-right Yetter-Drinfel'd module and a right-left Long module, i.e.

$$
\begin{align*}
& \left(h_{1} \triangleright m\right)_{[-1]} h_{2} \otimes\left(h_{1} \triangleright m\right)_{[0]}=h_{1} m_{[-1]} \otimes h_{2} \triangleright m_{[0]}, \tag{2.3}\\
& (h \triangleright m)_{(0)} \otimes(h \triangleright m)_{(1)}=h \triangleright m_{(0)} \otimes m_{(1)}, \tag{2.4}\\
& \left(m \triangleleft h_{2}\right)_{(0)} \otimes h_{1}\left(m \triangleleft h_{2}\right)_{(1)}=m_{(0)} \triangleleft h_{1} \otimes m_{(1)} h_{2}, \tag{2.5}\\
& (m \triangleleft h)_{[-1]} \otimes(m \triangleleft h)_{[0]}=m_{[-1]} \otimes m_{[0]} \triangleleft h . \tag{2.6}
\end{align*}
$$

We denote by $\mathcal{L} \mathcal{R}(H)$ the category whose objects are all Yetter-Drinfel'd-Long bimodules M over H, the morphisms in the category are morphisms of H-bilinear and H-bicolinear.

If H has a bijective antipode $S, \mathcal{L} \mathcal{R}(H)$ becomes a strict braided monoidal category with the following structures: for any $M, N \in \mathcal{L} \mathcal{R}(H)$, and $h \in H, m \in M$ and $n \in N$,

$$
\begin{align*}
& h \triangleright(m \otimes n)=h_{1} \triangleright m \otimes h_{2} \triangleright n, \tag{2.7}\\
& (m \otimes n) \triangleleft h=m \triangleleft h_{1} \otimes n \triangleleft h_{2}, \tag{2.8}\\
& (m \otimes n)_{[-1]} \otimes(m \otimes n)_{[0]}=m_{[-1]} n_{[-1]} \otimes m_{[0]} \otimes n_{[0]}, \tag{2.9}\\
& (m \otimes n)_{(0)} \otimes(m \otimes n)_{(1)}=m_{(0)} \otimes n_{(0)} \otimes m_{(1)} n_{(1)}, \tag{2.10}
\end{align*}
$$

the braiding

$$
\psi_{M, N}: M \otimes N \rightarrow N \otimes M: m \otimes n \mapsto m_{[-1]} \triangleright n_{(0)} \otimes m_{[0]} \triangleleft n_{(1)}
$$

and the inverse

$$
\psi_{N, M}^{-1}: N \otimes M \rightarrow M \otimes N: n \otimes m \mapsto m_{[0]} \triangleleft S^{-1}\left(n_{(1)}\right) \otimes S^{-1}\left(m_{[-1]}\right) \triangleright n_{(0)} .
$$

Definition 2.2. ([6]) A quasitriangular (QT) Hopf algebra is a pair (H, R), where H is a Hopf algebra over \mathbb{k} and $R=R^{1} \otimes R^{2} \in H \otimes H$ is invertible, such that the following conditions hold $(r=R)$:
(QT1) $\Delta\left(R^{1}\right) \otimes R^{2}=R^{1} \otimes r^{1} \otimes R^{2} r^{2} ;$
(QT2) $R^{1} \otimes \Delta\left(R^{2}\right)=R^{1} r^{1} \otimes r^{2} \otimes R^{2}$;
(QT3) $\Delta^{c o p}(h) R=R \Delta(h)$;
(QT4) $\varepsilon\left(R^{1}\right) R^{2}=1=R^{1} \varepsilon\left(R^{2}\right)$;
(QT5) If $R^{-1}=R^{2} \otimes R^{1}$, then (H, R) is called a triangular Hopf algebra.
Definition 2.3. ([6]) A coquasitriangular (CQT) Hopf algebra is a pair (H, ζ), where H is a Hopf algebra over \mathbb{k} and $\zeta: H \otimes H \rightarrow \mathbb{k}$ is a \mathbb{k}-bilinear form (braiding) which is convolution invertible in $H_{m_{\mathbb{k}}}(H \otimes H, \mathbb{k})$ such that the following conditions hold:

```
\((\) CQT1 \() \zeta(h, g l)=\zeta\left(h_{1}, g\right) \zeta\left(h_{2}, l\right) ;\)
(CQT2) \(\zeta(h g, l)=\zeta\left(h, l_{2}\right) \zeta\left(g, l_{1}\right)\);
(CQT3) \(\zeta\left(h_{1}, g_{1}\right) g_{2} h_{2}=h_{1} g_{1} \zeta\left(h_{2}, g_{2}\right)\);
(CQT4) \(\zeta(h, 1)=\varepsilon(h)=\zeta(1, h)\);
(CQT5) If \(\zeta\left(h_{1}, g_{1}\right) \zeta\left(g_{2}, h_{2}\right)=\varepsilon(g) \varepsilon(h)\), then \((H, \zeta)\) is called a cotriangular Hopf algebra.
```

The following are some examples of objects in $\mathcal{L R}(H)$.
Example 2.4. Let H be a Hopf algebra. Then
(1) $H_{1}=H \otimes H$ is a Yetter-Drinfel'd-Long bimodule with the following structures, for any $h, k, l \in H$:

$$
\begin{array}{ll}
h \triangleright(k \otimes l)=h k \otimes l, & \rho^{l}(k \otimes l)=(k \otimes l)_{[-1]} \otimes(k \otimes l)_{[0]}=k_{1} S\left(k_{3}\right) \otimes\left(k_{2} \otimes l\right), \\
(k \otimes l) \triangleleft h=k \otimes S\left(h_{1}\right) l h_{2}, & \rho^{r}(k \otimes l)=(k \otimes l)_{(0)} \otimes(k \otimes l)_{(1)}=\left(k \otimes l_{1}\right) \otimes l_{2} .
\end{array}
$$

(2) $H_{2}=H \otimes H$ is a Yetter-Drinfel'd-Long bimodule with the following structures, for any $h, k, l \in H$:

$$
h \triangleright(k \otimes l)=h_{1} k S\left(h_{2}\right) \otimes l, \quad \quad \rho^{l}(k \otimes l)=(k \otimes l)_{[-1]} \otimes(k \otimes l)_{[0]}=k_{1} \otimes\left(k_{2} \otimes l\right),
$$

$$
(k \otimes l) \triangleleft h=k \otimes l h, \quad \quad \rho^{r}(k \otimes l)=(k \otimes l)_{(0)} \otimes(k \otimes l)_{(1)}=\left(k \otimes l_{2}\right) \otimes S\left(l_{1}\right) l_{3} .
$$

(3) $H_{3}=H \otimes H$ is a Yetter-Drinfel'd-Long bimodule with the following structures, for any $h, k, l \in H$:

$$
\begin{array}{ll}
h \triangleright(k \otimes l)=h k \otimes l, & \rho^{l}(k \otimes l)=(k \otimes l)_{[-1]} \otimes(k \otimes l)_{[0]}=k_{1} S\left(k_{3}\right) \otimes\left(k_{2} \otimes l\right), \\
(k \otimes l) \triangleleft h=k \otimes l h, & \rho^{r}(k \otimes l)=(k \otimes l)_{(0)} \otimes(k \otimes l)_{(1)}=\left(k \otimes l_{2}\right) \otimes S\left(l_{1}\right) l_{3} .
\end{array}
$$

(4) $H_{4}=H \otimes H$ is a Yetter-Drinfel'd-Long bimodule with the following structures, for any $h, k, l \in H$:

$$
\begin{array}{ll}
h \triangleright(k \otimes l)=h_{1} k S\left(h_{2}\right) \otimes l, & \rho^{l}(k \otimes l)=(k \otimes l)_{[-1]} \otimes(k \otimes l)_{[0]}=k_{1} \otimes\left(k_{2} \otimes l\right), \\
(k \otimes l) \triangleleft h=k \otimes S\left(h_{1}\right) l h_{2}, & \rho^{r}(k \otimes l)=(k \otimes l)_{(0)} \otimes(k \otimes l)_{(1)}=\left(k \otimes l_{1}\right) \otimes l_{2} .
\end{array}
$$

Note that $H \otimes H$ is also a Hopf algebra with usual tensor product and usual tensor coproduct.

3. Symmetric Yetter-Drinfel'd-Long categories

In this section, we give necessary and sufficient conditions for Yetter-Drinfel'd-Long category $\mathcal{L R}(H)$ to be symmetric and pseudosymmetric, respectively.

Let C be a monoidal category and ψ a braiding on C. The braiding ψ is called a symmetry if $\psi_{W, V} \circ \psi_{V, W}=$ $i d_{V \otimes W}$ for any $V, W \in C$. In this case, C is called a symmetric braided category (see [2]). The braiding ψ is called a pseudosymmetry if the following condition holds, for any $U, V, W \in C$:

$$
\left(i d_{W} \otimes \psi_{U, V}\right)\left(\psi_{W, U}^{-1} \otimes i d_{V}\right)\left(i d_{U} \otimes \psi_{V, W}\right)=\left(\psi_{V, W} \otimes i d_{U}\right)\left(i d_{V} \otimes \psi_{W, U}^{-1}\right)\left(\psi_{u, V} \otimes i d_{W}\right)
$$

In this case, C is called a pseudosymmetric braided category (see [8]).
Note that if ψ is a symmetry, that is, $\psi_{W, V}^{-1}=\psi_{V, W}$, then obviously ψ is a pseudosymmetry.
Theorem 3.1. Let H be a Hopf algebra such that the canonical braiding of the Yetter-Drinfel'd-Long category $\mathcal{L R}(H)$ is a symmetry if and only if $H=\mathbb{k}$.

Proof. By Example 2.4, H_{1} and H_{2} are two Yetter-Drinfel'd-Long bimodules. If the canonical braiding ψ is a symmetry, that is, $\psi_{H_{2}, H_{1}} \circ \psi_{H_{1}, H_{2}}=i d_{H_{1} \otimes H_{2}}$. Apply $\psi_{H_{2}, H_{1}} \circ \psi_{H_{1}, H_{2}}$ to the element $1 \otimes k \otimes 1 \otimes 1 \in H_{1} \otimes H_{2}$, we have

$$
\begin{aligned}
\psi_{H_{2}, H_{1}} \circ \psi_{H_{1}, H_{2}}(1 \otimes k \otimes 1 \otimes 1) & =\psi_{H_{2}, H_{1}}\left((1 \otimes k)_{[-1]} \triangleright(1 \otimes 1)_{(0)} \otimes(1 \otimes k)_{[0]} \triangleleft(1 \otimes 1)_{(1)}\right) \\
& =\psi_{H_{2}, H_{1}}(1 \triangleright(1 \otimes 1) \otimes(1 \otimes k) \triangleleft 1) \\
& =\psi_{H_{2}, H_{1}}(1 \otimes 1 \otimes 1 \otimes k) \\
& =(1 \otimes 1)_{[-1]} \triangleright(1 \otimes k)_{(0)} \otimes(1 \otimes 1)_{[0]} \triangleleft(1 \otimes k)_{(1)} \\
& =1 \triangleright\left(1 \otimes k_{1}\right) \otimes(1 \otimes 1) \triangleleft k_{2} \\
& =1 \otimes k_{1} \otimes 1 \otimes k_{2} .
\end{aligned}
$$

Thus we have $1 \otimes k \otimes 1 \otimes 1=1 \otimes k_{1} \otimes 1 \otimes k_{2}$. Apply $\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes i d$ to both sides of the equation, we have $\varepsilon(k) 1_{H}=k$. So $H=\mathbb{k}$.

