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Abstract. In this article, the approximation properties of bivariate Szász-Mirakjan type operators are
studied for the function of two variables and rate of convergence of the bivariate operators is determined
in terms of total and partial modulus of continuity. An associated GBS (Generalized Boolean Sum)-form
of the bivariate Szász-Mirakjan type operators is considered for the function of two variables to find an
approximation of B-continuous and B-differentiable function in the Bögel’s space. Further, the degree of
approximation of the GBS type operators is found in terms of mixed modulus of smoothness and functions
belonging to the Lipschitz class as well as a pioneering result is obtained in terms of Peetre K-functional.
Finally, the rate of convergence of the bivariate Szász-Mirakjan type operators and the associated GBS type
operators are examined through graphical representation for the finite and infinite sum which shows that
the rate of convergence of the associated GBS type operators is better than the bivariate Szász-Mirakjan
type operators and also a comparison is taken place for the bivariate operators with bivariate Kantorovich
operators.

1. Introduction

Approximation properties form an integral part in the study of approximation theory that includes
convergence, rate of convergence, the order of approximation etc. Applications and convergence based
discussion of the linear positive operators defined over different types of interval (finite or infinite) on R+,
have been discussed by many researchers. In 1912, first of all, Bernstein proposed an operator, so-called
Bernstein operator of one variable which approximates the functions defined over a finite interval [0, 1].

In the study of [1–4], it is found that the Bernstein operators have been converted into bivariate Bernstein
operators for function of two variables over [0, 1]× [0, 1] with their graphical representation in the study of
the approximation properties for the function of two variables.

Many results related to approximations theory have also been discussed by many authors [5–9]. Despite
these, if we move towards the operators defined over an infinite interval, then we look at the Szász-Mirakjan
operators, which were introduced and studied by Mirakjan and Szász [10, 11] independently and so many
work done in a bivariate direction of these operators to generalize and check the behavior of the operators
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Received: 21 November 2020; Revised: 26 August 2021; Accepted: 13 September 2021
Communicated by Miodrag Spalević
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for the function of two variables. Later on Szász-Mirakjan operators have been discussed theoretically,
numerically as well graphically by many authors [12–15] using bivariate extension for approximation of
the functions of two variables.

Similarly, for the bivariate operators, one more property has been studied in Bögel space and that is
the property of generalized boolean sum of the bivariate operators, so called GBS-type operators while the
functions are considered to be B-continuous. In 1934 and in 1935, Bögel [16, 17] introduced Bögel space,
after that Dobrescu and Matei [18], estimated the rate of convergence of associated GBS-type operators of
the bivariate Bernstein operators in the Bögel space. In 1988, Badea et al. [19] gave a quantitative variant
of Korovkin type theorem for B-continuous function and estimated the degree of approximation by certain
linear positive operators. After that, in 1991, quantitative and non-quantitative Korovkin type theorem
was proved by Badea and Cottin [20] in the Bögel space. On other hand, the approximation properties
of bivariate Bernstein type operators and their associated GBS operators have been examined by many
researchers (see [21–25]).

In 2015, Bărbosu and Muraru [26] established some pioneering results through the associated GBS-type
operators of Bernstein-Schurer-Stancu type operators using q-integers. Bărbosu et al. [27] introduced GBS-
Durrmeyer type operators based on q-integers. In 2016, Agrawal and Ispir [28] estimated the degree of
approximation of the Chlodowsky-Szász-Charlier type operators for the function of two variables.

Yadav et al. [29] proposed bivariate Szász-Mirakjan type operators for the function of two variables.
They studied the approximation properties as well as rate of convergence of proposed bivariate operators in
polynomial weighted spaces and obtained a Voronovskaya type theorem as well as discussed simultaneous
approximation property. The bivariate Szász-Mirakjan type operators are considered for continuous and
bounded functions on [0,∞) × [0,∞) as below:

Ŷm,n,a( f ; x, y) =
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sa
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, m,n ∈N, (x, y) ∈ X = [0,∞) × [0,∞).

Remark 1.1. For all m,n ∈ N, above operator (1) reproduces the functions 1 and ax+y (a > 1 fixed), for all
x, y ∈ [0,∞).

The main purpose of this article is to investigate some results related to bivariate operators (1), like order of
approximation in terms of total modulus of continuity and partial modulus of continuity. For further study,
the bivariate operators (1) are generalized into GBS (Generalized boolean Sum) form to determine the better
rate of convergence than proposed bivariate operators and to establish the convergence properties of the
GBS-type operators in the Bögel space with some approximations theorems in terms of mixed modulus of
smoothness with the aid of Lipschitz classes. The graphical and numerical approaches are presented to
support the approximation results and a comparison of bivariate operator (1) with its associated GBS-type
operator in numerical sense is presented well. The best part of the this article is that, the graphical repre-
sentation is shown for finite sum to determine the accuracy of the rate of convergence in its convergence
behaviour. Finally, we have shown the comparison result of the bivariate operators (1) with bivariate
Kantorovich operators of Szász-Mirakjan operators as well as comparison result of the associated GBS-type
operator with the GBS operator of Mirakjan-Favard-Szász to check the accuracy of the rate of convergence
in terms of its numerical values.

