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Abstract. We give the definition of D-invariant points on an irreducible algebraic hypersurface V in RN.
We show that every regular point on irreducible quadratic hypersurface in RN is D-invariant. We prove
that the local Taylor interpolation projector at a regular point a ∈ V is an ideal projector if and only if a is
D-invariant.

1. Introduction

Let Pd(RN) be the vector space of all polynomials of degree at most d on RN. It is well-known that the
dimension md(RN) of Pd(RN) is equals to

(N+d
N

)
. Let q be an irreducible polynomial on RN and V = V(q)

the algebraic hypersurface {x ∈ RN : q(x) = 0}. The set of all regular points on V is denoted by V0. When
V0 , ∅, it forms an analytic manifold of dimension N − 1. We will also consider Pd(V) = {p|V : p ∈ Pd(RN)}.
Bos [5] shows that the dimension md(V) of the vector space Pd(V) is given by

md(V) = md(RN) −md−deg q(RN),

where we make a convention that mk(RN) = 0 when k < 0.
In [6, 7], Bos and Calvi studied polynomial interpolation on algebraic hypersurfaces inCN. They obtained

many beautiful results. The authors also showed in [6] that, with simple adaptations, everything remains
true in the real variable case. Here we recall notations and results of Bos and Calvi in the real settings. Let
L = (a,U,R) be a local parametrization of a regular point a on an irreducible algebraic hypersurface V in
RN (see Section 2 for precise definition). We consider the least space Pd

L↓
at a induced by Pd

L
= Pd(RN) ◦ R,

following [6]. It is a subspace of P(RN−1) generated by least terms of functions in Pd(RN) ◦ R. Using
this least space, we can define a linear space of local differential operators Dif(L, d) acting on sufficiently
smooth functions in neighborhoods of a in V. The authors in [6] used Dif(L, d) as interpolation conditions
to define the local Taylor interpolation projector Td

L
. This type of interpolation inherits many properties of

the ordinary Taylor polynomial (see [6] for details).
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In [7], the authors continued studying the least space and the local Taylor interpolation in C2. They
introduced the notation of Taylorian points on algebraic curves. A point a on V is called to be Taylorian if,
for some local parametrization L = (a,U,R), we have

P
d
L↓

= span
{
1, (t − a), . . . , (t − a)md(V)−1

}
. (1)

In this case, any local parametrization gives the same set of powers {0, 1, . . . ,md(V) − 1}. It is showed in [7],
for d ≥ 1, every point on irreducible quadratic curve in C2 is d-Taylorian and all but finitely many points
on an irreducible algebraic curve in C2 are d-Taylorian. The local Taylor interpolation at a Taylorian point
has many interesting properties. Theorem 3.2 in [7] points out that a regular point a ∈ V is Taylorian if and
only if ker Td

L
is an ideal in the space of analytic functions at a on V ⊂ C2. It is an important characterization

of a d-Taylorian point. Bos and Calvi also claimed in [7, p. 546] that analogous results still hold when one
works with real algebraic curves in R2.

Our purpose is to generalize the definition of d-Taylorian points in the higher dimension and to study
the properties of generalized points. Relation (1) suggests an extension of the concept of d-Taylorian
points. That is, in the multivariate case, the space Pd

L↓
is invariant under differentiations (D-invariant for

short). Fortunately, the D-invariant property is independent of the choice of the local parametrization and
depends only on a. This enables us to define D-invariant points on algebraic hypersurfaces inRN. We show
in Proposition 2.8 that the set of D-invariant points of order d = 1 on an irreducible algebraic hypersurface
V inRN is open and dense in V0. On a quadratic hypersurface inRN, Theorem 3.1 asserts that every regular
point is D-invariant of order d ≥ 1. Moreover, we can find a basis for the least space Pd

L↓
. Using this, we

show that the local approximation order of Pd
L

is d + 1 in sense of de Boor and Ron [4]. Next we extend [7,
Theorem 3.2] to the case of algebraic hypersurfaces inRN. In Theorem 4.2 we show that ker Td

L
is an ideal if

and only if a is a D-invariant point. We also prove that, at a D-invariant point, the local Taylor interpolation
projectors obey the Leibniz property (see Proposition 4.4).

