Composition Results of Stepanov (μ, v)-Pseudo Almost Automorphic Functions

Amor Rebey ${ }^{\text {a,b }}$, Mosbah Eljeri ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, College of Science and Human Studies at Hotat Sudair, Majmaah University, AL-Majmaah, 11952, Saudi Arabia.
${ }^{b}$ ISMAIK, Kairouan University, Tunisia.
${ }^{c}$ Department of Mathematics, College Of Science Al-Zulfi, Majmaah University, Majmaah, 11952, Saudi Arabia.

Abstract

In this work, we give sufficient conditions ensuring that the space $S^{p} P A A(\mathbb{R}, X, \mu, v)$ of (μ, v) pseudo almost automorphic functions in Stepanov's sense is invariant by translation and we provide new composition theorems of (μ, v)-pseudo almost automorphic functions in the sense of Stepanov.

1. Introduction

The notion of almost automorphy introduced by Bochner [7] is not restricted just to continuous functions. One can generalize that notion to measurable functions with some suitable conditions of integrability, namely, Stepanov almost automorphic functions, see [12]. Details can be found in [2-6, 9, 10, 12, 13]
Now, throughout this work $(\mathbb{H},\|\cdot\|)$ is a Banach space. The notation $C(\mathbb{R}, \mathbb{H})$ stands for the collection of all continuous functions from \mathbb{R} into \mathbb{H}. We denote by $B C(\mathbb{R}, \mathbb{H})$ is the space of all bounded continuous functions from \mathbb{R} into \mathbb{H} endowed with the supremum norm defined by

$$
\|x\|_{B C(\mathbb{R}, \mathbb{H})}:=\sup _{t \in \mathbb{R}}\{\|x(t)\|\}
$$

Furthermore, $B C(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ is the space of all bounded continuous functions $f: \mathbb{R} \times \mathbb{H} \rightarrow \mathbb{H}$.
Definition 1.1. [8] Let $p \in[1 ;+\infty)$. The space $\mathcal{B S}^{p}(\mathbb{R} ; \mathbb{H})$ of all bounded functions in Stepanov's sense, with the exponent p, consists of all measurable functions f on \mathbb{R} with values in \mathbb{H} such that $\|f\|_{B S^{p}}:=\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}|f(s)|^{p} d s\right)^{\frac{1}{p}}<$ ∞. This is a Banach space when it is equipped with the norm $\|f\|_{B S^{p}}$.

Remark 1.2. $f \in \mathcal{B S}^{p}(\mathbb{R} ; \mathbb{H})$ iff $f^{b} \in L^{\infty}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$, with f^{b} is is the Bochner transform of f defined by $f^{b}: \mathbb{R} \longrightarrow L^{p}([0,1], \mathbb{H}), f^{b}(t)(s)=f(t+s), \forall(t, s) \in \mathbb{R} \times[0,1]$. And $\|f\|_{B S^{p}}=\left\|f^{b}\right\|_{\infty}$.

[^0]
2. Almost automorphic functions

Definition 2.1. [11], [Definition 1.29] A continuous function $f: \mathbb{R} \rightarrow \mathbb{H}$ is called almost automorphic if for every sequence $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}} \subset\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\lim _{n, m \rightarrow+\infty} f\left(t+s_{n}-s_{m}\right)=f(t) \quad \text { for each } t \in \mathbb{R}
$$

Equivalently,

$$
g(t):=\lim _{n \rightarrow \infty} f\left(t+s_{n}\right)
$$

is well defined and

$$
\lim _{n \rightarrow \infty} g\left(t-s_{n}\right)=f(t)
$$

for all $t \in \mathbb{R}$.
Let $A A(\mathbb{R}, \mathbb{H})$ denote the collection of all almost automorphic functions from \mathbb{R} to \mathbb{H}
Definition 2.2. [6] A function $f: \mathbb{R} \times \mathbb{H} \rightarrow \mathbb{H}$ is said to be almost automorphic in t uniformly with respect to x in \mathbb{H} if the following two conditions hold:
(i) for all $x \in \mathbb{H}, f(., x) \in A A(\mathbb{R}, \mathbb{H})$,
(ii) f is uniformly continuous on each compact set K in \mathbb{H} with respect to the second variable x, namely, for each compact set K in \mathbb{H}, for all $\varepsilon>0$, there exists $\delta>0$ such that for all $x_{1}, x_{2} \in K$, one has

$$
\left\|x_{1}-x_{2}\right\| \leq \delta \Rightarrow \sup _{t \in \mathbb{R}}\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\| \leq \varepsilon
$$

Denote by $A A U(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ the set of all such functions.
Definition 2.3. [12] Let $p \in[1 ;+\infty)$. A function $f \in \mathcal{B S}(\mathbb{R} ; \mathbb{H})$ is said to be S^{p}-almost automorphic if its Bochner transform $f^{b} \in A A\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$.
Denote by $A A^{p}(\mathbb{R}, \mathbb{H})$ the set of all such functions.
The following remark is immediate.
Remark 2.4. The map $B:\left(\mathcal{B S}^{p}(\mathbb{R}, \mathbb{H}),\|\cdot\|_{\mathcal{B} S^{p}}\right) \longrightarrow L^{\infty}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right), f \longmapsto f^{b}$ is a linear isometry, in particular it is continuous.