The converse is straightforward, This completes the proof.
Here, we will give three other proofs of Theorem 3.1, and they are different from each other.

- By Example 2.4, H_{1} and H_{3} are two Yetter-Drinfel'd-Long bimodules. If canonical braiding is a symmetry, that is, $\psi_{H_{3}, H_{1}} \circ \psi_{H_{1}, H_{3}}=i d_{H_{1} \otimes H_{3}}$. For any $1 \otimes k \otimes 1 \otimes 1 \in H_{1} \otimes H_{3}$, we easily get that $\psi_{H_{3}, H_{1}} \circ \psi_{H_{1}, H_{3}}(1 \otimes k \otimes 1 \otimes 1)=1 \otimes k_{1} \otimes 1 \otimes k_{2}$.
Thus we have $1 \otimes k \otimes 1 \otimes 1=1 \otimes k_{1} \otimes 1 \otimes k_{2}$. Apply $\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes i d$ to both sides of the equation, we have $\varepsilon(k) 1_{H}=k$. So $H=\mathbb{k}$.
- By Example 2.4, H_{2} and H_{4} are two Yetter-Drinfel'd-Long bimodules. If canonical braiding is a symmetry, that is, $\psi_{H_{2}, H_{4}} \circ \psi_{H_{4}, H_{2}}=i d_{H_{4} \otimes H_{2}}$. For any $1 \otimes k \otimes 1 \otimes 1 \in H_{4} \otimes H_{2}$, we easily get that $\psi_{H_{2}, H_{4}} \circ \psi_{H_{4}, H_{2}}(1 \otimes k \otimes 1 \otimes 1)=1 \otimes k_{1} \otimes 1 \otimes k_{2}$.
Thus we have $1 \otimes k \otimes 1 \otimes 1=1 \otimes k_{1} \otimes 1 \otimes k_{2}$. Apply $\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes i d$ to both sides of the equation, we have $\varepsilon(k) 1_{H}=k$. So $H=\mathbb{k}$.
- By Example 2.4, H_{3} and H_{4} are two Yetter-Drinfel'd-Long bimodules. If canonical braiding is a symmetry, that is, $\psi_{H_{3}, H_{4}} \circ \psi_{H_{4}, H_{3}}=i d_{H_{4} \otimes H_{3}}$. For any $1 \otimes k \otimes 1 \otimes 1 \in H_{4} \otimes H_{3}$, we easily get that $\psi_{H_{3}, H_{4}} \circ \psi_{H_{4}, H_{3}}(1 \otimes k \otimes 1 \otimes 1)=1 \otimes k_{1} \otimes 1 \otimes k_{2}$.
Thus we have $1 \otimes k \otimes 1 \otimes 1=1 \otimes k_{1} \otimes 1 \otimes k_{2}$. Apply $\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes i d$ to both sides of the equation, we have $\varepsilon(k) 1_{H}=k$. So $H=\mathbb{k}$.
If $H_{1}=\mathbb{k} \otimes H$ and $H_{2}=\mathbb{k} \otimes H$, then H_{1} and H_{2} are two right-right Yetter-Drinfel'd modules. Hence using Theorem 3.1, we can improve the main result in [7].

Corollary 3.2. Let H be a Hopf algebra such that the canonical braiding of right-right Yetter-Drinfel'd category $\boldsymbol{y} \mathcal{D}_{H}^{H}$ is a symmetry. Then $H=\mathbb{k}$.

In the following, we will introduce the pseudosymmetry on $\mathcal{L R}(H)$ over a Hopf algebra H. For this purpose, we need the following Lemma.

Lemma 3.3. Let H be a cocommutative Hopf algebra. Then the canonical braiding $\psi_{H_{1}, H_{2}}$ of the category $\mathcal{L R}(H)$ is the usual flip map.

Proof. For any $g \otimes h \otimes k \otimes l \in H_{1} \otimes H_{2}$, we have

$$
\begin{aligned}
\psi_{H_{1}, H_{2}}(g \otimes h \otimes k \otimes l) & =(g \otimes h)_{[-1]} \triangleright(k \otimes l)_{(0)} \otimes(g \otimes h)_{[0]} \triangleleft(k \otimes l)_{(1)} \\
& =g_{1} S\left(g_{3}\right) \triangleright\left(k \otimes l_{2}\right) \otimes\left(g_{2} \otimes h\right) \triangleleft l_{1} S\left(l_{3}\right) \\
& =g_{1} S\left(g_{2}\right) \triangleright\left(k \otimes l_{3}\right) \otimes\left(g_{3} \otimes h\right) \triangleleft l_{1} S\left(l_{2}\right) \quad \text { by cocommutative } \\
& =1 \triangleright(k \otimes l) \otimes(g \otimes h) \triangleleft 1 \\
& =k \otimes l \otimes g \otimes h .
\end{aligned}
$$

This completes the proof.
We now give necessary and sufficient conditions for the canonical braiding of the category $\mathcal{L} \mathcal{R}(H)$ to be a pseudosymmetry, we prove the necessary condition by a new method which is different from Proposition 2.5 in [10].

Theorem 3.4. Let H be a Hopf algebra. Then the canonical braiding of the category $\mathcal{L R}(H)$ is pseudosymmetric if and only if H is commutative and cocommutative.

Proof. Assume that the canonical braiding ψ of the category $\mathcal{L R}(H)$ is pseudosymmetric. We first check that H is cocommutative. For any $1 \otimes 1 \otimes k \otimes 1 \otimes 1 \otimes 1 \in H_{1} \otimes H_{2} \otimes H_{1}$, we have

$$
\begin{aligned}
(i d & \left.\otimes \psi_{H_{1}, H_{2}}\right) \circ\left(\psi_{H_{1}, H_{1}}^{-1} \otimes i d\right) \circ\left(i d \otimes \psi_{H_{2}, H_{1}}\right)(1 \otimes 1 \otimes k \otimes 1 \otimes 1 \otimes 1) \\
& =\left(i d \otimes \psi_{H_{1}, H_{2}}\right) \circ\left(\psi_{H_{1}, H_{1}}^{-1} \otimes i d\right)\left(1 \otimes 1 \otimes(k \otimes 1)_{[-1]} \triangleright(1 \otimes 1)_{(0)} \otimes(k \otimes 1)_{[0]} \triangleleft(1 \otimes 1)_{(1)}\right) \\
& =\left(i d \otimes \psi_{H_{1}, H_{2}}\right) \circ\left(\psi_{H_{1}, H_{1}}^{-1} \otimes i d\right)\left(1 \otimes 1 \otimes k_{1} \triangleright(1 \otimes 1) \otimes\left(k_{2} \otimes 1\right) \triangleleft 1\right) \\
& =\left(i d \otimes \psi_{H_{1}, H_{2}}\right) \circ\left(\psi_{H_{1}, H_{1}}^{-1} \otimes i d\right)\left(1 \otimes 1 \otimes k_{1} \otimes 1 \otimes k_{2} \otimes 1\right) \\
& =\left(i d \otimes \psi_{H_{1}, H_{2}}\right)\left(\left(k_{1} \otimes 1\right)_{[0]} \triangleleft S^{-1}\left((1 \otimes 1)_{(1)}\right) \otimes S^{-1}\left(\left(k_{1} \otimes 1\right)_{[-1]}\right) \triangleright(1 \otimes 1)_{(0)} \otimes k_{2} \otimes 1\right) \\
& =\left(i d \otimes \psi_{H_{1}, H_{2}}\right)\left(\left(k_{2} \otimes 1\right) \triangleleft 1 \otimes S^{-1}\left(k_{1} S\left(k_{3}\right)\right) \triangleright(1 \otimes 1) \otimes k_{4} \otimes 1\right) \\
& =\left(i d \otimes \psi_{H_{1}, H_{2}}\right)\left(k_{2} \otimes 1 \otimes k_{3} S^{-1}\left(k_{1}\right) \otimes 1 \otimes k_{4} \otimes 1\right) \\
& =k_{2} \otimes 1 \otimes\left(k_{3} S^{-1}\left(k_{1}\right) \otimes 1\right)_{[-1]} \triangleright\left(k_{4} \otimes 1\right)_{(0)} \otimes\left(k_{3} S^{-1}\left(k_{1}\right) \otimes 1\right)_{[0]} \triangleleft\left(k_{4} \otimes 1\right)_{(1)}
\end{aligned}
$$

$$
\begin{aligned}
= & k_{2} \otimes 1 \otimes\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{1} S\left(\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{3}\right) \triangleright\left(k_{4} \otimes 1\right) \otimes\left(\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{2} \otimes 1\right) \triangleleft 1 \\
= & k_{2} \otimes 1 \otimes\left[\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{1} S\left(\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{3}\right)\right]_{1} k_{4} S\left(\left[\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{1} S\left(\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{3}\right)\right]_{2}\right) \otimes 1 \\
& \otimes\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{2} \otimes 1
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(\psi_{H_{2}, H_{1}} \otimes i d\right) \circ\left(i d \otimes \psi_{H_{1}, H_{1}}^{-1}\right) \circ\left(\psi_{H_{1}, H_{2}} \otimes i d\right)(1 \otimes 1 \otimes k \otimes 1 \otimes 1 \otimes 1) \\
&=\left(\psi_{H_{2}, H_{1}} \otimes i d\right) \circ\left(i d \otimes \psi_{H_{1}, H_{1}}^{-1}\right) \\
&\left((1 \otimes 1)_{[-1]} \triangleright(k \otimes 1)_{(0)} \otimes(1 \otimes 1)_{[0]} \triangleleft(k \otimes 1)_{(1)} \otimes 1 \otimes 1\right) \\
&=\left(\psi_{H_{2}, H_{1}} \otimes i d\right) \circ\left(i d \otimes \psi_{H_{1}, H_{1}}^{-1}\right)(1 \triangleright(k \otimes 1) \otimes(1 \otimes 1) \triangleleft 1 \otimes 1 \otimes 1) \\
&=\left(\psi_{H_{2}, H_{1}} \otimes i d\right) \circ\left(i d \otimes \psi_{H_{1}, H_{1}}\right)(k \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1) \\
&=\left(\psi_{H_{2}, H_{1}} \otimes i d\right)(k \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1) \\
&=(k \otimes 1)_{[-1]} \triangleright(1 \otimes 1)_{(0)} \otimes(k \otimes 1)_{[0]} \triangleleft(1 \otimes 1)_{(1)} \otimes 1 \otimes 1 \\
&= k_{1} \triangleright(1 \otimes 1) \otimes\left(k_{2} \otimes 1\right) \triangleleft 1 \otimes 1 \otimes 1 \\
&= k_{1} \otimes 1 \otimes k_{2} \otimes 1 \otimes 1 \otimes 1 .
\end{aligned}
$$

By assumption, $\mathcal{L R}(H)$ is pseudosymmetric, it follows that

$$
\begin{aligned}
k_{1} \otimes 1 \otimes k_{2} \otimes 1 \otimes 1 \otimes 1=k_{2} & \otimes 1 \otimes\left[\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{1} S\left(\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{3}\right)\right]_{1} k_{4} \\
& \times S\left(\left[\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{1} S\left(\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{3}\right)\right]_{2}\right) \otimes 1 \otimes\left(k_{3} S^{-1}\left(k_{1}\right)\right)_{2} \otimes 1
\end{aligned}
$$