For our main results, we need some basic lemmas. Consider the function ei j = xiy j such that i, j ∈ {0, 1}
and i + j ≤ 2. Then the following lemma holds:
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Lemma 1.2. Let x, y ≥ 0 and for each m,n ∈N. Then the following results hold:
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Ŷm,n,a(e20; x, y) =
x log(a)

(
a

1
m + x log(a) − 1

)
m2

(
a

1
m − 1

)2 (4)
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Proof. Here, we have x, y ≥ 0 and m,n ∈N, then
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Similarly, we can prove other results.

Lemma 1.3. For every x, y ∈ X = [0,∞) × [0,∞) and m,n ∈N, it gives the following results:
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Proof. Using Lemma 1.2, for every x, y ∈ X and for all m,n ∈N, we have
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=
x log(a)

(
a

1
m + x log(a) − 1

)
m2

(
a

1
m − 1

)2 − 2x

 x log(a)

m
(
a

1
m − 1

)  − 2x

=
x
(
m2x

(
a

1
m − 1

)2
−

(
a

1
m − 1

)
log(a)(2mx − 1) + x(log a)2

)
m2

(
a

1
m − 1

)2 .



R. Yadav et al. / Filomat 35:14 (2021), 4789–4809 4793

Similarly, other equalities can be proved.

Lemma 1.4. For all x, y ≥ 0, the following inequalities hold true:
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Ŷm,n,a((t − x)2; x, y) =
x
(
m2x

(
a

1
m − 1

)2
−

(
a

1
m − 1

)
log(a)(2mx − 1) + x(log a)2

)
m2

(
a

1
m − 1

)2

= x

x

 log a

m
(
a

1
m − 1

) 
2

−
2x log a

m
(
a

1
m − 1

) + x +
log a

m2
(
a

1
m − 1

)


= x

x

 log a

m
(
a

1
m − 1

) − 1


2

+
log a

m2
(
a

1
m − 1

)


≤ x
( x

m
+

1
m

)
=

x(x + 1)
m

.

Similarly, other inequality can be proved.

Remark 1.5. For all (x, y) ∈ [0, c] × [0, d], where 0 ≤ x ≤ c and 0 ≤ y ≤ d, we have
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where λx, λy are positive constants.

Proof. Using Lemma 1.4, we can obtain the required results.

Lemma 1.6. For all x, y ∈ [0, c] × [0, d] and m,n ∈N, following inequalities hold true
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where Mx,My are positive constants.
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Proof. By Lemma 1.3, we have
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Similarly, it can be proved that
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2. Basic properties of the bivariate operators

For determining the rate of convergence of the bivariate operators defined by (1) in terms of modulus
of continuity, here it is defined the modulus of continuity. Let f (x, y) ∈ CB(X = [0,∞) × [0,∞)), be the space
of all continuous and bounded function defined on X = [0,∞) × [0,∞). Then the total (complete) modulus
of continuity for the function of two variables can be defined as:

ω( f , δ) = sup{| f (t, s) − f (x, y)| :
√

(t − x)2 + (s − y)2 ≤ δ, (t, s) ∈ X, δ > 0} (10)

and the partial modulus of continuity can be defined as [30]:

ω1( f , δ) = sup{| f (u1, y) − f (u2, y)| : |u1 − u2| ≤ δ, δ > 0}, (11)
ω2( f , δ) = sup{| f (x, v1) − f (x, v2)| : |v1 − v2| ≤ δ, δ > 0}. (12)

Following theorem will show the rate of convergence of the bivariate operators (1) with the help of
modulus of continuity.

Theorem 2.1. If bivariate operators Ŷm,n,a( f ; x, y) defined by (1) are linear and positive, then the following relations
hold:

|Ŷm,n,a( f ; x, y) − f (x, y)| ≤ 2ω( f ; δm,n), (13)
|Ŷm,n,a( f ; x, y) − f (x, y)| ≤ 2{ω1( f , δm) + ω2( f , δn)}, (14)

where ω is the total modulus of continuity and ω1, ω2 are the partial modulus of continuity with respect to x, y
respectively.
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Proof. Using the definition of modulus of continuity, we can write
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next one step will give the required result.
Now to prove the second part of this theorem, we use the properties (11), (12) and with the help of
Cauchy-Schwartz inequality, we get:
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hence, by using Inequality 15, the required result can be obtained.
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2.1. Some basic definitions for associated GBS (Generalized Boolean Sum) operators

In recent years, the study of generalized Boolean sum (GBS) operators of certain linear positive oper-
ators is an interesting topic in approximation theory and function theory. In order to make analysis in
multidimensional spaces, Karl Bögel introduced the concepts of B-continuous and B-differentiable function
in [16, 17]. In [31], the authors discussed some significance role of the Bögel space. They proved that the
space of all bounded Bögel functions is isometrically isometric with the completion of the blending function
space with respect to suitable norm. Also the main importance of the Bögel space is that the functions which
are not continuous in general but are B-continuous and that can also be approximated by the operators.

In this subsection, some basic definitions are defined for associated GBS-type operators in the Bögel
space and their related properties are discussed.

Definition 2.2. B-Continuous: Consider two compact intervals A1,A ⊂ R, a function f : A1 × A → R is said to
be B-continuous function at a point (u0, v0) ∈ A1 × A, if

lim
(u,v)→(u0,v0)

∆ f ((u, v), (u0, v0)) = 0, (18)

where ∆ f ((u, v), (u0, v0)) = f (u, v)− f (u, v0)− f (u0, v) + f (u0, v0) and the set of all B-continuous function is denoted
by Cb(A1 × A).