Definition 2.5. [6] A function $f: \mathbb{R} \times \mathbb{H} \rightarrow \mathbb{H}$ is said to be S^{p}-almost automorphic in t uniformly with respect to x in \mathbb{H} if the following two conditions hold:
(i) for all $x \in \mathbb{H}, f(., x) \in A A^{p}(\mathbb{R}, \mathbb{H})$,
(ii) $f^{b}: \mathbb{R} \times \mathbb{H} \longrightarrow L^{p}([0,1], \mathbb{H}) ; f^{b}(t, x)(s)=f(t+s, x)$ is uniformly continuous on each compact set K in \mathbb{H} with respect to the second variable x, namely, for each compact set K in \mathbb{H}, for all $\varepsilon>0$, there exists $\delta>0$ such that for all $x_{1}, x_{2} \in K$, one has

$$
\left\|x_{1}-x_{2}\right\| \leq \delta \Rightarrow \sup _{t \in \mathbb{R}}\left(\int_{0}^{1}\left\|f\left(t+s, x_{1}\right)-f\left(t+s, x_{2}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \leq \varepsilon
$$

Denote by $A A^{p} U(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ the set of all such functions.

3. Ergodic functions

Let \mathcal{B} denote the Lebesgue σ-field of \mathbb{R} and let \mathcal{M} be the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R})=+\infty$ and $\mu([a, b])<\infty$, for all $a, b \in \mathbb{R}(a \leq b)$. From now on, $\mu, v \in \mathcal{M}$.
Definition 3.1. [3] A function $f: \mathbb{R} \longrightarrow \mathbb{H}$ is said to be (μ, v)-ergodic if

$$
\lim _{r \rightarrow \infty} \frac{1}{v([-r, r])} \int_{-r}^{r}\|f(s)\| d \mu(t)=0
$$

We then denote the set of all such functions by $\mathcal{E}(\mathbb{R}, \mathbb{H}, \mu, v)$.

Definition 3.2. [13] A function $f \in \mathcal{B S}^{p}(\mathbb{R}, \mathbb{H})$ is said to be $\mathcal{S}^{p}-(\mu, v)$-ergodic if

$$
\lim _{r \rightarrow \infty} \frac{1}{v([-r, r])} \int_{-r}^{r}\left(\int_{t}^{t+1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}} d \mu(t)=0
$$

Equivalently, $f^{b} \in \mathcal{E}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H}), \mu, v\right)$.
We then denote the collection of all such functions by $\mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$.
Definition 3.3. A $f: \mathbb{R} \times \mathbb{H} \rightarrow \mathbb{H}$ is said to be $\mathcal{S}^{p}-(\mu, v)$-ergodic in t uniformly with respect to $x \in \mathbb{H}$ if the following conditions are satisfied:
(i) For all $x \in \mathbb{H}, f(., x) \in \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$.
(ii) $f^{b}: \mathbb{R} \times \mathbb{H} \longrightarrow L^{p}([0,1], \mathbb{H}) ; f^{b}(t, x)(s)=f(t+s, x)$ is uniformly continuous on each compact set K in \mathbb{H} with respect to the second variable $x \in \mathbb{H}$.

The set of such function is denoted by $\mathcal{E}^{p} U(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, v)$.

4. Pseudo almost automorphic functions

Definition 4.1. A continuous function $f: \mathbb{R} \rightarrow \mathbb{H}$ is said to be (μ, v)-pseudo almost automorphic if it is written in the form

$$
f=g+h
$$

where $g \in A A(\mathbb{R}, \mathbb{H})$ and $h \in \mathcal{E}(\mathbb{R}, \mathbb{H}, \mu, v)$. The set of such functions is denoted by $P A A(\mathbb{R}, \mathbb{H}, \mu, v)$.
Definition 4.2. A continuous function $f: \mathbb{R} \times \mathbb{H} \rightarrow \mathbb{H}$ is said to be (μ, v)-pseudo almost automorphic in the first variable uniformly with respect to the second variable if is written in the form

$$
f=g+h
$$

where $g \in \operatorname{AAU}(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ and $h \in \mathcal{E} U(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, v)$. The set of such functions is denoted by $\operatorname{PAAU}(\mathbb{R} \times$ $\mathbb{H}, \mathbb{H}, \mu, v)$.