Apply id $\otimes \varepsilon \otimes \varepsilon \otimes \varepsilon \otimes i d \otimes \varepsilon$ to both sides of the above equation, we get $k_{2} \otimes k_{3} S^{-1}\left(k_{1}\right)=k \otimes 1$. Therefore, we have

$$
k_{2} \otimes k_{1}=k_{2} \otimes 1 k_{1}=k_{3} \otimes k_{4} S^{-1}\left(k_{2}\right) k_{1}=k_{1} \otimes k_{2}
$$

So H is cocommutative.
Next, we verify that H is commutative. For any $1 \otimes 1 \otimes k \otimes 1 \otimes g \otimes 1 \in H_{1} \otimes H_{2} \otimes H_{2}$, we have

$$
\begin{aligned}
(i d & \left.\otimes \psi_{H_{1}, H_{2}}\right) \circ\left(\psi_{H_{2}, H_{1}}^{-1} \otimes i d\right) \circ\left(i d \otimes \psi_{H_{2}, H_{2}}\right)(1 \otimes 1 \otimes k \otimes 1 \otimes g \otimes 1) \\
= & \left(i d \otimes \psi_{H_{1}, H_{2}}\right) \circ\left(\psi_{H_{2}, H_{1}}^{-1} \otimes i d\right)\left(1 \otimes 1 \otimes(k \otimes 1)_{[-1]} \triangleright(g \otimes 1)_{(0)} \otimes(k \otimes 1)_{[0]} \triangleleft(g \otimes 1)_{(1)}\right) \\
= & \left(i d \otimes \psi_{H_{1}, H_{2}}\right) \circ\left(\psi_{H_{2}, H_{1}}^{-1} \otimes i d\right)\left(1 \otimes 1 \otimes k_{1} \triangleright(g \otimes 1) \otimes\left(k_{2} \otimes 1\right) \triangleleft 1\right) \\
= & \left(i d \otimes \psi_{H_{1}, H_{2}}\right) \circ\left(\psi_{H_{2}, H_{1}}^{-1} \otimes i d\right)\left(1 \otimes 1 \otimes k_{1} g S\left(k_{2}\right) \otimes 1 \otimes k_{3} \otimes 1\right) \\
= & \left(i d \otimes \psi_{H_{1}, H_{2}}\right)\left(\left(k_{1} g S\left(k_{2}\right) \otimes 1\right)_{[0]} \triangleleft S^{-1}\left((1 \otimes 1)_{(1)}\right)\right. \\
& \left.\otimes S^{-1}\left(\left(k_{1} g S\left(k_{2}\right) \otimes 1\right)_{[-1]}\right) \triangleright(1 \otimes 1)_{(0)} \otimes k_{3} \otimes 1\right) \\
= & \left(i d \otimes \psi_{H_{1}, H_{2}}\right)\left(\left(k_{2} g_{2} S\left(k_{3}\right) \otimes 1\right) \triangleleft 1 \otimes S^{-1}\left(k_{1} g_{1} S\left(k_{4}\right)\right) \triangleright(1 \otimes 1) \otimes k_{5} \otimes 1\right) \\
= & \left(i d \otimes \psi_{H_{1}, H_{2}}\right)\left(k_{2} g_{2} S\left(k_{3}\right) \otimes 1 \otimes S^{-1}\left(k_{1} g_{1} S\left(k_{4}\right)\right) \otimes 1 \otimes k_{5} \otimes 1\right) \\
= & k_{2} g_{2} S\left(k_{3}\right) \otimes 1 \otimes k_{5} \otimes 1 \otimes S^{-1}\left(k_{1} g_{1} S\left(k_{4}\right)\right) \otimes 1 \quad \text { by Lemma } 3.3
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\psi_{H_{2}, H_{2}} \otimes i d\right) \circ\left(i d \otimes \psi_{H_{2}, H_{1}}^{-1}\right) \circ\left(\psi_{H_{1}, H_{2}} \otimes i d\right)(1 \otimes 1 \otimes k \otimes 1 \otimes g \otimes 1) \\
& \quad=\left(\psi_{H_{2}, H_{2}} \otimes i d\right) \circ\left(i d \otimes \psi_{H_{2}, H_{1}}\right)(k \otimes 1 \otimes 1 \otimes 1 \otimes g \otimes 1) \quad \text { by Lemma } 3.3 \\
& \quad=\left(\psi_{H_{2}, H_{2}} \otimes i d\right)\left(k \otimes 1 \otimes(g \otimes 1)_{[0]} \triangleleft S^{-1}\left((1 \otimes 1)_{(1)}\right) \otimes S^{-1}\left((g \otimes 1)_{[-1]}\right) \triangleright(1 \otimes 1)_{(0)}\right) \\
& \quad=\left(\psi_{H_{2}, H_{2}} \otimes i d\right)\left(k \otimes 1 \otimes\left(g_{2} \otimes 1\right) \triangleleft 1 \otimes S^{-1}\left(g_{1}\right) \triangleright(1 \otimes 1)\right) \\
& \quad=\left(\psi_{H_{2}, H_{2}} \otimes i d\right)\left(k \otimes 1 \otimes g_{2} \otimes 1 \otimes S^{-1}\left(g_{1}\right) \otimes 1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(k \otimes 1)_{[-1]} \triangleright\left(g_{2} \otimes 1\right)_{(0)} \otimes(k \otimes 1)_{[0]} \triangleleft\left(g_{2} \otimes 1\right)_{(1)} \otimes S^{-1}\left(g_{1}\right) \otimes 1 \\
& =k_{1} \triangleright\left(g_{2} \otimes 1\right) \otimes\left(k_{2} \otimes 1\right) \triangleleft 1 \otimes S^{-1}\left(g_{1}\right) \otimes 1 \\
& =k_{1} g_{2} S\left(k_{2}\right) \otimes 1 \otimes k_{3} \otimes 1 \otimes S^{-1}\left(g_{1}\right) \otimes 1 .
\end{aligned}
$$

Since $\mathcal{L} \mathcal{R}(H)$ is pseudosymmetric, we get

$$
k_{2} g_{2} S\left(k_{3}\right) \otimes 1 \otimes k_{5} \otimes 1 \otimes S^{-1}\left(k_{1} g_{1} S\left(k_{4}\right)\right) \otimes 1=k_{1} g_{2} S\left(k_{2}\right) \otimes 1 \otimes k_{3} \otimes 1 \otimes S^{-1}\left(g_{1}\right) \otimes 1
$$

Apply $(\varepsilon \otimes \varepsilon \otimes i d \otimes \varepsilon \otimes i d \otimes \varepsilon)(i d \otimes i d \otimes i d \otimes i d \otimes S \otimes i d)$ to both sides of the above equation, we get $k_{3} \otimes k_{1} g S\left(k_{2}\right)=k \otimes g$. Hence, we have

$$
g k=k_{1} g S\left(k_{2}\right) k_{3}=k_{1} g \varepsilon\left(k_{2}\right)=k g
$$

So H is commutative.
The proof of the converse can refer to Proposition 2.5 in [10]. This completes the proof.
If we consider $H_{1}=H \otimes \mathbb{k}$ and $H_{2}=H \otimes \mathbb{k}$, then H_{1} and H_{2} are two left-left Yetter-Drinfel'd modules. By the proof of Theorem 3.4, we have the following result:
Corollary 3.5. The canonical braiding of $f_{H}^{H} \boldsymbol{y} \mathcal{D}$ is pseudosymmetric if and only if H is cocommutative and commutative.

4. The u-condition in $\mathcal{L} \mathcal{R}(H)$

In this section, we introduce the definition of the u-condition in $\mathcal{L R}(H)$ over Hopf algebra H and discuss some properties and results related to the u-condition. It is easy to obtain the u-condition $\operatorname{in}_{H}^{H} \boldsymbol{y} \mathcal{D}$ when the right action and coaction are trivial.

Definition 4.1. Let H be a Hopf algebra and $M \in \mathcal{L R}(H)$. Then M is said to satisfy the u-condition if

$$
\begin{equation*}
m_{[-1]} \triangleright m_{0} \triangleleft m_{[0](1)}=m \tag{4.1}
\end{equation*}
$$

for any $m \in M$.
Note that Eq.(4.1) is equivalent to the following equation:

$$
\begin{equation*}
m_{(0)[-1]} \triangleright m_{(0)[0]} \triangleleft m_{(1)}=m \tag{4.2}
\end{equation*}
$$

for any $m \in M$.
In the following, we will give a necessary and sufficient condition for H_{1}, H_{2}, H_{3} and H_{4} in Example 2.4 to satisfy the u-condition.
Proposition 4.2. Let H be a Hopf algebra. Then
(1) H_{1} satisfies the u-condition if and only if $S^{2}=i d$.
(2) H_{2} satisfies the u-condition if and only if $\mathrm{S}^{2}=i d$.
(3) H_{3} satisfies the u-condition if and only if $\mathrm{S}^{2}=i d$.
(4) H_{4} satisfies the u-condition if and only if $\mathrm{S}^{2}=$ id.

Proof. It is basic in [3] that $S^{2}=i d$ if and only if $S\left(h_{2}\right) h_{1}=\varepsilon(h)$ or $h_{2} S\left(h_{1}\right)=\varepsilon(h)$.
For (1), if $S^{2}=i d$, we only need to check that Eq.(4.1) holds. For any $k, l \in H$, we have

$$
\begin{aligned}
(k \otimes l)_{[-1]} \triangleright(k \otimes l)_{0} \triangleleft(k \otimes l)_{[0](1)} & =k_{1} S\left(k_{3}\right) \triangleright\left(k_{2} \otimes l\right)_{(0)} \triangleleft\left(k_{2} \otimes l\right)_{(1)} \\
& =k_{1} S\left(k_{3}\right) \triangleright\left(k_{2} \otimes l_{1}\right) \triangleleft l_{2} \\
& =k_{1} S\left(k_{3}\right) k_{2} \otimes S\left(l_{2}\right) l_{1} l_{3} \\
& =k_{1} \varepsilon\left(k_{2}\right) \otimes \varepsilon\left(l_{1}\right) l_{2}
\end{aligned}
$$

$$
=k \otimes l .
$$

Conversely, assume that H_{1} satisfies the u-condition. For any $k \otimes 1 \in H_{1}$, we have

$$
\begin{aligned}
(k \otimes 1)_{[-1]} \triangleright(k \otimes 1)_{0} \triangleleft(k \otimes 1)_{[0](1)} & =k_{1} S\left(k_{3}\right) \triangleright\left(k_{2} \otimes 1\right)_{(0)} \triangleleft\left(k_{2} \otimes 1\right)_{(1)} \\
& =k_{1} S\left(k_{3}\right) \triangleright\left(k_{2} \otimes 1\right) \triangleleft 1 \\
& =k_{1} S\left(k_{3}\right) k_{2} \otimes 1 .
\end{aligned}
$$

By assumption, we have $k_{1} S\left(k_{3}\right) k_{2} \otimes 1=k \otimes 1$. Apply $i d \otimes \varepsilon$ to both sides, we get

$$
\begin{equation*}
k_{1} S\left(k_{3}\right) k_{2}=k \tag{4.3}
\end{equation*}
$$

By computing we have

$$
\begin{aligned}
S\left(k_{2}\right) k_{1} & =\varepsilon\left(k_{1}\right) S\left(k_{3}\right) k_{2} \\
& =\left(S\left(k_{1}\right) k_{2}\right) S\left(k_{4}\right) k_{3} \\
& =S\left(k_{1}\right)\left(k_{2} S\left(k_{4}\right) k_{3}\right) \\
& =S\left(k_{1}\right) k_{2} \quad \text { by (4.3) applied to } k_{2} \\
& =\varepsilon(k) .
\end{aligned}
$$