Definition 2.3. B-Bounded: A real valued function f defined on A1 × A is said to be B-Bounded, if there exists a
positive constantM such that

∆ f ((u, v), (u0, v0)) ≤ M, (19)

denoted by Bb(A1 × A).

Definition 2.4. B-Differentiable: A function f is called B-Differentiable iff

DB f (u0, v0) = lim
(u,v)→(u0,v0)

∆ f ((u, v), (u0, v0))
(u − u0)(v − v0)

, (20)

provided the limit exists and finite where the set of all B-differentiable functions is denoted by Db(A1 × A). For more
details see [16, 17].

Motivated by cited papers in introduction part, here, we define the associated GBS-type operators of the
defined bivariate operators (1) to investigate their approximation properties in the Bögel space. The main
motive of this part is to determine the convergence results of the GBS-type operators defined by (21) along
with their properties by theoretical, numerical as well as graphical sense. So, before the discussion of their
properties, first we construct here the GBS-type operators of the bivariate operators (1).

Consider two compact intervals A1,A ⊂ R and for any point (x, y) ∈ A1 × A, the Boolean sum of the
function f : A1 × A → R can be defined as ∆ f ((x, y), (t, s)) = f (x, y) − f (x, t) − f (s, y) + f (t, s) at a point
(t, s) ∈ A1 × A. Then the associated GBS (Generalized Boolean Sum)-type operators of Ŷm,n,a( f ; x, y) can be
expressed as

B̂Y
a
m,n( f ; x, y) = Ŷm,n,a( f (x, s) + f (t, y) − f (t, s))

=

∞∑
k1=0

∞∑
k2=0

sa
m,n(x, y)

(
f
(
x,

k2

n

)
+ f

(
k1

m
, y

)
− f

(
k1

m
,

k2

n

) )
, (21)

where f ∈ Cb(Xb = [0, c] × [0, d]).
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2.2. Degree of the approximation of the GBS-type operators

In this subsection, we discuss the rate of convergence of the GBS-type operators with the help of modulus
of smoothness in a Bögel space, and get a relation using the mixed modulus of smoothness. Now, to define
the modulus of smoothness, we assume that the function f ∈ Cb(Xb = [0, c] × [0, d]). The property of mixed
modulus of smoothness is same as the modulus of continuity, which can be defined as

ωB( f ; δ1, δ2) = sup{|∆ f (t, s; x, y)| : |t − x| < δ1, |s − y| < δ2, (x, y), (t, s) ∈ Xb = [0, c] × [0, d]}, (22)

for any (δ1, δ2) ∈ X = [0,∞) × [0,∞) and having property

ωB( f ; δm, δn)→ 0, as m,n→∞. (23)

Remark 2.5. The property of the modulus of smoothness can be defined as:

ωB( f ;µ1δ1, µ2δ2) = (1 + µ1)(1 + µ2)ωB( f ; δ1, δ2), µ1, µ2 > 0. (24)

Theorem 2.6. Let f ∈ Cb(Xb) and B̂Y
a
m,n( f ; x, y) be linear positive operators defined by (21). Then the following

inequality holds:

|B̂Y
a
m,n f )(x, y) − f (x, y)| ≤ 4ωB( f ; δ′m, δ

′

n). (25)

Proof. With the help of Remark 2.5, one can write as:

|∆ f (t, s; x, y)| ≤ ωB( f ; δ1, δ2)

≤

(
1 +
|t − x|
δ1

)(
1 +
|s − y|
δ2

)
ωB( f ; δ1, δ2), δ1, δ2 ≥ 0.

Using the property of the difference function ∆ f (t, s; x, y) and applying the operators (1), we get

B̂Y
a
m,n( f ; x, y) = f (x, y)Ŷm,n,a(1, x, y) − Ŷm,n,a(∆ f (t, s; x, y), x, y), (26)

Using Cauchy-Schwartz inequality in (26), we obtain

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤ Ŷm,n,a(|∆ f (t, s; x, y)|; x, y)

≤

(
Ŷm,n,a(e00; x, y) +

1
δ1

Ŷm,n,a(|t − x|; x, y)
)

×

(
Ŷm,n,a(e00; x, y) +

1
δ2

Ŷm,n,a(|s − y|; x, y)
)
ωB( f ; δ1, δ2)

≤

(
1 +

1
δ1

√
Ŷm,n,a((t − x)2; x, y) +

1
δ2

√
Ŷm,n,a((s − y)2; x, y)

+
1
δ1δ2

√
Ŷm,n,a((t − x)2; x, y)

√
Ŷm,n,a((s − y)2; x, y)

)
ωB( f ; δ1, δ2).

Now by using Lemma 1.4, and choosing δ1 = δ
′

m, δ2 = δ
′

n, the desired results can be obtained.

Next we will find the degree of approximation of the GBS-type operators defined by (21), by means of
B-continuous function belonging to the Lipschitz class and it can be defined as:

LipM(µ1, µ2) = { f ∈ Cb(Xb) : |∆ f ((u, v), (u0, v0))| ≤M|u − u0|
µ1 |v − v0|

µ2 , µ1, µ2 ∈ (0, 1]}, (27)

where (u, v), (u0, v0) ∈ Xb and M > 0.
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Theorem 2.7. If f ∈ LipM(µ1, µ2), then there exists a positive constant M, such that

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤Mδ

′
µ1
2

m δ
′
µ2
2

n , (28)

where δ′m =

√
x(x+1)

m , δ′n =

√
y(y+1)

n .