Definition 4.3. A function $f \in \mathcal{B S}^{p}(\mathbb{R} \rightarrow \mathbb{H})$ is said to be $\mathcal{S}^{p}-(\mu, v)$-pseudo almost automorphic if it can be written in the form

$$
f=g+h
$$

where $g \in A A^{p}(\mathbb{R}, \mathbb{H}, \mu)$ and $h \in \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$. The set of such functions will be denoted by $P A A^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$.
Definition 4.4. A function $f: \mathbb{R} \times \mathbb{H} \rightarrow \mathbb{H}$ is said to be $S^{p}-(\mu, v)$-pseudo almost automorphic in the first variable uniformly with respect to the second variable if it can be written in the form

$$
f=g+h
$$

where $g \in A A^{p} U(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ and $h \in \mathcal{E}^{p} U(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, v)$. The set of such functions is denoted by PAA $U(\mathbb{R} \times$ $\mathbb{H}, \mathbb{H}, \mu, v)$.

We define the following conditions.
(M1):

$$
\begin{equation*}
\limsup _{r \rightarrow+\infty} \frac{\mu([-r, r])}{v([-r, r])}:=M<\infty . \tag{1}
\end{equation*}
$$

(M2): For all $\tau \in \mathbb{R}$, there exist $\beta>0$ and a bounded interval I such that

$$
\mu(\{a+\tau: a \in A\}) \leq \beta \mu(A) \quad \text { when } A \in \mathcal{B} \text { satisfies } A \cap I=\emptyset .
$$

Theorem 4.5. If (M2) and (M1) are satisfied, Then:

1. $A A^{p}(\mathbb{R}, \mathbb{H})$ is a translation invariant closed subspace of $\mathcal{B S}{ }^{p}(\mathbb{R} ; \mathbb{H})$.
2. $\mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$ is a translation invariant closed subspace of $\mathcal{B S}{ }^{p}(\mathbb{R} ; \mathbb{H})$.
3. $\operatorname{PA} A^{p}(\mathbb{R}, \mathbb{H}, \mu, v)=A A^{p}(\mathbb{R}, \mathbb{H}) \bigoplus \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$ is a Banach space for the direct sum norm.

Proof:

1. By $[11],[$ Theorem 2.1 .3$], A A\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$ is a translation invariant subspace of $B C\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$. Let $t \mapsto f_{a}(t):=f(t+a)$ define a translation of f. We have $\left(\left(f_{a}\right)^{b}(t)(s)=f_{a}(t+s)=f(t+s+a)=\right.$ $f^{b}(t+a)(s)=\left(f^{b}\right)_{a}(t)(s)$. That is $\left(f_{a}\right)^{b}=\left(f^{b}\right)_{a}$ and then for $f \in A A^{P}(\mathbb{R}, \mathbb{H}), f^{b} \in A A\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$ then $\left(f^{b}\right)_{a}=\left(f_{a}\right)^{b} \in A A\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$ that means $\left.f_{a} \in A A^{p}(\mathbb{R}, \mathbb{H})\right)$, then $A A^{P}(\mathbb{R}, \mathbb{H})$ is translation invariant. By [12], Theorem 2.3 $A A^{P}(\mathbb{R}, \mathbb{H})$ is a closed subspace of $\mathcal{B S}{ }^{p}(\mathbb{R} ; \mathbb{H})$.
2. It is immediate to prove $\mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$ is a subspace of $\mathcal{B S}{ }^{p}(\mathbb{R} ; \mathbb{H})$.

Now take $f \in \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$ and f_{a} its translate

$$
\begin{aligned}
\frac{1}{v([-r, r])} \int_{-r}^{r}\left(\int_{0}^{1}\left|f_{a}(t+s)\right|^{p} d s\right)^{\frac{1}{p}} d \mu(t) & =\frac{1}{v([-r, r])} \int_{-r}^{r}\left(\int_{0}^{1}|f(t+a+s)|^{p} d s\right)^{\frac{1}{p}} d \mu(t) \\
& =\frac{1}{v([-r, r])} \int_{-r+a}^{r+a}\left(\int_{0}^{1}|f(y+s)|^{p} d s\right)^{\frac{1}{p}} d \mu(y-a) \\
& \leq \beta \frac{v\left(Q_{r}\right)}{v([-r, r])} \frac{1}{v\left(Q_{r}\right)} \int_{-r-|a|}^{r+|a|}\left(\int_{0}^{1}|f(y+s)|^{p} d s\right)^{\frac{1}{p}} d \mu(y)
\end{aligned}
$$

where $Q_{r}=[-r-|a|, r+|a|]$. The factor $\beta \frac{v([-r-|a|, r+|a|])}{v([-r, r])}$ is bounded and

$$
\lim _{r \rightarrow \infty} \frac{1}{v([-r-|a|, r+|a|])} \int_{-r-|a|}^{r+|a|}\left(\int_{0}^{1}|f(y+s)|^{p} d s\right)^{\frac{1}{p}} d \mu(y)=0,
$$