Hence $S^{2}=i d$.
For (2), if $S^{2}=i d$, for any $k, l \in H$, we have

$$
\begin{aligned}
(k \otimes l)_{[-1]} \triangleright(k \otimes l)_{0} \triangleleft(k \otimes l)_{[0](1)} & =k_{1} \triangleright\left(k_{2} \otimes l\right)_{(0)} \triangleleft\left(k_{2} \otimes l\right)_{(1)} \\
& =k_{1} \triangleright\left(k_{2} \otimes l_{2}\right) \triangleleft S\left(l_{1}\right) l_{3} \\
& =k_{1} k_{3} S\left(k_{2}\right) \otimes l_{2} S\left(l_{1}\right) l_{3} \\
& =k_{1} \varepsilon\left(k_{2}\right) \otimes \varepsilon\left(l_{1}\right) l_{2} \\
& =k \otimes l .
\end{aligned}
$$

Conversely, assume that H_{2} satisfies the u-condition. For any $k \otimes 1 \in H_{2}$, we have

$$
\begin{aligned}
(k \otimes 1)_{[-1]} \triangleright(k \otimes 1)_{0} \triangleleft(k \otimes 1)_{[0](1)} & =k_{1} \triangleright\left(k_{2} \otimes 1\right)_{(0)} \triangleleft\left(k_{2} \otimes 1\right)_{(1)} \\
& =k_{1} \triangleright\left(k_{2} \otimes 1\right) \triangleleft 1 \\
& =k_{1} k_{3} S\left(k_{2}\right) \otimes 1 .
\end{aligned}
$$

By assumption, we have $k_{1} k_{3} S\left(k_{2}\right) \otimes 1=k \otimes 1$. Apply $i d \otimes \varepsilon$ to both sides, we get

$$
\begin{equation*}
k_{1} k_{3} S\left(k_{2}\right)=k \tag{4.4}
\end{equation*}
$$

By computing we have

$$
\begin{aligned}
k_{2} S\left(k_{1}\right) & =\varepsilon\left(k_{1}\right) k_{3} S\left(k_{2}\right) \\
& =\left(S\left(k_{1}\right) k_{2}\right) k_{4} S\left(k_{3}\right) \\
& =S\left(k_{1}\right)\left(k_{2} k_{4} S\left(k_{3}\right)\right) \\
& =S\left(k_{1}\right) k_{2} \quad \text { by }(4.4) \text { applied to } k_{2} \\
& =\varepsilon(k) .
\end{aligned}
$$

Hence $S^{2}=i d$.
Similarly, we can check that the statements (3) and (4) hold.
Proposition 4.3. Let H be a Hopf algebra and $S^{2}=i d$, and assume that M and N satisfy the u-condition. Then $M \otimes N$ satisfies the u-condition if and only if $\psi_{M, N}$ is a symmetry.

Proof. For any $m \in M$ and $n \in N$, we have

$$
\begin{aligned}
& (m \otimes n)_{[-1]} \triangleright(m \otimes n)_{0} \triangleleft(m \otimes n)_{[0](1)} \\
& =\left(m_{[-1]} n_{[-1]}\right) \triangleright\left(m_{[0]} \otimes n_{[0]}\right)_{(0)} \triangleleft\left(m_{[0]} \otimes n_{[0]}\right)_{(1)} \\
& =\left(m_{[-1]} n_{[-1]}\right) \triangleright\left(m_{0} \otimes n_{0}\right) \triangleleft\left(m_{[0](1)} n_{[0](1)}\right) \\
& =m_{[-1]} \triangleright\left[n_{[-1]} \triangleright\left(m_{0} \otimes n_{0}\right) \triangleleft m_{[0](1)}\right] \triangleleft n_{[0](1)} \\
& =m_{[-1]} \triangleright\left[n_{[-1] 1} \triangleright\left(m_{0} \triangleleft m_{[0](1) 1}\right) \otimes\left(n_{[-1] 2} \triangleright n_{0}\right) \triangleleft m_{[0](1) 2}\right] \triangleleft n_{[0](1)} \\
& =m_{[-1]} \triangleright\left[n_{(0)[-1] 1} \triangleright\left(m_{0} \triangleleft m_{[0](1) 1}\right) \otimes\left(n_{(0)[-1] 2} \triangleright n_{(0)[0]}\right) \triangleleft m_{[0](1) 2}\right] \triangleleft n_{(1)} \quad \text { by (2.2) } \\
& =m_{[-1]} \triangleright\left[n_{(0)[-1] 1}\left(n_{(0)[-1] 4} S\left(n_{(0)[-1] 3}\right)\right) \triangleright\left(m_{0} \triangleleft m_{[0](1) 3}\right)\right. \\
& \left.\otimes\left(n_{(0)[-1] 2} \triangleright n_{(0)[0]}\right) \triangleleft\left(S\left(m_{[0](1) 2}\right) m_{[0](1) 1)}\right) m_{[0](1) 4}\right] \triangleleft n_{(1)} \quad \text { by } S^{2}=i d \\
& =m_{[-1]} \triangleright\left[\left(n_{(0)[-1] 11} n_{(0)[-1] 2}\right) S\left(n_{(0)[-1] 13}\right) \triangleright\left(m_{0} \triangleleft m_{[0](1) 22}\right)\right. \\
& \left.\otimes\left(n_{(0)[-1] 12} \triangleright n_{(0)[0]}\right) \triangleleft S\left(m_{[0](1) 21}\right)\left(m_{[0](1) 1} m_{[0](1) 23}\right)\right] \triangleleft n_{(1)} \\
& =m_{[-1]} \triangleright\left[\left(n_{(0)[-1] 1} n_{(0)[0][-1]}\right) S\left(n_{(0)[-1] 3}\right) \triangleright\left(m_{0(0)} \triangleleft m_{[0](1) 2}\right)\right. \\
& \left.\otimes\left(n_{(0)[-1] 2} \triangleright n_{(0)[0][0]}\right) \triangleleft S\left(m_{[0](1) 1}\right)\left(m_{0(1)} m_{[0](1) 3}\right)\right] \triangleleft n_{(1)} \\
& =m_{[-1]} \triangleright\left[\left(n_{(0)[-1] 1} \triangleright n_{(0)[0]}\right)_{[-1]} n_{(0)[-1] 2} S\left(n_{(0)[-1] 3}\right) \triangleright\left(m_{0} \triangleleft m_{[0](1) 3}\right)_{(0)}\right. \\
& \left.\otimes\left(n_{(0)[-1] 1} \triangleright n_{(0)[0]}\right)_{[0]} \triangleleft S\left(m_{[0](1) 1}\right) m_{[0](1) 2}\left(m_{0} \triangleleft m_{[0](1) 3}\right)_{(1)}\right] \triangleleft n_{(1)} b y \text { (2.3), (2.5) } \\
& =m_{[-1]} \triangleright\left[\left(n_{(0)[-1]} \triangleright n_{(0)[0]}\right)_{[-1]} \triangleright\left(m_{0} \triangleleft m_{[0](1)}\right)_{(0)}\right. \\
& \left.\otimes\left(n_{(0)[-1]} \triangleright n_{(0)[0]}\right)_{[0]} \triangleleft\left(m_{0} \triangleleft m_{[0](1)}\right)_{(1)}\right] \triangleleft n_{(1)} \\
& =m_{[-1]} \triangleright\left[\psi_{N, M}\left(n_{(0)[-1]} \triangleright n_{(0)[0]} \otimes m_{0} \triangleleft m_{[0](1)}\right)\right] \triangleleft n_{(1)} \\
& =\psi_{N, M}\left(m_{[-1]} \triangleright\left[n_{(0)[-1]} \triangleright n_{(0)[0]} \otimes m_{0} \triangleleft m_{[0](1)}\right] \triangleleft n_{(1)}\right) \\
& =\psi_{N, M}\left(m_{[-1] 1} n_{(0)[-1]} \triangleright n_{(0)[0]} \triangleleft n_{(1) 1} \otimes m_{[-1] 2} \triangleright m_{0} \triangleleft m_{[0](1)} n_{(1) 2}\right) \\
& =\psi_{N, M}\left(m_{[-1]} n_{(0)(0)[-1]} \triangleright n_{(0)(0)[0]} \triangleleft n_{(0)(1)} \otimes m_{[0][-1]} \triangleright m_{[0]0} \triangleleft m_{[0][0](1)} n_{(1)}\right) \\
& =\psi_{N, M}\left(m_{[-1]} \triangleright n_{(0)} \otimes m_{[0]} \triangleleft n_{(1)}\right) \quad b y(4.1) \text {, (4.2) } \\
& =\psi_{N, M} \circ \psi_{M, N}(m \otimes n) \text {. }
\end{aligned}
$$

This completes the proof.
If we consider $M=H_{i}$ and $N=H_{j}$, for any $i, j=1,2,3,4$ (see Example 2.4). By Proposition 4.2 and 4.3, we obtain:

Corollary 4.4. Let H be a Hopf algebra, and assume that H_{i} and H_{j} satisfy the u-condition. Then $H_{i} \otimes H_{j}$ satisfies the u-condition if and only if $\psi_{H_{i}, H_{j}}$ is a symmetry, for any $i, j=1,2,3,4$.

5. Yetter-Drinfel'd-Long categories over quasitriangular Hopf algebras

In this section, we focus on $M \in \mathcal{L} \mathcal{R}(H)$ for which $\psi_{M, M}$ is a symmetry. Triangular Hopf algebras give rise to such M.

Theorem 5.1. Let (H, R) be a quasitriangular Hopf algebra. Then the category ${ }_{H} \mathcal{M}_{H}$ of H-bimodules is a Yetter-Drinfel'd-Long subcategory of $\mathcal{L} \mathcal{R}(H)$ under the coactions $\rho^{l}(m)=R^{2} \otimes R^{1} \triangleright m$ and $\rho^{r}(m)=m \triangleleft R^{1} \otimes R^{2}$, where \triangleright (\triangleleft, resp.) is the left (right, resp.) action on M.