Proof. By using the linearity property of GBS-type operators (21) and by definition of B̂Y
a
m,n( f ; x, y), we can

write

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤ Ŷm,n,a(|∆ f ((t, s), (x, y))|; x, y)

≤ MŶm,n,a(|u − u0|
µ1 |v − v0|

µ2 ; x, y)
= MŶm,n,a(|t − x|µ1 ; x, y)Ŷm,n,a(|s − y|µ2 ; x, y),

Using Hölder’s inequality with l1 = 2
µ1
, r1 = 2

2−µ1
and l2 = 2

µ2
, r2 = 2

2−µ2
, in the next step, the required result

can be obtained as

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤ M(Ŷm,n,a((t − x)2; x, y))

µ1
2 (Ŷm,n,a((s − y)2; x, y))

µ2
2

≤ Mδ
′
µ1
2

m δ
′
µ2
2

n .

Hence proved.

Next, the rate of convergence of associated GBS-type operators can be obtained, when the function is
B-differentiable, and it is defined by (20).

Lemma 2.8. For any x, y ≥ 0 and for all m,n ∈N, we have

Ŷm,n,a((· − x)2i(? − y)2 j; x, y) = Ŷm,n,a((· − x)2i); x, y)Ŷm,n,a(? − y)2 j; x, y), ∀ i, j ∈N ∪ {0}.

Proof. Given that x, y ≥ 0 and n,m ∈N then, we have

Ŷm,n,a((· − x)2i(? − y)2 j; x, y) =

∞∑
k1=0

∞∑
k2=0

sa
m,n(x, y)

(
k1

m
− x

)2i (k2

n
− y

)2 j

=

∞∑
k1=0

sa
m(x, y)

(
k1

m
− x

)2i ∞∑
k2=0

sa
m(x, y)

(
k2

n
− y

)2 j

= Ŷm,n,a((· − x)2i); x, y)Ŷm,n,a(? − y)2 j; x, y).

Hence proved.

Theorem 2.9. If f ∈ Db(Xb) and DB f ∈ Bb(Xb), then there exists a positive constant M1, such that

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤

M4
√

mn

{
3M3‖DB f ‖ + ωB

(
DB f ;

1
√

m
,

1
√

n

) }
(29)

Proof. Using mean value theorem for B-differentiable functions, it can be written as

DB f (β, γ) =
∆ f ((t, s), (x, y))
(t − x)(s − y)

, where β ∈ (t, x); γ ∈ (s, y). (30)

By using the property of ∆ f ((t, s), (x, y)), it gives:

DB f (β, γ) = ∆DB f ((β, γ), (x, y)) + DB f (x, γ) + DB f (β, y) −DB f (x, y). (31)
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Since DB f ∈ Bb(Xb), so by using (31) and (30), we get

|Ŷm,n,a(∆ f ((t, s), (x, y)); x, y)| = |Ŷm,n,a((t − x)(s − y)DB f (β, γ)); x, y)|

≤ Ŷm,n,a(|(t − x)||(s − y)||∆DB f (β, γ), (x, y))|; x, y)

+Ŷm,n,a(|t − x||s − y|(|DB f (x, γ)| + |DB f (β, y)| − |DB f (x, y)|); x, y)

≤ Ŷm,n,a(|t − x||y − s|ωB(DB f ; |β − x|, |γ − y|); x, y)

+3‖DB f ‖Ŷm,n,a(|t − x||y − s|; x, y),

as β ∈ (x, t) and γ ∈ (y, s) (already assumed) and with the property of modulus, for hm, hn > 0, we have

ωB(DB f ; |β − x|, |γ − y|) ≤ ωB(DB f ; |t − x|, |s − y|)

≤

(
1 +
|t − x|

hm

) (
1 +
|s − y|

hn

)
ωB(DB f ; hm, hn).

Therefore,

|Ŷm,n,a(∆ f ((t, s), (x, y)); x, y)| ≤ Ŷm,n,a

(
|t − x||y − s|

( (
1 +
|t − x|

hm

) (
1 +
|s − y|

hn

)
ωB(DB f ; hm, hn)

)
; x, y

)
+3‖DB f ‖Ŷm,n,a(|t − x||y − s|; x, y). (32)

Since

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤ Ŷm,n,a(|∆ f ((t, s), (x, y))|; x, y), (33)

Using Inequalities 32, 33 and with the help of Cauchy-Schwartz inequality, we get

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤

{ (
Ŷm,n,a((t − x)2(s − y)2; x, y)

) 1
2

+ h−1
m

(
Ŷm,n,a((t − x)4(s − y)2; x, y)

) 1
2

+h−1
n

(
Ŷm,n,a((t − x)2(s − y)4; x, y)

) 1
2

+h−1
m h−1

n

(
Ŷm,n,a((t − x)4(s − y)4; x, y)

) 1
2

}
ωB(DB f ; hm, hn)

+3‖DB f ‖
(
Ŷm,n,a((t − x)2(s − y)2; x, y)

) 1
2

=

{√
Ŷm,n,a((t − x)2; x, y)

√
Ŷm,n,a((s − y)2; x, y)

+h−1
m

√
Ŷm,n,a((t − x)4; x, y)

√
Ŷm,n,a((s − y)2; x, y)

+h−1
n

√
Ŷm,n,a((t − x)2; x, y)

√
Ŷm,n,a((s − y)4; x, y)