After this paper had finished, we realized that analogous problems was studied by Izumi. In [13], the
author used deep tools from complex geometry to investigate the least spaces, Taylorian projectors, etc.
on complex manifolds X in CN. He showed that the set of points which are not D-invariant of order ∞
are contained in a countable union of thin analytic subsets of X. He also pointed out that the kernel of a
local Taylor interpolation projector at a point a ∈ X is an ideal if and only if a is D-invariant. Note that
the methods used in [13] are quite abstract and different from ours. Izumi utilized results of the complex
geometry to deal with the complex case, whereas we use direct methods to compute least spaces and study
the local Taylor interpolation projectors in the real case. In [13, p. 5], Izumi also noted that all results
remain valid also in the real analytic category. We hope that our results are of independent interests and
meaningful. We finally note that D-invariant spaces and ideal interpolation have been studied in many
papers [1–4]. The notations of the least spaces, their properties and applications can be found in remarkable
works of de Boor and Ron.

2. Least spaces and D-invariant points

2.1. Least spaces
The partial derivatives in Rn are defined by Dα = ∂|α|

∂xα1
1 ···∂xαn

n
for α = (α1, . . . , αn) ∈ Nn, |α| = α1 + · · · + αn.

The linear differential operator with constant coefficients induced by p ∈ Pd(Rn) is given by

p(D) =
∑
α

cαDα with p(x) =
∑
α

cαxα.

Let F be a finite-dimensional vector space of analytic functions on neighborhoods of a ∈ Rn. For f ∈ F , we
can uniquely expand it in a Taylor series about a,

f (x) =

∞∑
|α|=0

cα(x − a)α, cα ∈ R.
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If f is nonzero, then the order of f at a, denoted by orda( f ), is the lowest non-vanishing a-homogenenous
polynomial of the Taylor series,

orda( f ) = min
{
k :

∑
|α|=k

|cα| , 0
}
.

The least term of f at a, denoted by fa,↓, is defined by

fa,↓ =
∑

|α|=orda( f )

cα(x − a)α.

Hence, we can write

f (x) = fa,↓(x) + (terms of higher a-order).

If f = 0, then we set fa,↓ = 0. The least space of F at a is the vector space spanned by least terms,

Fa,↓ := span
{

fa,↓ : f ∈ F
}
.

A theorem of de Boor and Ron [2, p. 291] asserts that

dimFa,↓ = dimF . (2)

Definition 2.1. A subspaceQ ofP(Rn) is said to be D-invariant if it is invariant under differentiations. Equivalently,
for every differential operator p(D), we have

p(D)(Q) ⊂ Q.

More generally, a vector space F of analytic functions in neighborhoods of 0 ∈ Rn is called D-invariant if

p(D)(F ) ⊂ F , ∀p ∈ P(Rn).

Obviously, F is D-invariant if and only if ∂ f
∂xi
∈ F for all i = 1, . . . ,n and f ∈ F . The following result is

showed in [2].

Theorem 2.2. If F is D-invariant, then so is F0,↓.

2.2. D-invariant points on algebraic hypersurfaces
In this subsection, we always assume that q is an irreducible polynomial on RN and V = V(q) with

V0 , ∅.

Definition 2.3. A local parametrization of V (and of V0) at a ∈ V0 is a 3-tuple L = (a,U,R), where a ∈ RN−1,
U is a domain in RN−1 containing a and R : U → RN an analytic mapping such that R(a) = a, R(U) ⊂ V0 and
R = (R1, . . . ,RN) is a diffeomorphism from U onto R(U).

Note that Ri is analytic on U for every i = 1, . . . ,N. Next, we consider the finite-dimensional space of
analytic functions in neighborhoods of a,

P
d
L

:= Pd(RN) ◦ R =
{
p ◦ R : p ∈ Pd(RN)

}
.

Therefore, we get the corresponding least space at a,

P
d
L↓

:=
(
P

d
L

)
a,↓
⊂ P(RN−1).

From (2) and [6, Lemma 3.2], we have

dimPd
L↓

= dimPd
L

= md(V).
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Proposition 2.4. Let L1,L2 be two local parametrizations at a ∈ V0. If Pd
L2↓

is D-invariant then so is Pd
L1↓

.
Moreover, if

P
k(RN−1) ⊆ Pd

L2↓
,

then Pd
L1↓

also has the same property.