Proof. First, we check that M is a right H-comodule. By the definition of right H-comodule, for any $m \in M$, we have

$$
\begin{aligned}
(i d \otimes \Delta) \rho^{r}(m) & =(i d \otimes \Delta)\left(m \triangleleft R^{1} \otimes R^{2}\right) \\
& =m \triangleleft R^{1} \otimes R_{1}^{2} \otimes R_{2}^{2} \\
& =m \triangleleft R^{1} r^{1} \otimes r^{2} \otimes R^{2} \quad b y(Q T 2)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\rho^{r} \otimes i d\right)\left(m \triangleleft R^{1} \otimes R^{2}\right) \\
& =\left(\rho^{r} \otimes i d\right) \rho^{r}(m),
\end{aligned}
$$

and it is clear that $m_{(0)} \varepsilon\left(m_{(1)}\right)=m \triangleleft R^{1} \varepsilon\left(R^{2}\right)=m \triangleleft 1=m$. Similarly, we can get that M is a left H-comodule.
Next, we verify the compatible condition of H-bicomodule. For any $m \in M$, we have

$$
\begin{aligned}
\left(i d \otimes \rho^{r}\right) \rho^{l}(m) & =\left(i d \otimes \rho^{r}\right)\left(R^{2} \otimes R^{1} \triangleright m\right) \\
& =R^{2} \otimes\left(R^{1} \triangleright m\right) \triangleleft r^{1} \otimes r^{2} \\
& =R^{2} \otimes R^{1} \triangleright\left(m \triangleleft r^{1}\right) \otimes r^{2} \quad b y(2.1) \\
& =\left(\rho^{l} \otimes i d\right)\left(m \triangleleft r^{1} \otimes r^{2}\right) \\
& =\left(\rho^{l} \otimes i d\right) \rho^{r}(m) .
\end{aligned}
$$

We now prove that M satisfies the four compatible conditions (2.3) ~ (2.6). Indeed, for any $h \in H$ and $m \in M$, we have

$$
\begin{aligned}
(h \triangleright m)_{(0)} \otimes(h \triangleright m)_{(1)} & =(h \triangleright m) \triangleleft R^{1} \otimes R^{2} \\
& =h \triangleright\left(m \triangleleft R^{1}\right) \otimes R^{2} \\
& =h \triangleright m_{(0)} \otimes m_{(1)} .
\end{aligned}
$$

Thus Eq.(2.4) holds. For Eq.(2.5) , we have

$$
\begin{aligned}
m_{(0)} \triangleleft h_{1} \otimes m_{(1)} h_{2} & =\left(m \triangleleft R^{1}\right) \triangleleft h_{1} \otimes R^{2} h_{2} \\
& =m \triangleleft R^{1} h_{1} \otimes R^{2} h_{2} \\
& =m \triangleleft h_{2} R^{1} \otimes h_{1} R^{2} \quad b y(Q T 3) \\
& =\left(m \triangleleft h_{2}\right) \triangleleft R^{1} \otimes h_{1} R^{2} \\
& =\left(m \triangleleft h_{2}\right)_{(0)} \otimes h_{1}\left(m \triangleleft h_{2}\right)_{(1)} .
\end{aligned}
$$

Similarly, we can show that Eq.(2.3) and (2.6) hold.
Finally, we need to show that any morphisms in \mathcal{H}_{H} are both left H-colinear and right H-colinear. For this purpose, we take any $M, N \in_{H} \mathcal{M}_{H}$, and assume that $f: M \rightarrow N$ is a morphism in ${ }_{H} \mathcal{M}_{H}$, we get

$$
(f \otimes i d) \circ \rho_{M}^{r}(m)=f\left(m \triangleleft R^{1}\right) \otimes R^{2}=f(m) \triangleleft R^{1} \otimes R^{2}=\rho_{N}^{r} \circ f(m) .
$$

So f is right H-colinear. Similarly, we can obtain that f described above is left H-colinear.
This completes the proof.
Proposition 5.2. Let H be a triangular Hopf algebra. Then the Yetter-Drinfel'd-Long subcategory ${ }_{H} \mathcal{M}_{H}$ defined above is symmetric.

Proof. For any $m \in M$ and $n \in N$, we have

$$
\begin{aligned}
\psi_{N, M} \circ \psi_{M, N}(m \otimes n) & =\psi_{N, M}\left(R^{2} \triangleright n \triangleleft r^{1} \otimes R^{1} \triangleright m \triangleleft r^{2}\right) \\
& =Q^{2} \triangleright\left(R^{1} \triangleright m \triangleleft r^{2}\right) \triangleleft q^{1} \otimes Q^{1} \triangleright\left(R^{2} \triangleright n \triangleleft r^{1}\right) \triangleleft q^{2} \\
& =Q^{2} R^{1} \triangleright m \triangleleft r^{2} q^{1} \otimes Q^{1} R^{2} \triangleright n \triangleleft r^{1} q^{2} \quad b y(Q T 5) \\
& =1 \triangleright m \triangleleft 1 \otimes 1 \triangleright n \triangleleft 1 \\
& =m \otimes n .
\end{aligned}
$$

Thus the subcategory ${ }_{H} \mathcal{M}_{H}$ is symmetric.

By Theorem 5.1 and Proposition 5.2, we know that If (H, R) be a triangular Hopf algebra then the subcategory ${ }_{H} \mathcal{M}_{H}$ described above is symmetric. A particular example is $M=H \otimes H$. In the following we prove the converse. That is, assume that the braiding $\psi_{H \otimes H, H \otimes H}$ is a symmetry forces (H, R) to be triangular, where $H \otimes H$ is a Hopf algebra with usual tensor product and tensor coproduct.
Theorem 5.3. Let H be a Hopf algebra with a bijective antipode, and assume that $\left(H \otimes H, \triangleright=m \otimes i d, \rho^{l}=\rho_{1} \otimes i d, \triangleleft=\right.$ id $\left.\otimes m, \rho^{r}=i d \otimes \rho_{2}\right) \in \mathcal{L} \mathcal{R}(H)$, where m is usual multiplication and $\rho_{1}\left(\rho_{2}\right.$, resp.) is a left (right, resp.) coaction on H. Then $\psi_{H \otimes H, H \otimes H}$ is a symmetry if and only if there exists $R \in H \otimes H$ so that (H, R) is triangular. And then ρ^{l} and ρ^{r} are induced by R. That is,

$$
\rho^{l}(k \otimes l)=R^{2} \otimes R^{1} k \otimes l, \quad \rho^{r}(k \otimes l)=k \otimes l R^{1} \otimes R^{2}
$$

for any $k, l \in H$, in particular, $R^{\tau} \otimes 1=\rho^{l}(1 \otimes 1)$ and $1 \otimes R=\rho^{r}(1 \otimes 1)$.
Proof. If $\psi=\psi_{H \otimes H, H \otimes H}$ is a symmetry, for any $k, l, g, h \in H$, we have

$$
\begin{align*}
\psi(k \otimes l \otimes g \otimes h) & =(k \otimes l)_{[-1]} \triangleright(g \otimes h)_{(0)} \otimes(k \otimes l)_{[0]} \triangleleft(g \otimes h)_{(1)} \\
& =(g \otimes h)_{[0]} \triangleleft S^{-1}\left((k \otimes l)_{(1)}\right) \otimes S^{-1}\left((g \otimes h)_{[-1]}\right) \triangleright(k \otimes l)_{(0)} . \tag{5.1}
\end{align*}
$$

In particular, let $\rho^{l}(1 \otimes 1)=x_{i} \otimes y_{i} \otimes 1$ and $\rho^{r}(1 \otimes 1)=1 \otimes s_{i} \otimes t_{i}$. Then

$$
\begin{aligned}
x_{i} \otimes s_{i} \otimes y_{i} \otimes t_{i} & =x_{i} \triangleright\left(1 \otimes s_{i}\right) \otimes\left(y_{i} \otimes 1\right) \triangleleft t_{i} \\
& =(1 \otimes 1)_{[-1]} \triangleright(1 \otimes 1)_{(0)} \otimes(1 \otimes 1)_{[0]} \triangleleft(1 \otimes 1)_{(1)} \\
& =(1 \otimes 1)_{[0]} \triangleleft S^{-1}\left((1 \otimes 1)_{(1)}\right) \otimes S^{-1}\left((1 \otimes 1)_{[-1]}\right) \triangleright(1 \otimes 1)_{(0)} \quad \text { by }(5.1) \\
& =\left(y_{i} \otimes 1\right) \triangleleft S^{-1}\left(t_{i}\right) \otimes S^{-1}\left(x_{i}\right) \triangleright\left(1 \otimes s_{i}\right) \\
& =y_{i} \otimes S^{-1}\left(t_{i}\right) \otimes S^{-1}\left(x_{i}\right) \otimes s_{i} .
\end{aligned}
$$

Thus

$$
x_{i} \otimes s_{i} \otimes y_{i} \otimes t_{i}=y_{i} \otimes S^{-1}\left(t_{i}\right) \otimes S^{-1}\left(x_{i}\right) \otimes s_{i}
$$

Apply $i d \otimes \varepsilon \otimes i d \otimes \varepsilon$ and $\varepsilon \otimes i d \otimes \varepsilon \otimes i d$ to both sides, respectively, we have

$$
\begin{align*}
& x_{i} \otimes y_{i}=y_{i} \otimes S^{-1}\left(x_{i}\right) \tag{5.2}\\
& s_{i} \otimes t_{i}=S^{-1}\left(t_{i}\right) \otimes s_{i} . \tag{5.3}
\end{align*}
$$

Apply id $\otimes S$ to Eq.(5.2) yields

$$
\begin{equation*}
x_{i} \otimes S\left(y_{i}\right)=y_{i} \otimes x_{i} \tag{5.4}
\end{equation*}
$$

Set $R \otimes 1=y_{i} \otimes x_{i} \otimes 1=(\tau \otimes i d) \circ \rho^{l}(1 \otimes 1)$ and $1 \otimes R=1 \otimes s_{i} \otimes t_{i}=\rho^{r}(1 \otimes 1)$. In the following, we wish to show that (H, R) is triangular and that ρ^{l} and ρ^{r} are induced by R. For this purpose, we first need the following equations $\rho^{l}(k \otimes l)=\left(i d \otimes \varepsilon \otimes i d^{2}\right) \psi(k \otimes l \otimes 1 \otimes 1)$ and $\rho^{r}(k \otimes l)=\left(i d^{2} \otimes \varepsilon \otimes i d\right) \psi(1 \otimes 1 \otimes k \otimes l)$. Indeed, for any $k, l \in H$:

$$
\begin{aligned}
\left(i d \otimes \varepsilon \otimes i d^{2}\right) \psi(k \otimes l \otimes 1 \otimes 1) & =\left(i d \otimes \varepsilon \otimes i d^{2}\right)\left((k \otimes l)_{[-1]} \triangleright(1 \otimes 1)_{(0)} \otimes(k \otimes l)_{[0]} \triangleleft(1 \otimes 1)_{(1)}\right) \\
& =\left(i d \otimes \varepsilon \otimes i d^{2}\right)\left((k \otimes l)_{[-1]} \triangleright\left(1 \otimes s_{i}\right) \otimes(k \otimes l)_{[0]} \triangleleft t_{i}\right) \\
& =\left(i d \otimes \varepsilon \otimes i d^{2}\right)\left((k \otimes l)_{[-1]} \otimes s_{i} \otimes(k \otimes l)_{[0]} \triangleleft t_{i}\right) \\
& =\left(i d \otimes \varepsilon \otimes i d^{2}\right)\left((k \otimes l)_{[-1]} \otimes S^{-1}\left(t_{i}\right) \otimes(k \otimes l)_{[0]} \triangleleft s_{i}\right) \quad b y(5.3) \\
& =(k \otimes l)_{[-1]} \otimes(k \otimes l)_{[0]} \triangleleft 1 \\
& =(k \otimes l)_{[-1]} \otimes(k \otimes l)_{[0]} \\
& =\rho^{l}(k \otimes l)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(i d^{2} \otimes \varepsilon \otimes i d\right) \psi(1 \otimes 1 \otimes k \otimes l) & =\left(i d^{2} \otimes \varepsilon \otimes i d\right)\left((1 \otimes 1)_{[-1]} \triangleright(k \otimes l)_{(0)} \otimes(1 \otimes 1)_{[0]} \triangleleft(k \otimes l)_{(1)}\right) \\
& =\left(i d^{2} \otimes \varepsilon \otimes i d\right)\left(x_{i} \triangleright(k \otimes l)_{(0)} \otimes\left(y_{i} \otimes 1\right) \triangleleft(k \otimes l)_{(1)}\right) \\
& =\left(i d^{2} \otimes \varepsilon \otimes i d\right)\left(x_{i} \triangleright(k \otimes l)_{(0)} \otimes y_{i} \otimes(k \otimes l)_{(1)}\right) \\
& =\left(i d^{2} \otimes \varepsilon \otimes i d\right)\left(y_{i} \triangleright(k \otimes l)_{(0)} \otimes S^{-1}\left(x_{i}\right) \otimes(k \otimes l)_{(1)}\right) \quad b y(5.2) \\
& =1 \triangleright(k \otimes l)_{(0)} \otimes(k \otimes l)_{(1)} \\
& =(k \otimes l)_{(0)} \otimes(k \otimes l)_{(1)} \\
& =\rho^{r}(k \otimes l) .
\end{aligned}
$$