+h−1
m h−1

n

√
Ŷm,n,a((t − x)4; x, y)

√
Ŷm,n,a((s − y)4; x, y)

}
ωB(DB f ; hm, hn)

+3‖DB f ‖
√

Ŷm,n,a((t − x)2; x, y)
√

Ŷm,n,a((s − y)2; x, y).
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Now using Inequalities 6, 7 and Lemma 1.6, we have

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤

{√
λx

m

√
λy

n
+ h−1

m

√
Mx

m2

√
λy

n
+ h−1

n

√
λx

m

√
Mx

m2

+h−1
m h−1

n

√
Mx

m2

√
My

n2

}
ωB(DB f ; hm, hn)

+3‖DB f ‖

√
λx

m

√
λy

n
,

By considering h−1
m = 1

√
m

and h−1
n = 1

√
n

, one can write

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤

1
√

mn

{(√
λxλy +

√
Mxλy +

√
λxMy +

√
MxMy

)
ωB

(
DB f ;

1
√

m
,

1
√

n

)
+3‖DB f ‖

√
λxλy

}
=

1
√

mn

{ (√
λx +

√
Mx

) (√
λy +

√
My

)
ωB

(
DB f ;

1
√

m
,

1
√

n

)
+ 3‖DB f ‖

√
λxλy

}
=

1
√

mn

{
M1M2ωB

(
DB f ;

1
√

m
,

1
√

n

)
+ 3M3‖DB f ‖

}
,

where M1 =
(√
λx +

√
Mx

)
, M2 =

(√
λy +

√
My

)
and M3 =

√
λxλy and M4 = max{M1M2,M3}, Hence, above

Inequality gives

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤

M4
√

mn

{
3M3‖DB f ‖ + ωB

(
DB f ;

1
√

m
,

1
√

n

) }
. (34)

Hence, the proof is completed.

To improve the measure of smoothness, a mixed K-functional is introduced [32, 33] and it is defined by

KB( f ; x1, x2) = {‖ f − 11 − 12 − h‖ + x1‖D2,0
B 11‖ + x2‖D0,2

B 12‖ + x1x2‖D2,2
B h‖}, (35)

where 11 ∈ D2,0
B , 12 ∈ D0,2

B , h ∈ D2,2
B and Di, j

B represent the space of all functions f ∈ CB(Xb) for 0 ≤ i, j ≤ 2
having mixed partial derivatives Dη,µ

B f with 0 ≤ η ≤ i, 0 ≤ µ ≤ j defined by

Dx f (u, v) = D1,0
B ( f ; u, v) = lim

x→u

∆x f ([u, x]; v)
x − u

, (36)

Dy f (u, v) = D0,1
B ( f ; u, v) = lim

y→v

∆y f (u; [v, y])
y − v

, (37)

DyDx f (u, v) = D0,1
B D1,0

B ( f ; u, v) = lim
y→v

∆y(∆x) f (u; [v, y])
y − v

, (38)

DxDy f (u, v) = D1,0
B D0,1

B ( f ; u, v) = lim
x→u

∆x(∆y) f ([u, x]; v)
x − u

. (39)

where ∆x f ([u, x]; v) = f (x, v) − f (u, v), ∆y f (u; [v, y]) = f (u, y) − f (u, v).
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Theorem 2.10. Let B̂Y
a
m,n( f ; x, y) be a GBS-type operator of Ŷm,n,a( f ; x, y) for all x, y ∈ Xb = [0, c] × [0, d] and for

each function f ∈ CB(Xb) with m,n ∈N, we have

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤ 2KB

(
f ,
λx

m
,
λy

n

)
. (40)

Proof. With the help of Taylor’s formula for the function 11 ∈ C2,0
B (Xb), we obtain

11(t, s) − 11(x, y) = (t − x)D1,0
B 11(x, y) +

t∫
x

(t − ξ)D2,0
B 11(ξ, y)dξ, (41)

Upon using the linearity and positivity properties of Ŷm,n,a operators, we can write

|B̂Y
a
m,n(11; x, y) − 11(x, y)| =

∣∣∣∣∣∣Ŷm,n,a

( t∫
x

(t − ξ)[D2,0
B 11(ξ, y) −D2,0

B 11(ξ, s)]dξ; x, y
)∣∣∣∣∣∣

≤ Ŷm,n,a

(∣∣∣∣∣∣
t∫

x

|(t − ξ)||D2,0
B 11(ξ, y) −D2,0

B 11(ξ, s)|dξ; x, y

∣∣∣∣∣∣
)

≤ ‖D2,0
B 11‖Ŷm,n,a((t − x)2; x, y) < ‖D2,0

B 11‖
c
m
.

Similarly for 12 ∈ D0,2
B , we get

|B̂Y
a
m,n(12; x, y) − 12(x, y)| < ‖D0,2

B 12‖
d
n
.