Proof. By Lemma 2.2 in [6], there exists an affine automorphism Φ : RN−1
→ RN−1 such that

P
d
L1↓

= Pd
L2↓
◦Φ. (3)

We write Φ = (φ1, . . . , φN−1) where φi : RN−1
→ R are affine functions, i = 1, . . . ,N − 1. For P ∈ Pd

L1↓
with

P = Q ◦Φ, Q ∈ Pd
L2↓

, we have

∂P
∂xk

=
∂
∂xk

(Q ◦Φ) =

N−1∑
i=1

(∂Q
∂xi
◦Φ

)∂φi

∂xk
, 1 ≤ k ≤ N − 1. (4)

By the hypothesis, ∂Q
∂xi
∈ P

d
L2↓

, and hence ∂Q
∂xi
◦ Φ ∈ Pd

L1↓
. On the other hand, ∂φi

∂xk
is a real number. It follows

that the polynomials in (4) belongs to Pd
L1↓

. This completes the proof of the first part. The second assertion
follows directly from (3) since Φ is an affine automorphism.

Definition 2.5. A point a ∈ V0 is called D-invariant of order d if, for any (or some) local parametrization L of V at
a, Pd

L↓
is D-invariant.

The following result points out that D-invariant points are invariant with respect to affine automorphisms.

Lemma 2.6. Let a ∈ V0 be D-invariant of order d and Φ : RN
→ RN an affine automorphism. Then Φ(a) is a

D-invariant point on Φ(V) of order d.

Proof. The proof follows directly from the computation in [6, p. 42]. Indeed, let L = (a,U,R) be a local
parametrization of V at a. Then LΦ = (a,U,Φ ◦ R) is a local parametrization of Φ(V) = {q ◦Φ−1 = 0} at Φ(a).
Since Φ is an affine automorphism of RN, we have Pd

L
= Pd

LΦ
. Hence

P
d
L↓

= Pd
LΦ↓

. (5)

The proof is complete.

Example 2.7. 1) It is easy to show that a finite-dimensional subspace Q of P(R) is D-invariant if and only if there
exists k such that

Q = span
{
1, t, . . . , tk

}
.

Hence, on an algebraic curve in R2, a point is D-invariant if and only if it is Taylorian.
2) Example 3.4 in [6] points out that all points on hyperplanes in RN are D-invariant of order d for d ≥ 1.

Proposition 2.8. Let V(q) be an irreducible algebraic hypersurface of degree d ≥ 2 in RN with V0(q) , ∅. Then the
set of D-invariant points of order 1 on V(q) is open and dense in V0(q).

Proof. Let a ∈ V0, V = V(q). Without loss of generality, we assume that
∂q
∂xN

(a) , 0. By the implicit function

theorem, there exists a local parametrization R : U → RN, R(x) =
(
x, ρ(x)

)
with x = (x, xN), a = (a, aN) and
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R(a) = a. Remark that ρ is real analytic on U and D2ρ is not identical to 0 on U since deg q ≥ 2, where D2ρ(x)
is the second-order total derivative of ρ at x ∈ U. It follows that

U0 = {b ∈ U : D2ρ(b) , 0} =

b ∈ U :
[
∂2ρ(b)
∂xi∂x j

]
1≤i, j≤N−1

, 0


is open and dense in U, and hence R(U0) is open and dense in R(U). It suffices to show that

U0 = {b ∈ U : Ib is D-invariant},

where Ib is the least space of order 1,

Ib = span
{(

p(x, ρ(x))
)

b,↓
: p ∈ P1(RN)

}
.

Evidently, 1 ∈ Ib. Since m1(V) = N + 1, we need to find N non-constant independent elements in Ib.
Note that R is also a parametrization of b ∈ R(U) with b = R(b), b ∈ U. For b = (b1, . . . , bN−1) ∈ U, let
p(x) =

∑N−1
i=1 ci(xi − bi) + cN(xN − ρ(b)). We have

p(x, ρ(x)) =

N−1∑
i=1

ci(xi − bi) + cN

(
ρ(x) − ρ(b)

)
.

Therefore, if we take cN = 0, then
(
p(x, ρ(x))

)
b,↓

=
∑N−1

i=1 ci(xi−bi). It follows that N−1 polynomials x1, . . . , xN−1

belong to Ib. Let us choose cN = 1 and ci = −
∂ρ(b)
∂xi

for i = 1, . . . ,N − 1. Then, the Taylor series of ρ about b
gives

p(x, ρ(x)) =

∞∑
k=2

1
k!

Dkρ(b)(x − b)k,

where Dkρ(b) stands for the kth total derivative of ρ at b and Dkρ(b)(x − b)k means Dkρ(b)(x − b, . . . , x − b). It
follows that(

p(x, ρ(x))
)

b,↓
=

1
k!

Dkρ(b)(x − b)k,

where k ≥ 2 is the smallest integer such that Dkρ(b)(x − b)k does not vanish. Since dimIb = m1(V) = N + 1
we get

Ib = span
{
1, x1, . . . , xN−1,Dkρ(b)(x − b)k

}
.