We now prove that ρ^{l} and ρ^{r} are induced by R. For any $k, l \in H$, we have

$$
\begin{aligned}
& \rho^{l}(k \otimes l)=\left(i d \otimes \varepsilon \otimes i d^{2}\right) \psi(k \otimes l \otimes 1 \otimes 1) \\
& \quad=\left(i d \otimes \varepsilon \otimes i d^{2}\right)\left((1 \otimes 1)_{[0]} \triangleleft S^{-1}\left((k \otimes l)_{(1)}\right) \otimes S^{-1}\left((1 \otimes 1)_{[-1]}\right) \triangleright(k \otimes l)_{(0)}\right) \quad b y(5.1) \\
& \quad=\left(i d \otimes \varepsilon \otimes i d^{2}\right)\left(\left(y_{i} \otimes 1\right) \triangleleft S^{-1}\left((k \otimes l)_{(1)}\right) \otimes S^{-1}\left(x_{i}\right) \triangleright(k \otimes l)_{(0)}\right) \\
& \quad=\left(i d \otimes \varepsilon \otimes i d^{2}\right)\left(y_{i} \otimes S^{-1}\left((k \otimes l)_{(1)}\right) \otimes S^{-1}\left(x_{i}\right) \triangleright(k \otimes l)_{(0)}\right) \\
& \quad=y_{i} \otimes S^{-1}\left(x_{i}\right) \triangleright(k \otimes l) \\
& \quad=y_{i} \otimes S^{-1}\left(x_{i}\right) k \otimes l \\
& \quad=x_{i} \otimes y_{i} k \otimes l \quad b y(5.2)
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho^{r}(k \otimes l)=\left(i d^{2} \otimes \varepsilon \otimes i d\right) \psi(1 \otimes 1 \otimes k \otimes l) \\
& \quad=\left(i d^{2} \otimes \varepsilon \otimes i d\right)\left((k \otimes l)_{[0]} \triangleleft S^{-1}\left((1 \otimes 1)_{(1)}\right) \otimes S^{-1}\left((k \otimes l)_{[-1]}\right) \triangleright(1 \otimes 1)_{(0)}\right) \quad b y(5.1) \\
& \quad=\left(i d^{2} \otimes \varepsilon \otimes i d\right)\left((k \otimes l)_{[0]} \triangleleft S^{-1}\left(t_{i}\right) \otimes S^{-1}\left((k \otimes l)_{[-1]}\right) \triangleright\left(1 \otimes s_{i}\right)\right) \\
& \quad=\left(i d^{2} \otimes \varepsilon \otimes i d\right)\left((k \otimes l)_{[0]} \triangleleft S^{-1}\left(t_{i}\right) \otimes S^{-1}\left((k \otimes l)_{[-1]}\right) \otimes s_{i}\right) \\
& \quad=(k \otimes l) \triangleleft S^{-1}\left(t_{i}\right) \otimes s_{i} \\
& \quad=k \otimes l S^{-1}\left(t_{i}\right) \otimes s_{i} \\
& \quad=k \otimes l s_{i} \otimes t_{i} . \quad b y(5.3)
\end{aligned}
$$

Thus

$$
\begin{align*}
& \rho^{l}(k \otimes l)=x_{i} \otimes y_{i} k \otimes l, \tag{5.5}\\
& \rho^{r}(k \otimes l)=k \otimes l s_{i} \otimes t_{i} . \tag{5.6}
\end{align*}
$$

Finally, we verify that (H, R) is triangular. By definition, we need to prove the five equations (QT1) ~ (QT5). For (QT1), we only have to check that $\Delta\left(y_{i}\right) \otimes x_{i}=y_{i} \otimes y_{j} \otimes x_{i} x_{j}$.

$$
\begin{aligned}
\Delta\left(y_{i}\right) & \otimes x_{i}=\left(i d^{3} \otimes \varepsilon\right)\left(\Delta\left(y_{i}\right) \otimes x_{i} \otimes 1\right) \\
& =\left(i d^{3} \otimes \varepsilon\right)\left(\Delta\left(x_{i}\right) \otimes S\left(y_{i}\right) \otimes 1\right) \quad b y(5.4) \\
& =\left(i d^{2} \otimes S \otimes \varepsilon\right)\left(\Delta \otimes i d^{2}\right)\left(x_{i} \otimes y_{i} \otimes 1\right) \\
& =\left(i d^{2} \otimes S \otimes \varepsilon\right)\left(\Delta \otimes i d^{2}\right) \rho^{l}(1 \otimes 1) \\
& =\left(i d^{2} \otimes S \otimes \varepsilon\right)\left(i d \otimes \rho^{l}\right) \rho^{l}(1 \otimes 1) \\
& =\left(i d^{2} \otimes S \otimes \varepsilon\right)\left(x_{i} \otimes \rho^{l}\left(y_{i} \otimes 1\right)\right) \\
& \left.=\left(i d^{2} \otimes S \otimes \varepsilon\right)\left(x_{i} \otimes x_{j} \otimes y_{j} y_{i} \otimes 1\right)\right) \quad b y(5.5)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(i d^{2} \otimes S \otimes \varepsilon\right)\left(y_{i} \otimes y_{j} \otimes S^{-1}\left(x_{j}\right) S^{-1}\left(x_{i}\right) \otimes 1\right)\right) \quad b y(5.2) \\
& =y_{i} \otimes y_{j} \otimes x_{i} x_{j} .
\end{aligned}
$$

Similarly, we can check that (QT2) holds. For (QT3), we only need to show that $h_{2} y_{i} \otimes h_{1} x_{i}=y_{i} h_{1} \otimes x_{i} h_{2}$. Since both ψ and ε are H-module maps, we have

$$
\begin{aligned}
h_{1} x_{i} & \otimes h_{2} y_{i}=(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)\left(h_{1} x_{i} \otimes 1 \otimes h_{2} y_{i} \otimes 1\right) \\
& =(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)\left(h_{1} \triangleright\left(x_{i} \otimes 1\right) \otimes h_{2} \triangleright\left(y_{i} \otimes 1\right)\right) \\
& =(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)\left[h \triangleright\left(x_{i} \otimes 1 \otimes y_{i} \otimes 1\right)\right] \\
& =h \triangleright\left[(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)\left(x_{i} \otimes 1 \otimes y_{i} \otimes 1\right)\right] \\
& =h \triangleright\left[(i d \otimes i d \otimes \varepsilon) \circ \rho^{l}(1 \otimes 1)\right] \\
& =h \triangleright[(i d \otimes \varepsilon \otimes i d \otimes \varepsilon) \psi(1 \otimes 1 \otimes 1 \otimes 1)] \\
& =(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)[h \triangleright \psi(1 \otimes 1 \otimes 1 \otimes 1)] \\
& =(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)[\psi(h \triangleright(1 \otimes 1 \otimes 1 \otimes 1))] \\
& =(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)\left[\psi\left(h_{1} \otimes 1 \otimes h_{2} \otimes 1\right)\right] \\
& =(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)\left[\left(h_{1} \otimes 1\right)_{[-1]} \triangleright\left(h_{2} \otimes 1\right)_{(0)} \otimes\left(h_{1} \otimes 1\right)_{[0]} \triangleleft\left(h_{2} \otimes 1\right)_{(1)}\right] \\
& =(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)\left[x_{i} \triangleright\left(h_{2} \otimes s_{i}\right) \otimes\left(y_{i} h_{1} \otimes 1\right) \triangleleft t_{i}\right] \quad b y(5.5),(5.6) \\
& =(i d \otimes \varepsilon \otimes i d \otimes \varepsilon)\left[x_{i} h_{2} \otimes s_{i} \otimes y_{i} h_{1} \otimes t_{i}\right] \\
& =x_{i} h_{2} \otimes y_{i} h_{1} .
\end{aligned}
$$

For (QT4), we have

$$
\begin{aligned}
\varepsilon\left(R^{1}\right) R^{2} & =(\varepsilon \otimes i d \otimes \varepsilon)\left(R^{1} \otimes R^{2} \otimes 1\right) \\
& =(\varepsilon \otimes i d \otimes \varepsilon)\left(y_{i} \otimes x_{i} \otimes 1\right) \\
& =(\varepsilon \otimes i d \otimes \varepsilon)\left(S^{-1}\left(x_{i}\right) \otimes y_{i} \otimes 1\right) \quad b y(5.2) \\
& =(\varepsilon \otimes i d \otimes \varepsilon)\left(x_{i} \otimes y_{i} \otimes 1\right) \\
& =(\varepsilon \otimes i d \otimes \varepsilon) \rho^{l}(1 \otimes 1) \\
& =1
\end{aligned}
$$

Similarly, we can check that $\varepsilon\left(R^{2}\right) R^{1}=1$. For (QT5), we have

$$
\begin{aligned}
1 \otimes 1 & \otimes 1 \otimes 1=\psi^{2}(1 \otimes 1 \otimes 1 \otimes 1) \\
& =\psi\left((1 \otimes 1)_{[-1]} \triangleright(1 \otimes 1)_{(0)} \otimes(1 \otimes 1)_{[0]} \triangleleft(1 \otimes 1)_{(1)}\right) \\
& =\psi\left(x_{i} \triangleright\left(1 \otimes s_{i}\right) \otimes\left(y_{i} \otimes 1\right) \triangleleft t_{i}\right) \\
& =\psi\left(x_{i} \otimes s_{i} \otimes y_{i} \otimes t_{i}\right) \\
& =\left(x_{i} \otimes s_{i}\right)_{[-1]} \triangleright\left(y_{i} \otimes t_{i}\right)_{(0)} \otimes\left(x_{i} \otimes s_{i}\right)_{[0]} \triangleleft\left(y_{i} \otimes t_{i}\right)_{(1)} \\
& =x_{j} \triangleright\left(y_{i} \otimes t_{i} s_{j}\right) \otimes\left(y_{j} x_{i} \otimes s_{i}\right) \triangleleft t_{j} \\
& =x_{j} y_{i} \otimes t_{i} s_{j} \otimes y_{j} x_{i} \otimes s_{i} t_{j} .
\end{aligned}
$$

Thus, R is invertible and $R^{-1}=x_{i} \otimes y_{i}=t_{i} \otimes s_{i}$.
The converse is Theorem 5.1 and Proposition 5.2. This completes the proof.
As a corollary we have:
Corollary 5.4. Let H be a Hopf algebra with a bijective antipode. Then, for $H_{3} \in \mathcal{L} \mathcal{R}(H)$, the braiding $\psi_{H_{3}, H_{3}}$ is a symmetry if and only if H is cocommutative.

Proof. If the braiding satisfies $\psi_{H_{3}, H_{3}}^{2}=i d$, then by Theorem $5.3(H, R)$ is triangular with $\rho^{l}(1 \otimes 1)=R^{\tau} \otimes 1$. Since $\rho^{l}(k \otimes l)=k_{1} S\left(k_{3}\right) \otimes k_{2} \otimes l$ for any $k, l \in H$, we have $\rho^{l}(1 \otimes 1)=1 \otimes 1 \otimes 1$, so $R=1 \otimes 1$. Thus (QT3) implies that H is cocommutative.