For h ∈ D2,2
B , we have

h(t, s) − h(x, y) = (t − x)D1,0
B h(x, y) + (s − y)D0,1

B h(x, y) + (t − x)(s − y)D1,1
B h(x, y)

+

t∫
x

(t − ξ)D2,0
B h(ξ, y)dξ +

s∫
y

(s − φ)D0,2
B h(x, φ)dφ +

t∫
x

(s − y)(t − ξ)D2,1
B h(ξ, y)dξ

+

s∫
y

(t − x)(s − φ)D1,2
B h(x, φ)dφ +

t∫
x

s∫
y

(t − ξ)(s − φ)D2,2
B h(ξ, φ)dξdφ. (42)

Using integration by parts in above expression (42) and thereafter applying bivariate operators Ŷm,n,a on
the remaining terms of the given expression after some cancellation. Taking into account the definition of
the GBS-type operators B̂Y

a
m,n and by using

B̂Y
a
m,n((t − x); x, y) = 0, B̂Y

a
m,n((s − y); x, y) = 0, (43)
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we get

|B̂Y
a
m,n(h; x, y) − h(x, y)| ≤

∣∣∣∣∣∣Ŷm,n,a

( t∫
x

s∫
y

(t − ξ)(s − φ)D2,2
B h(ξ, φ)dξdφ; x, y

)∣∣∣∣∣∣
≤ Ŷm,n,a

( t∫
x

s∫
y

|(t − ξ)||(s − φ)|

∣∣∣∣∣∣D2,2
B h(ξ, φ)

∣∣∣∣∣∣dξdφ; x, y
)

≤
1
4
‖D2,2

B h‖Ŷm,n,a((t − x)2(s − y)2; x, y)

≤ ‖D2,2
B h‖

λxλy

mn
.

Now,

|B̂Y
a
m,n( f ; x, y) − f (x, y)| ≤ |( f − 11 − 12 − h)(x, y)| +

∣∣∣∣∣∣ (11 − B̂Y
a
m,n11

)
(x, y)

∣∣∣∣∣∣ +

∣∣∣∣∣∣ (12 − B̂Y
a
m,n12

)
(x, y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ (h − B̂Y
a
m,nh

)
(x, y)

∣∣∣∣∣∣ +

∣∣∣∣∣∣B̂Y
a
m,n(( f − 11 − 12 − h); x, y)

∣∣∣∣∣∣
≤ 2‖ f − 11 − 12 − h‖ + ‖D2,0

B 11‖
λx

m
+ ‖D0,2

B 12‖
λy

n
+ ‖D2,2

B h‖
λxλy

mn
,

by taking infimum over for all 11 ∈ C2,0
B , 12 ∈ C0,2

B , h ∈ C2,2
B , we get our desired result.

3. Graphical approach and convergence based discussion

For validation of the results, GBS-type operators are compared with the bivariate operators (1) and the
rate of convergence is examined for finite sum over the interval [0, 1] as well as over the interval [0,∞)
through graphical representations along with their numerical approximation.

In this section, we discuss the behaviour of the operators with the function f (x, y) for particular values
of k1, k2 and for an infinite series (i.e. for k1 = 0, 1, · · · and k2 = 0, 1, · · · ). Also, check the behaviour of the
operators (1) and (21) by comparison.

Example 3.1. Consider the function f (x, y) = x sinπy (green). For the particular value of m = n = 10, k1 = 9 = k2,
the corresponding operators are represented by Ŷ10,10,a( f ; x, y)(blue) and B̂Y

a
10,10( f ; x, y)(red) respectively. Upon

considering the partitions as x0 = 0, x1 = 1
10 , · · · , x9 = 9

10 of [0, 1] and y0 = 0, y1 = 1
10 , · · · , y9 = 9

10 of [0, 1], the
convergence approach of the operators Ŷm,n,a( f ; x, y) and B̂Y

a
m,n( f ; x, y) to the function and their comparison are shown

in Figure 1.
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Figure 1: Comparison of the convergence approach of operators Ŷm,n,a( f ; x, y)(blue) and B̂Y
a
m,n( f ; x, y)(red) to the function f (x, y)(green).

Now, we choose less numbers of partitions for the same function and for the same particular values of m = n = 10.

Figure 2: Comparison of the convergence approach of bivariate operators Ŷm,n,a( f ; x, y) (blue) and B̂Y
a
m,n( f ; x, y) (red) to the function

f (x, y) (green).

Here, we take the partitions within six terms like as x0 = 0, x1 = 1
10 , · · · , x5 = 5

10 of [0, 1] and y0 = 0, y1 =
1
10 , · · · , y5 = 5

10 of [0, 1] as shown in Figure 2. It can be seen from Figure 2 that the error gap between the
function and operators are maximum in Figure 2 rather than in Figure 1.

Finally, it can be observed from Figures 1, 2 that the accuracy approach of the GBS-type operators (21)
to the function f (x, y) is better than the bivariate operators (1) but it depends on the number of partitions
of [0, 1]. By observing Figure 2 and Figure 1, it can be seen that for large number of partitions, i.e., as the
length of the partition be small, the approximation is better as compared to less number of partitions of the
interval, i.e, for larger length of partitions. It can also be concluded that the approach of the operators to
the function will be good upon using large number of partitions as compared to less numbers of partitions
for the same interval. On other the hand, the approach of the GBS-type operators (21) is better than the
bivariate operators (1). So, finally we can say that the convergence rate of the GBS-type operators is better
than the convergence rate of the bivariate operators in any case.

Remark: In general, if we consider [x0, x1], [x1, x2], · · · , [xi−1, xi] and [y0, y1], [y1, y2], · · · , [y j−1, y j], are
the sub-intervals of the [0, 1], provided each xi, y j are the some form of i

m ,
j
n respectively, where i =

1, 2, · · · , k1, j = 1, 2, · · · , k2 while k1 ≤ m, k2 ≤ n, then the following concluding remarks can be obtained.
Concluding Remark:
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• If the number of sub-intervals are maximum i.e., the sub-length xi − xi−1, y j − y j−1 are small, then the
approximation is good.