then $f_{a} \in \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$.
For the closedness of $\left(\mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)\right.$ take a sequence $\left(f_{n}\right)$ in it. Assume that it converges in $\mathcal{B S}$ to f. By Remark 2.4, the $\left(\left(f_{n}\right)^{b}\right)$ of $\mathcal{E}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$ converges to f^{b} in $L^{\infty}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$. According to [1], Theorem $3\left(\mathcal{E}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H}), \mu, v\right),\|.\|_{\infty}\right)$ is closed, then $f^{b} \in\left(\mathcal{E}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H}), \mu, v\right)\right.$ that is $f \in\left(\mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v),\|.\|_{\mathcal{B} S^{p}}\right)$.
3. It is enough to show that $A A^{p}(\mathbb{R}, \mathbb{H}) \cap \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)=\{0\}$. Let $f \in A A^{p}(\mathbb{R}, \mathbb{H}) \cap \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$ then $f^{b} \in A A\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right) \cap \mathcal{E}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H}), \mu, v\right)$. According to [1], Theorem $5, f^{b}=0$ then $f=0$, by the injectivity of B in Remark 2.4.
Let $\left(f_{n}\right) \in P A A^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$ that converges in $\mathcal{B} S^{p}$ to f then $\left(f_{n}\right)^{b} \in P A A\left(\mathbb{R}, L^{p}([0,1], \mathbb{H}), \mu, v\right)$ and converges in $L^{\infty}\left(\mathbb{R}, L^{p}([0,1], \mathbb{H})\right)$ to f^{b}. According to $[1]$, Theorem $6, f^{b} \in P A A\left(\mathbb{R}, L^{p}([0,1], \mathbb{H}), \mu, v\right)$ that is $f \in P A A^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$.

Remark 4.6. In the space $P A A^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$, the direct sum norm and the $\|.\|_{\mathcal{B S}}$ are equivalent.
Theorem 4.7. Let $G \in A A^{p} U(\mathbb{R} \times \mathbb{H}, \mathbb{H})$ and $h \in A A^{p}(\mathbb{R}, \mathbb{H})$ satisfying the following:

1. (A0): There exists a nonnegative function $L \in \mathcal{B S}^{p}(\mathbb{R})$ such that

$$
\forall x, y \in \mathbb{H}, t \in \mathbb{R}\|G(t, x)-G(t, y)\| \leq L(t)\|x-y\|
$$

And there exists $\xi>0$ such that for all $t \in \mathbb{R}, f \in \mathcal{B S} \mathcal{S}^{p}(\mathbb{R}, \mathbb{H})$, we have:

$$
\left(\int_{0}^{1} L^{p}(t+s)\|f(s)\|^{p} d s\right)^{\frac{1}{p}} \leq \xi\left(\int_{0}^{1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}},
$$

2. $K=\overline{\{h(t), t \in \mathbb{R}\}}$ is compact.

Then $[t \longmapsto G(t, h(t))] \in A A^{p}(\mathbb{R}, \mathbb{H})$.

Proof: Let $\left(x_{n}\right)$ be a sequence such that $\lim _{n, m \rightarrow \infty}\left\|h\left(t+x_{n}-x_{m}+.\right)-h(t+.)\right\|_{L^{p}[0,1]}=0$.
Take $\varepsilon>0$ and $K \subset \bigcup_{1 \leq i \leq r} B\left(y_{i}, \varepsilon\right)$, for some $y_{i} \in K$.
For $t \in \mathbb{R}$, let $E_{1}:=\left\{s \in[0,1]: h(t+s) \in B\left(y_{1}, \varepsilon\right)\right\}$ and for $2 \leq i \leq r$, we define $E_{i}:=\left\{s \in\left([0,1] \backslash \bigcup_{1 \leq j \leq i-1} E_{j}\right):\right.$ $\left.h(t+s) \in B\left(y_{i}, \varepsilon\right)\right\}$.
Here $\left\{E_{i}, 1 \leq i \leq r\right\}$ is a partition of $[0,1]$ and the sum of Lebesgue measures: $\sum_{i} \lambda\left(E_{i}\right)=1$.

$$
\begin{aligned}
I: & =\left(\int_{0}^{1}\left|G\left(t+s+x_{n}-x_{m}, h\left(t+s+x_{n}-x_{m}\right)\right)-G(t+s, h(t+s))\right|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\int_{0}^{1}\left|G\left(t+s+x_{n}-x_{m}, h\left(t+s+x_{n}-x_{m}\right)\right)-G\left(t+s+x_{n}-x_{m}, h(t+s)\right)\right|^{p} d s\right)^{\frac{1}{p}} \\
& +\left(\int_{0}^{1}\left|G\left(t+s+x_{n}-x_{m}, h(t+s)\right)-G(t+s, h(t+s))\right|^{p} d s\right)^{\frac{1}{p}} .
\end{aligned}
$$