Conversely, assume that H is cocommutative, for any $k, l, g, h \in H$, we have

$$
\begin{aligned}
\psi_{H_{3}, H_{3}}(k \otimes l \otimes g \otimes h) & =(k \otimes l)_{[-1]} \triangleright(g \otimes h)_{(0)} \otimes(k \otimes l)_{[0]} \triangleleft(g \otimes h)_{(1)} \\
& =k_{1} S\left(k_{3}\right) \triangleright\left(g \otimes h_{2}\right) \otimes\left(k_{2} \otimes l\right) \triangleleft h_{1} S\left(h_{3}\right) \\
& =k_{1} S\left(k_{2}\right) \triangleright\left(g \otimes h_{3}\right) \otimes\left(k_{3} \otimes l\right) \triangleleft h_{1} S\left(h_{2}\right) \quad \text { by } H \text { is cocommutative } \\
& =1 \triangleright(g \otimes h) \otimes(k \otimes l) \triangleleft 1 \\
& =g \otimes h \otimes k \otimes l .
\end{aligned}
$$

It is clear that the braiding $\psi_{H_{3}, H_{3}}$ is a symmetry.
If we consider $H \otimes \mathbb{k}$, by Theorem 5.3, we generalize the important result in [1].
Corollary 5.5. Let H be a Hopf algebra with a bijective antipode, and assume that $(H, m, \rho) \in{ }_{H}^{H} \boldsymbol{y} \mathcal{D}$, where m is usual multiplication. Then $\psi_{H, H}$ is a symmetry if and only if there exists $R \in H \otimes H$ so that (H, R) is triangular. And then ρ is induced by R. That is,

$$
\rho(k)=R^{2} \otimes R^{1} k
$$

for any $k \in H$, in particular, $R^{\tau}=\rho(1)$.

6. Yetter-Drinfel'd-Long categories over coquasitriangular Hopf algebras

In this section, we discuss the dual cases of section 5 .
Theorem 6.1. Let (H, ζ) be a coquasitriangular Hopf algebra. Then the category ${ }^{H} \mathcal{M}^{H}$ of H-bicomodules is a Yetter-Drinfel'd-Long subcategory of $\mathcal{L R}(H)$ under the actions $h \triangleright m=\zeta\left(h, m_{[-1]}\right) m_{[0]}$ and $m \triangleleft h=m_{(0)} \zeta\left(h, m_{(1)}\right)$, for any $h \in H$ and $m \in M \in{ }^{H} \mathcal{M}^{H}$.

Proof. First, we prove that (M, \triangleleft) is a right H-module. For any $h, g \in H$ and $m \in M$, we have

$$
\begin{aligned}
(m \triangleleft g) \triangleleft h & =m_{(0)} \triangleleft h \zeta\left(g, m_{(1)}\right) \\
& =m_{(0)(0)} \zeta\left(h, m_{(0)(1)}\right) \zeta\left(g, m_{(1)}\right) \\
& =m_{(0)} \zeta\left(h, m_{(1) 1)} \zeta\left(g, m_{(1) 2}\right)\right. \\
& =m_{(0)} \zeta\left(g h, m_{(1)}\right) \quad b y(\text { CQT2 }) \\
& =m \triangleleft g h,
\end{aligned}
$$

and it is clear that $m \triangleleft 1=m_{(0)} \zeta\left(1, m_{(1)}\right)=m_{(0)} \varepsilon\left(m_{(1)}\right)=m$. Similarly, we can obtain that (M, \triangleright) is a left H-module.

Next, we check the compatible condition of H-bimodule. For any $h, g \in H$ and $m \in M$, we have

$$
\begin{aligned}
(h \triangleright m) \triangleleft g & =\zeta\left(h, m_{[-1]}\right) m_{[0]} \triangleleft g \\
& =\zeta\left(h, m_{[-1]}\right) m_{0} \zeta\left(g, m_{[0](1)}\right) \\
& =\zeta\left(h, m_{(0)[-1]}\right) m_{(0)[0]} \zeta\left(g, m_{(1)}\right) \quad \text { by }(2.2) \\
& =h \triangleright m_{(0)} \zeta\left(g, m_{(1)}\right) \\
& =h \triangleright(m \triangleleft g) .
\end{aligned}
$$

We now check that the four compatible conditions (2.3) \sim (2.6). For any $h \in H$ and $m \in M$, we have

$$
\begin{aligned}
(h \triangleright m)_{(0)} \otimes(h \triangleright m)_{(1)} & =\zeta\left(h, m_{[-1]}\right) m_{0} \otimes(h \triangleright m)_{[0](1)} \\
& =\zeta\left(h, m_{(0)[-1]}\right) m_{(0)[0]} \otimes m_{(1)} \quad b y(2.2)
\end{aligned}
$$

$$
=h \triangleright m_{(0)} \otimes m_{(1)}
$$

Thus Eq.(2.4) holds. For Eq.(2.5), we have

$$
\begin{aligned}
m_{(0)} \triangleleft h_{1} \otimes m_{(1)} h_{2} & =m_{(0)(0)} \zeta\left(h_{1}, m_{(0)(1)}\right) \otimes m_{(1)} h_{2} \\
& =m_{(0)} \otimes \zeta\left(h_{1}, m_{(1) 1}\right) m_{(1) 2} h_{2} \\
& =m_{(0)} \otimes h_{1} m_{(1) 1} \zeta\left(h_{2}, m_{(1) 2}\right) \quad b y(C Q T 3) \\
& =m_{(0)(0)} \zeta\left(h_{2}, m_{(1)}\right) \otimes h_{1} m_{(0)(1)} \\
& =\left(m \triangleleft h_{2}\right)_{(0)} \otimes h_{1}\left(m \triangleleft h_{2}\right)_{(1)} .
\end{aligned}
$$

Similarly, we can verify that Eq.(2.3) and (2.6) hold.
Finally, we have to prove that any morphisms in ${ }^{H} \mathcal{M}^{H}$ are both left H-linear and right H-linear. For this purpose, we take any $M, N \in{ }^{H} \mathcal{M}^{H}$, and assume that $f: M \rightarrow N$ is a morphism in ${ }^{H} \mathcal{M}^{H}$, we have

$$
f(m \triangleleft h)=f\left(m_{(0)}\right) \zeta\left(h, m_{(1)}\right)=f(m)_{(0)} \zeta\left(h, f(m)_{(1)}\right)=f(m) \triangleleft h .
$$

So f is right H-linear. Similarly, we can obtain that f is left H-linear.
This completes the proof.
Proposition 6.2. Let H be a cotriangular Hopf algebra. Then the Yetter-Drinfel'd-Long subcategory ${ }^{H} \mathcal{M}^{H}$ defined above is symmetric.

Proof. For any $m \in M$ and $n \in N$, we have

$$
\begin{aligned}
\psi_{N, M} \circ \psi_{M, N}(m \otimes n)= & \psi_{N, M}\left(m_{[-1]} \triangleright n_{(0)} \otimes m_{[0]} \triangleleft n_{(1)}\right) \\
= & \psi_{N, M}\left(\zeta\left(m_{[-1]}, n_{(0)[-1]}\right) n_{(0)[0]} \otimes m_{0} \zeta\left(n_{(1)}, m_{[0](1)}\right)\right) \\
= & \zeta\left(m_{[-1]}, n_{(0)[-1]}\right) \zeta\left(n_{(1)}, m_{[0](1)}\right) n_{(0)[0][-1]} \triangleright m_{0(0)} \otimes n_{(0)[0][0]} \triangleleft m_{0(1)} \\
= & \zeta\left(m_{[-1]}, n_{(0)[-1] 1}\right) \zeta\left(n_{(1),}, m_{[0](1) 2}\right) n_{(0)[-1] 2} \triangleright m_{0} \otimes n_{(0)[0]} \triangleleft m_{[0](1) 1} \\
= & \zeta\left(m_{(0)[-1]}, n_{[-1] 1}\right) \zeta\left(n_{[0](1)}, m_{(1) 2}\right) n_{[-1] 2} \triangleright m_{(0)[0]} \otimes n_{0} \triangleleft m_{(1) 1} \quad b y(2.2) \\
= & \zeta\left(m_{(0)[-1]}, n_{[-1] 1}\right) \zeta\left(n_{[0](1)}, m_{(1) 2}\right) \\
& \zeta\left(n_{[-1] 2}, m_{(0)[0][-1]}\right) m_{(0)[0][0]} \otimes n_{0(0)} \zeta\left(m_{(1) 1}, n_{0(1)}\right) \\
= & \zeta\left(m_{(0)[-1] 1}, n_{[-1] 1}\right) \zeta\left(n_{[-1] 2}, m_{(0)[-1] 2}\right) \\
& \zeta\left(m_{(1) 1}, n_{[0](1) 1)} \zeta\left(n_{[0](1) 2}, m_{(1) 2}\right) m_{(0)[0]} \otimes n_{0} \quad b y(C Q T 5)\right. \\
= & m \otimes n .
\end{aligned}
$$

So the subcategory ${ }^{H} \mathcal{M}^{H}$ is symmetric.
Theorem 6.3. Let H be a Hopf algebra with a bijective antipode, and assume that $\left(H \otimes H, \triangleright=\rightharpoonup \otimes i d, \rho^{l}=\Delta \otimes i d, \triangleleft=\right.$ $\left.i d \otimes \leftharpoonup, \rho^{r}=i d \otimes \Delta\right) \in \mathcal{L R}(H)$, where Δ is usual comultiplication and $-(\leftharpoonup$, resp.) is a left (right, resp.) action on H. Then $\psi_{H \otimes H, H \otimes H}$ is a symmetry if and only if there exists a braiding $\zeta: H \otimes H \rightarrow \mathbb{k}$ so that (H, ζ) is cotriangular Hopf algebra. And then $\zeta(k, g) \zeta(h, l)=(\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes \varepsilon) \psi(k \otimes l \otimes g \otimes h)$, for any $k, l, g, h \in H$. That is,

$$
\begin{aligned}
& h \triangleright(k \otimes l)=h \rightharpoonup k \otimes l=\zeta\left(h, k_{1}\right) k_{2} \otimes l \\
& (k \otimes l) \triangleleft h=k \otimes l \leftharpoonup h=k \otimes l_{1} \zeta\left(h, l_{2}\right) .
\end{aligned}
$$

Proof. Assume that $\psi=\psi_{H \otimes H, H \otimes H}$ is a symmetry, then for any $k, l, g, h \in H$,

$$
\begin{aligned}
\psi(k \otimes l \otimes g \otimes h) & =(k \otimes l)_{[-1]} \triangleright(g \otimes h)_{(0)} \otimes(k \otimes l)_{[0]} \triangleleft(g \otimes h)_{(1)} \\
& =(g \otimes h)_{[0]} \triangleleft S^{-1}\left((k \otimes l)_{(1)}\right) \otimes S^{-1}\left((g \otimes h)_{[-1]}\right) \triangleright(k \otimes l)_{(0)}
\end{aligned}
$$

i.e.

$$
\begin{align*}
\psi(k \otimes l \otimes g \otimes h)= & k_{1} \rightharpoonup g \otimes h_{1} \otimes k_{2} \otimes l \leftharpoonup h_{2} \\
& =g_{2} \otimes h \leftharpoonup S^{-1}\left(l_{2}\right) \otimes S^{-1}\left(g_{1}\right) \rightharpoonup k \otimes l_{1} \tag{6.1}
\end{align*}
$$