• If the number of sub-interval are minimum i.e., the sub-length xi − xi−1, y j − y j−1 are large, then the
approximation is not good.

Note: In above both conditions, the approach of the GBS-type operators (21) to the function is better
than the bivariate operators as defined by (1).

Example 3.2. Consider a function defined by f (x, y) = x sinπy(green). For the particular value of m = n = 10, the
corresponding operators Ŷ10,10,a( f ; x, y) and B̂Y

a
10,10( f ; x, y) are shaded by blue and red colors respectively as given

in Figure 3. Here, it can be seen the approximation of the function defined by the operators (1), (21) and the error
determined by the GBS-type operators to the function is minimum than the bivariate operators (21).

Figure 3: Comparison of the convergence for bivariate operators Ŷm,n,a( f ; x, y)(blue) and B̂Y
a
m,n( f ; x, y)(red) to the function f (x, y)

(green).

Concluding result: From Figure 3, it can be concluded that the convergence behavior of the GBS-type
operators defined by (21) is better than the bivariate operators defined by (1).

Example 3.3. Consider a function f (x, y) = sin(x + y) (green). On choosing the value of m = n = 10, 15 for the GBS-
type operators, the corresponding GBS operators can be represented as B̂Y

2
10,10( f ; x, y)(blue), B̂Y

2
15,15( f ; x, y)(yellow).

It can be observed from Figure 4 that the error becomes smaller as the value of m and n increases.

Figure 4: Convergence of GBS-type operators B̂Y
a
m,m( f ; x, y) to the function f (x, y).

From Figure 4, it can be seen the convergence behaviour of the GBS-type operators with the small value of the
parameters (as m = n = 10, 15) whereas Figure 5 represents the convergence behaviour of the GBS-type operators
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B̂Y
2
15,15( f ; x, y) for m = n = 15 (yellow color) to the same function in more accurate form (which is unable to show in

Figure 4 clearly).

Figure 5: Convergence of GBS-type operator B̂Y
2
15,15( f ; x, y)(yellow) to the function f (x, y)(green).

Concluding result: It can be concluded from the graphical representations of the operators B̂Y
a
m,n( f ; x, y) and

Ŷm,n,a( f ; x, y) that the rate of convergence of the GBS-type operators (21) is better than the bivariate operators (1).

3.1. Numerical approach
Next, we discuss the absolute error of the GBS-type operators (21) as well as the bivariate operators (1)

to the function f (x, y) and compare these operators with their numerical errors at different points and for
different values of m,n.

Let Ga
m,n( f ; x, y) = |B̂Y

a
m,n( f ; x, y)− f (x, y)| and SYm,n,a( f ; x, y) = |Ŷm,n,a( f ; x, y)− f (x, y)|, then the given Table

1 represents the numerical approximations of the GBS-type operators (21) and bivariate operators (1). Here,
function is f (x, y) = sin(x + y) and error bounds are presented at point (x, y) = (0.1, 0.1).

Error in the approximation for GBS-type operators and bivariate operators to the function f (x, y)
m=n SYm,n,a( f ; x, y) Ga

m,n( f ; x, y)
10 0.00887548 0.0000358021
15 0.00589734 0.0000160308
25 0.0035283 5.80313×10−6

50 0.00176016 1.45647×10−6

100 0.000879051 3.64803×10−7

Table 1: Comparison of GBS-type operators and bivariate operators to the function f (x, y)

Concluding remark: From Table 1, it can be concluded that the approximation by the GBS-type operators
(21) to the function is better than the bivariate operators (1).

3.2. A comparison of bivariate operators Ŷm,n,a( f ; x, y) with bivariate Kantorovich operators
In this subsection, we show the graphical representation for the comparison of convergence of the

bivariate operators (1) with the bivariate Kantorovich operators of Szász-Mirakjan. In 2006, Muraru [34]
gave a quantitative approximation of Kantorovich-Sász bivariate operators, defined as

K̂m,n f : L1([0,∞) × [0,∞))→ B([0,∞) × [0,∞)), (m,n) ∈N ×N;

K̂m,n( f ; x, y) = mne−mx−ny
∞∑

k1=0

∞∑
k2=0

(mx)k1

k1!
(nx)k2

k2!

k1+1
m∫

k1
m

k2+1
n∫

k2
n

f (u, v) dudv. (44)
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There are following computational examples, which represent the comparison.

Example 3.4. Let the function f (x) = x2y(x − 1) sin(2πy) (green), for all 0 ≤ x, y ≤ 2 and choose the value of
m,n = 10, for which the bivariate operators (yellow) defined by (1) show the better rate of convergence than the
Kantorovich-Szász bivariate operators K̂m,n( f ; x, y)(red) defined by (44), graphical representation can be seen by the
Figure 6.

Figure 6: Comparison of the convergence of operators Ŷm,n,a( f ; x, y) (yellow) and K̂m,n( f ; x, y) (red) to the function f (x) (green)

Example 3.5. Consider the function f (x) = x2y cos(πy) (green), for all 0 ≤ x, y ≤ 4 and choose m,n = 10, for which
the bivariate operators (yellow) defined by (1) present the better rate of convergence than the bivariate Kantorovich
operators K̂m,n( f ; x, y) (red) defined by (44), the graphical representation is illustrated by Figure 7.