Denote by I_{1} and I_{2}, respectively, the first and the second term of the previous sum.
By (A0), $I_{1} \leq\left(\int_{0}^{1}\left(L\left(t+s+x_{n}-x_{m}\right)\left|h\left(t+s+x_{n}-x_{m}\right)-h(t+s)\right|\right)^{p} d s\right)^{\frac{1}{p}}$
$\leq \xi\left(\int_{0}^{1}\left(\| h\left(t+s+x_{n}-x_{m}\right)-h(t+s) \mid\right)^{p} d s\right)^{\frac{1}{p}} \leq \varepsilon \xi$, for $n, m \geq N_{0}$, since $h \in A A^{p}(\mathbb{R}, \mathbb{H})$.
For I_{2} :

$$
I_{2}=\left(\sum_{1}^{r} \int_{E_{i}}\left|G\left(t+s+x_{n}-x_{m}, h(t+s)\right)-G(t+s, h(t+s))\right|^{p} d s\right)^{\frac{1}{p}}
$$

Let

$$
\begin{aligned}
G\left(t+s+x_{n}-x_{m}, h(t+s)\right)-G(t+s, h(t+s)) & =\left(G\left(t+s+x_{n}-x_{m}, h(t+s)\right)-G\left(t+s+x_{n}-x_{m}, y_{i}\right)\right) \\
& +\left(G\left(t+s+x_{n}-x_{m}, y_{i}\right)-G\left(t+s, y_{i}\right)\right) \\
& +\left(G\left(t+s, y_{i}\right)-G(t+s, h(t+s))\right. \\
& =f_{1, i}(s)+f_{2, i}(s)+f_{3, i}(s)
\end{aligned}
$$

Then

$$
\begin{aligned}
I_{2} & =\left(\sum_{1}^{r} \int_{E_{i}}\left|f_{1, i}(s)+f_{2, i}(s)+f_{3, i}(s)\right|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r}\left[\left(\int_{E_{i}}\left|f_{1, i}(s)\right|^{p} d s\right)^{\frac{1}{p}}+\left(\int_{E_{i}}\left|f_{2, i}(s)\right|^{p} d s\right)^{\frac{1}{p}}+\left(\int_{E_{i}}\left|f_{3, i}(s)\right|^{p}\right)^{\frac{1}{p}}\right]^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{1}^{r} \int_{E_{i}}\left|f_{1, i}(s)\right|^{p} d s\right)^{\frac{1}{p}}+\left(\sum_{1}^{r} \int_{E_{i}}\left|f_{2, i}(s)\right|^{p} d s\right)^{\frac{1}{p}}+\left(\sum_{1}^{r} \int_{E_{i}}\left|f_{3, i}(s)\right|^{p} d s\right)^{\frac{1}{p}} \\
& :=S_{1}+S_{2}+S_{3} .
\end{aligned}
$$

By (A0),

$$
\begin{aligned}
S_{1} & =\left(\sum_{1}^{r} \int_{E_{i}}\left|G\left(t+s+x_{n}-x_{m}, h(t+s)\right)-G\left(t+s+x_{n}-x_{m}, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r} \int_{E_{i}}\left(L\left(t+s+x_{n}-x_{m}\right)\left|h(t+s)-y_{i}\right|\right)^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r} \int_{E_{i}}\left(L\left(t+s+x_{n}-x_{m}\right) \varepsilon\right)^{p} d s\right)^{\frac{1}{p}} \\
& =\varepsilon\left(\sum_{1}^{r} \int_{E_{i}}\left(L\left(t+s+x_{n}-x_{m}\right)\right)^{p} d s\right)^{\frac{1}{p}} \\
& =\varepsilon\left(\sum_{1}^{r} \int_{0}^{1}\left(\chi_{E_{i}}(s) L\left(t+s+x_{n}-x_{m}\right)\right)^{p} d s\right)^{\frac{1}{p}} \\
& =\varepsilon\left(\sum_{1}^{r}\left[\left(\int_{0}^{1}\left(\chi_{E_{i}}(s) L\left(t+s+x_{n}-x_{m}\right)\right)^{p} d s\right)^{\frac{1}{p}}\right]^{p}\right)^{\frac{1}{p}} \\
& \leq \varepsilon\left(\sum_{1}^{r}\left[\xi\left(\int_{0}^{1}\left(\chi_{E_{i}}(s)\right)^{p} d s\right)^{\frac{1}{p}}\right]^{p}\right)^{\frac{1}{p}} \\
& =\xi \varepsilon\left(\sum_{1}^{r} \lambda\left(E_{i}\right)\right)^{\frac{1}{p}} \\
& =\xi \varepsilon .
\end{aligned}
$$