Define for any $k, l, g, h \in H, \zeta(k, g) \zeta(h, l)=(\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes \varepsilon) \psi(k \otimes l \otimes g \otimes h)$. Let $l=h=1$, and apply $\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes \varepsilon$ to Eq.(6.1), we get

$$
\begin{equation*}
\zeta(k, g)=\varepsilon(k \rightharpoonup g)=\varepsilon\left(S^{-1}(g) \rightharpoonup k\right)=\zeta\left(S^{-1}(g), k\right) \tag{6.2}
\end{equation*}
$$

By applying $\zeta(k, g)=\zeta\left(S^{-1}(g), k\right)$ to $\zeta(g, S(k))$, we get

$$
\begin{equation*}
\zeta(k, g)=\zeta(g, S(k)) \tag{6.3}
\end{equation*}
$$

Similarly, we can get that

$$
\begin{equation*}
\zeta(h, l)=\varepsilon(l \leftharpoonup h)=\varepsilon\left(h \leftharpoonup S^{-1}(l)\right)=\zeta\left(S^{-1}(l), h\right)=\zeta(l, S(h)) . \tag{6.4}
\end{equation*}
$$

Moreover, let $l=h=1$, and apply id $\otimes \varepsilon \otimes \varepsilon \otimes \varepsilon$ to Eq.(6.1), we get by (6.2), that for any $k, g \in H$,

$$
\begin{equation*}
k \rightharpoonup g=\zeta\left(S^{-1}\left(g_{1}\right), k\right) g_{2}=\zeta\left(k, g_{1}\right) g_{2} \tag{6.5}
\end{equation*}
$$

Similarly, we can get by (6.4), that for any $l, h \in H$,

$$
l \leftharpoonup h=\zeta\left(S^{-1}\left(l_{2}\right), h\right) l_{1}=\zeta\left(h, l_{2}\right) l_{1} .
$$

Thus we have

$$
\begin{aligned}
& h \triangleright(k \otimes l)=h \rightharpoonup k \otimes l=\zeta\left(h, k_{1}\right) k_{2} \otimes l, \\
& (k \otimes l) \triangleleft h=k \otimes l \leftharpoonup h=k \otimes l_{1} \zeta\left(h, l_{2}\right) .
\end{aligned}
$$

By definition of cotriangular, we need to prove the five equations (CQT1) ~ (CQT5). First, we prove (CQT2). For any $h, g, l \in H$, we have

$$
\begin{aligned}
\zeta(h g, l) & =\varepsilon(h g \rightharpoonup l) \\
& =(\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes \varepsilon)\left(h_{1} \rightharpoonup(g \rightharpoonup l) \otimes 1 \otimes h_{2} \otimes 1\right) \\
& =(\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes \varepsilon)\left(h_{1} \triangleright(g \rightharpoonup l \otimes 1) \otimes\left(h_{2} \otimes 1\right) \triangleleft 1\right) \\
& =(\varepsilon \otimes \varepsilon \otimes \varepsilon \otimes \varepsilon) \psi(h \otimes 1 \otimes g \rightharpoonup l \otimes 1) \\
& =\zeta(h, g \rightharpoonup l) \zeta(1,1) \\
& =\zeta\left(h, \zeta\left(g, l_{1}\right) l_{2}\right) \quad \text { by }(6.5) \\
& =\zeta\left(h, l_{2}\right) \zeta\left(g, l_{1}\right) .
\end{aligned}
$$

Next, we prove (CQT1). For any $h, g, l \in H$, we have

$$
\begin{aligned}
\zeta(h, g l) & =\zeta(g l, S(h)) \quad \text { by }(6.3) \\
& =\zeta\left(g, S(h)_{2}\right) \zeta\left(l, S(h)_{1}\right) \quad b y(C Q T 2) \\
& =\zeta\left(g, S\left(h_{1}\right)\right) \zeta\left(l, S\left(h_{2}\right)\right) \\
& =\zeta\left(h_{1}, g\right) \zeta\left(h_{2}, l\right) . \quad b y(6.3)
\end{aligned}
$$

We prove now (CQT3).

$$
\begin{aligned}
h_{1} g_{1} \zeta\left(h_{2}, g_{2}\right) & =h_{1} g_{1} \varepsilon\left(h_{2} \rightharpoonup g_{2}\right) \quad b y(6.2) \\
& =(i d \otimes \varepsilon \otimes \varepsilon)\left(h_{1} g_{1} \otimes h_{2} \rightharpoonup g_{2} \otimes 1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(i d \otimes \varepsilon \otimes \varepsilon)\left(h_{1}(g \otimes 1)_{[-1]} \otimes h_{2} \triangleright(g \otimes 1)_{[0]}\right) \\
& =(i d \otimes \varepsilon \otimes \varepsilon)\left(\left(h_{1} \triangleright(g \otimes 1)_{[-1]} h_{2} \otimes\left(h_{1} \triangleright(g \otimes 1)_{[0]}\right) \quad\right.\right. \text { by (2.3) } \\
& =(i d \otimes \varepsilon \otimes \varepsilon)\left(\left(h_{1} \rightharpoonup g \otimes 1\right)_{[-1]} h_{2} \otimes\left(h_{1} \rightharpoonup g \otimes 1\right)_{[0]}\right) \\
& =(i d \otimes \varepsilon \otimes \varepsilon)\left(\left(h_{1} \rightharpoonup g\right)_{1} h_{2} \otimes\left(h_{1} \rightharpoonup g\right)_{2} \otimes 1\right) \\
& =\left(h_{1} \rightharpoonup g\right) h_{2} \\
& =\zeta\left(h_{1}, g_{1}\right) g_{2} h_{2} . \quad \text { by }(6.5)
\end{aligned}
$$

It is easy to check that (CQT4) and (CQT5) hold.
The converse is Theorem 6.1 and Proposition 6.2. This completes the proof.
As a corollary we have:
Corollary 6.4. Let H be a Hopf algebra with a bijective antipode. Then, for $H_{4} \in \mathcal{L} \mathcal{R}(H)$, the braiding $\psi_{H_{4}, H_{4}}$ is a symmetry if and only if H is commutative.

Proof. If the braiding satisfies $\psi_{H_{4}, H_{4}}^{2}=i d$, then by $(6.2) \zeta(k, g)=\varepsilon(k \rightharpoonup g)=(\varepsilon \otimes \varepsilon)(k \triangleright(g \otimes 1))=(\varepsilon \otimes$ $\varepsilon)\left(k_{1} g S\left(k_{2}\right) \otimes 1\right)=\varepsilon(g) \varepsilon(k)$ for any $k, g \in H$. Thus by Theorem $6.3(H, \varepsilon \otimes \varepsilon)$ is a cotriangular Hopf algebra, which by (CQT3) implies that H is commutative.

Conversely, assume that H is commutative, for any $k, l, g, h \in H$, we have

$$
\begin{aligned}
\psi_{H_{4}, H_{4}}(k \otimes l \otimes g \otimes h) & =(k \otimes l)_{[-1]} \triangleright(g \otimes h)_{(0)} \otimes(k \otimes l)_{[0]} \triangleleft(g \otimes h)_{(1)} \\
& =k_{1} \triangleright\left(g \otimes h_{1}\right) \otimes\left(k_{2} \otimes l\right) \triangleleft h_{2} \\
& =k_{1} g S\left(k_{2}\right) \otimes h_{1} \otimes k_{3} \otimes h_{2} l S\left(h_{3}\right) \\
& =k_{1} S\left(k_{2}\right) g \otimes h_{1} \otimes k_{3} \otimes l h_{2} S\left(h_{3}\right) \quad \text { by } H \text { is commutative } \\
& =g \otimes h \otimes k \otimes l .
\end{aligned}
$$

It is clear that the braiding $\psi_{H_{4}, H_{4}}$ is a symmetry.
If we consider $H \otimes \mathbb{k}$, by Theorem 6.3, we generalize the another important result in [1].
Corollary 6.5. Let H be a Hopf algebra with a bijective antipode, and assume that $(H, \rightharpoonup, \Delta) \in_{H}^{H} \boldsymbol{y} \mathcal{D}$, where Δ is usual comultiplication and \rightharpoonup is a left action on H. Then $\psi_{H, H}$ is a symmetry if and only if there exists a braiding $\zeta: H \otimes H \rightarrow \mathbb{k}$ so that (H, ζ) is cotriangular Hopf algebra. And then $\zeta(k, g)=(\varepsilon \otimes \varepsilon) \psi(k \otimes g)$, for any $k, g \in H$. That is,

$$
k \rightharpoonup g=\zeta\left(k, g_{1}\right) g_{2}
$$

References

[1] M. Cohen, S. Westreich, Determinants and symmetries in "Yetter-Drinfeld" categories, Appl. Categ. Structures 6(2)(1998) 267-289.
[2] A. Joyal, R. Street, Braided tensor categories, Adv. Math. 102(1)(1993) 20-78.
[3] C. Kassel, Quantum groups, Graduate Texts in Mathematics, Springer, New York, 1995.
[4] D.W. Lu, X.H. Zhang, Hom-L-R-smash biproduct and the category of Hom-Yetter-Drinfel'd-Long bimodules, J. Algebra Appl. 17(7)(2018) 1850133.
[5] T.S. Ma, L.L. Liu, L.Y. Chen, Symmetries of (m,n)-Yetter-Drinfeld categories, J. Algebra Appl. 17(7)(2018) 1850135.
[6] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Mathematics, Washington, DC, 1993.
[7] B. Pareigis, Symmetric Yetter-Drinfeld categories are trivial, J. Pure Appl. Algebra 155(2001) 91.
[8] F. Panaite, M.D. Staic, F. Van Oystaeyen, Pseudosymmetric braidings, twines and twisted algebras, J. Pure Appl. Algebra 214(6)(2010) 867-884.
[9] F. Panaite, F. Van Oystaeyen, L-R-smash biproducts, double biproducts and a braided category of Yetter-Drinfeld-Long bimodules, Rocky Mountain J. Math. 40(6)(2010) 2013-2024.
[10] F. Panaite, M.D. Staic, More examples of pseudosymmetric braided categories, J. Algebra Appl. 12(4)(2013) 1250186.
[11] D.E. Radford, The structure of Hopf algebras with a projection, J. Algebra 92(2)(1985) 322-347.
[12] S.X. Wang, S.J. Guo, Symmetries and the u-condition in Hom-Yetter-Drinfeld categories, J. Math. Phys. 55(8)(2014) 081708.
[13] X.F. Zhao, G.H. Liu, S.H. Wang, Symmetric pairs in Yetter-Drinfeld categories over weak Hopf algebras, Comm. Algebra 43(10)(2015) 4502-4514.

[^0]: 2020 Mathematics Subject Classification. Primary 16T05, 18 W 05.
 Keywords. Symmetric category, Yetter-Drinfel'd-Long category, The u-condition, Pseudosymmetry, (co)quasitriangular Hopf algebra

 Received: 30 November 2020; Revised: 30 January 2021; Accepted: 02 February 2021
 Communicated by Dijana Mosić
 Corresponding author: Shuanhong Wang
 Research supported by the National Natural Science Foundation of China (Grant No. 11871144) and the NNSF of Jiangsu Province (No. BK20171348)

 Email address: shuanhwang@seu.edu.cn (Shuanhong Wang)