Figure 7: Comparison of the convergence of operators Ŷm,n,a( f ; x, y) (yellow) and K̂m,n( f ; x, y) (red) to the function f (x) (green)

Example 3.6. Let the function f (x) = y2 cos(2πx) (green), for all 0 ≤ x, y ≤ 4 and consider m,n = 20, for which the
graphical representation of the bivariate operators Ŷm,n( f ; x, y) (yellow) defined by (1) and the bivariate Kantorovich
operators K̂m,n( f ; x, y) (red) defined by (44) is illustrated in Figure 8.
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Figure 8: Comparison of the convergence of operators Ŷm,n,a( f ; x, y) (yellow) and K̂m,n( f ; x, y) (red) to the function f (x) (green)

Concluding Remark: By above Figures 6-8, we can say that the rate of convergence of the bivariate
operators Ŷm,n,a( f ; x, y) (1) is better than bivariate Kantorovich operators K̂m,n( f ; x, y) defined by (44).

3.3. Comparison of associated GBS operators with GBS-type operators of an infinite sum

In 2008, Pop [35] introduced an associated GBS-type operators of the linear positive operators defined
by an infinite sum, so called GBS operators of Mirakjan-Favard-Szász and gave an approximation of the
functions considered to be B-continuous and B-differentiable. The defined associated GBS operators can be
stated as:

Let m,n ∈ N, the operators UL∗m,n : E(I × I) → F(J × J) are defined for any function f ∈ E(I × I) and for
(x, y) ∈ J × J such that

UL∗m,n( f ; x, y) =

∞∑
k1=0

∞∑
k2=0

ψm,k1 (x)ψn,k2 (y)[ f (xm,k1 , y) + f (x, xn,k2 ) − f (xm,k1 , xn,k2 )], (45)

where ((xm,k1 )k1∈N0 )m≥1, ((xn,k2 )k2∈N0 )n≥1 are the sequences of nodes and the functions ψm,k1 : I → R, ψn,k2 :
J→ R with the properties, ψm,k1 ≥ 0, ψn,k2 ≥ 0, where I, J ⊂ R, I ∩ J , φ.

Above GBS-modification operators (45) are the GBS-form of the operators L∗-type operators [35] and
are given by:

L∗m,n( f ; x, y) =

∞∑
k1=0

∞∑
k2=0

ψm,k1 (x)ψn,k2 (y) f (xm,k1 , xn,k2 ), (x, y) ∈ J × J, (46)

where m,n ∈N, f ∈ E(I × I) and L∗m,n : E(I × I)→ F(J × J).

For the particular case, Pop [35] determined the convergence properties for the GBS operators of

Mirakjan-Favard-Szász. Here, if ψm,k1 (x) = k1
m , ψn,k2 (x) = k2

n and ψm,k1 = e−mx (mx)k1

k1! , ψn,k2 = e−ny (ny)k2

k2! then for
f ∈ C([0,∞) × [0,∞)), the above operators (45) can be reduced to GBS operators of Mirakjan-Favard-Szász,
which can be defined as follows:

US∗m,n( f ; x, y) =

∞∑
k1=0

∞∑
k2=0

e−mx−ny (mx)k1

k1!
(ny)k2

k2!

[
f
(

k1

m
, y

)
+ f

(
x,

k2

n

)
− f

(
k1

m
,

k2

n

)]
. (47)
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This subsection is very crucial from the comparison point of view of the GBS type operators as defined
by (21) with the GBS operators of the Mirakjan-Favard-Szász type (47), which is shown by the following
examples.

Example 3.7. Let the function be defined by f (x, y) = ex+y(green). A comparison for the convergence of the GBS-type
operators B̂Y

a
m,n( f ; x, y) (red) with the GBS operators of Mirakjan-Favard-Szász US∗m,n( f ; x, y) (black) to the function

f (x, y) is illustrated in Figure 9 for m = n = 2. It can be observed that the GBS-type operators defined by (21) have a
better rate of convergence than the GBS operators of Mirakjan-Favard-Szász as defined by (47).

Figure 9: Comparison of the rate of convergence of GBS-type operators B̂Y
a
m,m( f ; x, y) and GBS operators of Mirakjan-Favard-Szász to

the function f (x, y)

Example 3.8. For the same function f (x, y) = ex+y and at a certain point (x, y), the error estimation of the GBS-type
operators B̂Y

a
m,n( f ; x, y) and GBS operators of Mirakjan-Favard-Szász US∗m,n( f ; x, y) has been computed in Table 2.

Error in the approximation for B̂Y
a
m,n( f ; x, y) and US∗m,n( f ; x, y) to the function f (x, y)

m=n |US∗m,n( f ; x, y) − f (x, y)| |B̂Y
a
m,n( f ; x, y) − f (x, y)|

10 3.28277×10−5 3.00798×10−6

20 7.91371×10−6 7.35189×10−7

50 1.23907×10−6 1.16048×10−7

100 3.07549×10−7 2.88814×10−8

Table 2: Comparison of GBS-type operators B̂Y
a
m,n( f ; x, y) and GBS operators of Mirakjan-Favard-Szász US∗m,n( f ; x, y) to the function

f (x, y)

Concluding Remark: It can be concluded from Table 2 that the error arising in the approximation at
a certain point by GBS-type operators defined by (21) to the function is much smaller than the GBS
operators of Mirakjan-Favard-Szász as defined by (47). Hence our GBS-type operators have a better rate of
convergence than the GBS operators of Mirakjan-Favard-Szász type.
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