In the same way $S_{3} \leq \varepsilon \xi$.
For S_{2} :
$S_{2}=\left(\sum_{1}^{r} \int_{E_{i}}\left|G\left(t+s+x_{n}-x_{m}, y_{i}\right)-G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}}$.
$G\left(., y_{1}\right) \in A A^{p}(\mathbb{R}, \mathbb{H})$, then there exists a subsequence $\left(\sigma_{1 n}\right) \subseteq\left(x_{n}\right)$ and $N_{1} \in \mathbb{N}$ such that

$$
n, m \geq N_{1} \Rightarrow\left(\int_{0}^{1}\left|G\left(t+s+\sigma_{1 n}-\sigma_{1 m}, y_{1}\right)-G\left(t+s, y_{1}\right)\right|^{p} d s\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{r^{\frac{1}{p}}}
$$

$G\left(., y_{2}\right) \in A A^{p}(\mathbb{R}, \mathbb{H})$, then there exists a subsequence $\left(\sigma_{2 n}\right) \subseteq\left(\sigma_{1 n}\right)$ and $N_{2} \geq N_{1}$ such that

$$
n, m \geq N_{2} \Rightarrow\left(\int_{0}^{1}\left|G\left(t+s+\sigma_{2 n}-\sigma_{2 m}, y_{2}\right)-G\left(t+s, y_{2}\right)\right|^{p} d s\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{r^{\frac{1}{p}}}
$$

Since $G\left(., y_{j}\right) \in A A^{p}(\mathbb{R}, \mathbb{H})$, then there exists a subsequence $\left(\sigma_{j n}\right) \subseteq\left(\sigma_{(j-1) n}\right)$ and $N_{j} \geq N_{j-1}$ such that

$$
n, m \geq N_{j} \Rightarrow\left(\int_{0}^{1}\left|G\left(t+s+\sigma_{j n}-\sigma_{j m}, y_{j}\right)-G\left(t+s, y_{j}\right)\right|^{p} d s\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{r^{\frac{1}{p}}}
$$

Preserving the same notation of S_{2}, for $N=\max _{1 \leq i \leq r}\left\{N_{i}\right\}, n, m \geq N$, we have

$$
\begin{aligned}
S_{2} & =\left(\sum_{1}^{r} \int_{E_{i}}\left|G\left(t+s+\sigma_{r n}-\sigma_{r m}, y_{j}\right)-G\left(t+s, y_{j}\right)\right|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r} \int_{0}^{1}\left|G\left(t+s+\sigma_{r n}-\sigma_{r m}, y_{j}\right)-G\left(t+s, y_{j}\right)\right|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r}\left(\frac{\varepsilon}{r^{\frac{1}{p}}}\right)^{p}\right)^{\frac{1}{p}}=\varepsilon .
\end{aligned}
$$

And then, for $n, m \geq \max \left\{N, N_{0}\right\}, I \leq \varepsilon(1+3 \xi)$. This completes the proof.
Theorem 4.8. Assume μ, v satisfy (M1). Let $G \in \mathcal{E}^{p} U(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, v)$ and $h: \mathbb{R} \longrightarrow \mathbb{H}$ satisfying:

1. (A0): There exists a nonnegative function $L \in \mathcal{B S} \mathcal{S}^{p}(\mathbb{R})$ such that

$$
\forall x, y \in \mathbb{H}, t \in \mathbb{R},\|G(t, x)-G(t, y)\| \leq L(t)\|x-y\| .
$$

And there exists $\xi>0$ such that for all $t \in \mathbb{R}, f \in \mathcal{B} S^{p}(\mathbb{R}, \mathbb{H})$, we have:

$$
\left(\int_{0}^{1} L^{p}(t+s)\|f(s)\|^{p} d s\right)^{\frac{1}{p}} \leq \xi\left(\int_{0}^{1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}}
$$

2. $K=\overline{\{h(t), t \in \mathbb{R}\}}$ is compact.

Then $[t \longmapsto G(t, h(t))] \in \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$.
Proof: Take $\varepsilon>0$. Let $\eta=\frac{\varepsilon}{2(M+1) \xi}$. Assume the compact $K \subset \bigcup_{1 \leq i \leq m} B\left(y_{i}, \eta\right)$.
For $t \in \mathbb{R}$, let $E_{1}:=\left\{s \in[0,1] / h(t+s) \in B\left(y_{1}, \eta\right)\right\}$ and for $2 \leq i \leq m$, we define $E_{i}:=\left\{s \in\left([0,1] \backslash \bigcup_{1 \leq j \leq i-1} E_{j}\right) / h(t+\right.$ $\left.s) \in B\left(y_{i}, \eta\right)\right\}$.
Here $\left\{E_{i}, 1 \leq i \leq m\right\}$ is a partition of $[0,1]$ and the sum of Lebesgue measures: $\sum_{i=1}^{m} \lambda\left(E_{i}\right)=1$.
We aim to find $R>0$ such that:

$$
\begin{aligned}
& r \geq R \Longrightarrow I:=\frac{1}{v([-r, r])} \int_{[-r, r]}\left(\int_{0}^{1}|G(t+s, h(t+s))|^{p} d s\right)^{\frac{1}{p}} d \mu(t) \leq \varepsilon . \\
& \left(\int_{0}^{1}|G(t+s, h(t+s))|^{p} d s\right)^{\frac{1}{p}}=\left(\sum_{i=1}^{m} \int_{E_{i}}\left|G(t+s, h(t+s))-G\left(t+s, y_{i}\right)+G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{i=1}^{m}\left[\left(\int_{E_{i}}\left|G(t+s, h(t+s))-G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}}+\left(\int_{E_{i}}\left|G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}}\right]^{p}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{i=1}^{m} \int_{E_{i}}\left|G(t+s, h(t+s))-G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{m} \int_{E_{i}}\left|G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}} .
\end{aligned}
$$

Denote by $S_{1}(t)$ the first sum and by $S_{2}(t)$ the second sum of the previous expression. Then

$$
\begin{aligned}
S_{1}(t) & \leq\left(\sum_{i=1}^{m} \int_{E_{i}} L^{p}(t+s) \eta^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{i=1}^{m} \lambda\left(E_{i}\right) \xi^{p} \eta^{p} d s\right)^{\frac{1}{p}} \\
& \leq \eta \xi
\end{aligned}
$$

and

$$
\begin{aligned}
S_{2}(t) & =\left(\sum_{i=1}^{m} \int_{0}^{1}\left|\chi_{E_{i}}(s) G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}} \\
& =\left(\int_{0}^{1}\left|\sum_{i=1}^{m} \chi_{E_{i}}(s) G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}} \\
& \leq \sum_{i=1}^{m}\left(\int_{0}^{1}\left|\chi_{E_{i}}(s) G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}} \\
& \leq \sum_{i=1}^{m}\left(\int_{0}^{1}\left|G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}}
\end{aligned}
$$

Now, we return to I :

$$
\begin{aligned}
I & \leq \frac{1}{v([-r, r])} \int_{[-r, r]} S_{1}(t)+S_{2}(t) d \mu(t) \\
& \leq \frac{1}{v([-r, r])} \int_{[-r, r]} \eta\|L\|_{\mathcal{B} \mathcal{S}^{p}(\mathbb{R})} d \mu(t)+\sum_{i=1}^{m} \frac{1}{v([-r, r])} \int_{[-r, r]}\left(\int_{0}^{1}\left|G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}} d \mu(t)
\end{aligned}
$$

Since each $G\left(., y_{i}\right)$ is in $\mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, \nu)$, there exists $R_{i}>0$ such that

$$
r \geq R_{i} \Longrightarrow \frac{1}{v([-r, r])} \int_{[-r, r]}\left(\int_{0}^{1}\left|G\left(t+s, y_{i}\right)\right|^{p} d s\right)^{\frac{1}{p}} d \mu(t) \leq \frac{\varepsilon}{2 m}
$$

Then for $r \geq R:=\sup _{1 \leq i \leq m} R_{i} I \leq \frac{\mu([-r, r])}{v([-r, r])} \eta\|L\|_{\mathcal{B} \mathcal{S}^{p}(\mathbb{R})}+\frac{\varepsilon}{2} \leq \varepsilon$.
Theorem 4.9. Let μ and v satisfy (M1). Assuming that $G=G_{1}+G_{2} \in P A A^{p} U(\mathbb{R} \times \mathbb{H}, \mathbb{H}, \mu, v)$ and $h=h_{1}+h_{2} \in$ PAA ${ }^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$. Assume that the following conditions hold:

1. G_{1}, G_{2} satisfy (A0): There exists a nonnegative function $L_{i} \in \mathcal{B S}^{p}(\mathbb{R})$ such that

$$
\forall x, y \in \mathbb{H}, t \in \mathbb{R}:\left\|G_{i}(t, x)-G_{i}(t, y)\right\| \leq L_{i}(t)\|x-y\|
$$

for $i=1$, 2. And there exists $\xi>0$ such that for all $t \in \mathbb{R}, f \in \mathcal{B S}{ }^{p}(\mathbb{R})$

$$
\left(\int_{0}^{1} L_{i}^{p}(t+s)\|f(s)\|^{p} d s\right)^{\frac{1}{p}} \leq \xi\left(\int_{0}^{1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}}
$$

2. $K_{i}=\overline{\left\{h_{i}(t), t \in \mathbb{R}\right\}}$ is compact, for $i=1,2$.

Then $t \longmapsto G(t, h(t)) \in P A A^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$.
Proof: Put $G(t, h(t))=\widetilde{G}_{1}(t)+\widetilde{G}_{2}(t)$. Where $\widetilde{G}_{1}(t):=G_{1}\left(t, h_{1}(t)\right)$ and $\widetilde{G}_{2}(t):=\left(G(t, h(t))-G\left(t, h_{1}(t)\right)\right)+G_{2}\left(t, h_{1}(t)\right)$. By Theorem 4.7 , we have $t \longmapsto G_{1}\left(t, h_{1}(t)\right) \in A A^{p}(\mathbb{R}, \mathbb{H})$ that is $\widetilde{G}_{1} \in A A^{p}(\mathbb{R}, \mathbb{H})$. For \widetilde{G}_{2} : $t \longmapsto G_{2}\left(t, h_{1}(t)\right) \in \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$, by Theorem 4.8.

For $t \in \mathbb{R}$, we have

$$
\begin{aligned}
\left(\int_{t}^{t+1}\left\|G(s, h(s))-G\left(s, h_{1}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} & \leq\left(\int_{t}^{t+1}\left\|G_{1}(s, h(s))-G_{1}\left(s, h_{1}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& +\left(\int_{t}^{t+1}\left\|G_{2}(s, h(s))-G_{2}\left(s, h_{1}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\int_{0}^{1} L_{1}^{p}(t+s)\left\|h_{2}(t+s)\right\|^{p} d s\right)^{\frac{1}{p}}+\left(\int_{0}^{1} L_{2}^{p}(t+s)\left\|h_{2}(t+s)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq 2 \xi\left(\int_{0}^{1}\left\|h_{2}(t+s)\right\|^{p} d s\right)^{\frac{1}{p}}, \operatorname{since} h_{2}(t+.) \in \mathcal{B} S^{p}(\mathbb{R}) .
\end{aligned}
$$

Then

$$
\frac{1}{v([-r, r])} \int_{[-r, r]}\left(\int_{t}^{t+1}\left\|G(s, h(s))-G\left(s, h_{1}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} d \mu(t) \leq \frac{2 \xi}{v([-r, r])} \int_{[-r, r]}\left(\int_{t}^{t+1}\left\|h_{2}(s)\right\|^{p} d s\right)^{\frac{1}{p}} d \mu(t) \longrightarrow 0
$$

as $r \longrightarrow+\infty$. This implies that $t \longmapsto G(t, h(t))-G\left(t, h_{1}(t)\right) \in \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$. Therefore, $\widetilde{G}_{2} \in \mathcal{E}^{p}(\mathbb{R}, \mathbb{H}, \mu, v)$.

Acknowledgments

The first author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under the project number No. R-2021-35.

References

[1] E. Ait Dads, K. Ezzinbi and M. Miraoui, (μ, v)-Pseudo almost automorphic solutions for some nonautonomous differential equations, Int. J. Math. 26 (2015) 1-21.
[2] M.Ben Salah, K. Ezzinbi and A. Rebey, Pseudo almost Periodic and Pseudo almost Automorphic Solutions to Evolution Equations in Hilbert Spaces, Mediterranean Journal of Mathematics 13 (2016) 703-717.
[3] M. Ben Salah, M. Miraoui and A. Rebey, New results for some neutral partial functional differential equations, Results in Mathematics 74181 (2019).
[4] J. Blot, G. M. Mophou, G. M. N'Guérékata, and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Anal 71 (2009) 903-909.
[5] J. Blot, P. Cieutat and K. Ezzinbi, New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis 92 (2013) 493-526.
[6] J. Blot, P. Cieutat and K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Analysis 75 (2012) 2426-2447.
[7] S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, Proceedings of the National Academy of Sciences of the United States of America 52 (1964) 907-910.
[8] T. Diagana, Stepanov-like pseudo-almost periodicity and its applications to some nonau- tonomous differential equations, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008) 4277-4285.
[9] T. Diagana, K. Ezzinbi, M. Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory, Cubo, 16 (2) (2014) 1-31.
[10] M. Miraoui, K. Ezzinbi and A. Rebey, μ-Pseudo Almost periodic solutions in α-norm to some neutral partial differential equations with finite delay, Dynamics of Continuous Discrete and Impulsive Systems, Canada (2017) 83-96.
[11] N'Guérékata GM., Almost automorphic and almost periodic functions in abstract spaces, Kluwer Academic Publishers, NewYork, 2001.
[12] G. M. N'Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Analysis 68 (2008) 2658-2667.
[13] A. Rebey, H. Elmonser, M. Eljeri, M. Miraoui, New results for doubly mesured pseudo almost periodic functions in Stepanov's sense, Ukrainian Mathematical Journal, Accepted.

[^0]: 2020 Mathematics Subject Classification. 26A42, 43A60
 Keywords. Measure theory; Almost automorphic functions in the sense of Stepanov; Ergodic functions in the sense of Stepanov Received: 14 November 2020; Accepted: 30 December 2020
 Communicated by Dragan S. Djordjević
 Research supported by Deanship of Scientific Research at Majmaah University.
 Email addresses: a.rebey@mu.edu.sa (Amor Rebey),m.eljeri@mu.edu.sa (Mosbah Eljeri)