Evidently, Ib is D-invariant if and only if k = 2. Equivalently, D2ρ(b) , 0, i.e., b ∈ U0. The proof is
complete.

Let q be an irreducible polynomial of degree at least 2 on RN with V0(q) , ∅. We conjecture that the
set of D-invariant points of order d on V(q) is open and dense in V0(q) for any d ≥ 1. Izumi [13] gave
the affirmative answer for the case of complex manifolds in CN. In the next section, we will confirm the
conjecture in the special case when deg q = 2.

3. D-invariant points on quadratic hypersurfaces

In this section, we study the set of D-invariant points on irreducible quadratic hypersurfaces inRN with
N ≥ 3. The main result of the section is the following.
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Theorem 3.1. Let q be an irreducible quadratic hypersurface on RN with V(q) , ∅. Then every regular point on
V(q) is D-invariant of order d for d ≥ 1.

The idea of the proof is as follows. By applying a coordinate transformation in RN if necessary, we may
assume that that the equation q(x) = 0 takes one of the following canonical forms:

(I) x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

s − 1 = 0, 1 ≤ r ≤ s ≤ N;

(II) x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

s = 0, 1 ≤ r < s ≤ N, s ≥ 3;

(III) xN −

s∑
i=1

εix2
i = 0, 1 ≤ s ≤ N − 1, εi = ±1, i = 1, . . . , s.

Moreover, a is assumed to be a special point on V0(q) so that we can compute the least space directly.
Hence we reduce the proof of Theorem 3.1 into the proofs of three special cases which are presented in the
following lemmas.

Lemma 3.2. Let N ≥ 3, 1 ≤ m ≤ N − 1 and d ≥ 1. Let εi = ±1 for i = 1, . . . ,m. Set

Fα′ (x) =
( m∑

i=1

εix2
i

)α1
N−1∏
i=2

xαi
i , α′ = (α1, . . . , αN−1), |α′| ≤ d,

Gβ′ (x) = x1

( m∑
i=1

εix2
i

)β1
N−1∏
i=2

xβi

i , β′ = (β1, . . . , βN−1), |β′| ≤ d − 1.

Then the set D = {Fα′ ,Gβ′ : |α′| ≤ d, |β′| ≤ d − 1} consists of
(N+d

N
)
−

(N+d−2
N

)
independent polynomials on RN−1.

Moreover, span(D) is D-invariant.

Proof. Without loss of generality we assume that Ω := {(x2, . . . , xm) ∈ Rm−1 :
∑m

i=2 εix2
i > 0} is non-empty

open set in Rm−1, where
∑m

i=2 εix2
i is taken as 1 when m = 1. Otherwise, we work with

∑m
i=1 −εix2

i instead of∑m
i=1 εix2

i . We first see that

]D = ]{Fα′ : |α′| ≤ d} + ]{Gβ′ : |β′| ≤ d − 1}

=

(
N − 1 + d

N − 1

)
+

(
N − 1 + d − 1

N − 1

)
=

(
N + d

N

)
−

(
N + d − 2

N

)
.

Next we show that D is linearly independent. We learn the method of Bos and de Marchi [8, p. 372-373].
Assume that

P1

(
x2, . . . , xN−1,

m∑
i=1

εix2
i

)
+ x1P2

(
x2, . . . , xN−1,

m∑
i=1

εix2
i

)
= 0, x1, . . . , xN−1 ∈ R. (6)

Here P1,P2 ∈ P(RN−1). We need to show that P1 ≡ 0 and P2 ≡ 0. Since (6) is an algebraic identity, it also

holds for all x1, . . . , xN−1 ∈ C. In particular, taking x1 = it
√∑m

i=2 εix2
i , t ∈ R, where i is the imaginary unit ,

we obtain the following identity for (x2, . . . , xN−1) ∈ Ω ×RN−m and t ∈ R,

P1

(
x2, . . . , xN−1, (1 − ε1t2)

m∑
i=2

εix2
i

)
+ it

√√
m∑

i=2

εix2
i P2

(
x2, . . . , xN−1, (1 − ε1t2)

m∑
i=2

εix2
i

)
≡ 0. (7)

Hence, both real part and imaginary part of the left hand side is identically zero,

Pk

(
x2, . . . , xN−1, (1 − ε1t2)

m∑
i=2

εix2
i

)
≡ 0, (x2, . . . , xN−1) ∈ Ω ×RN−m, t ∈ R, k = 1, 2.
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Since Ω is non-empty open set in Rm−1, the above relation holds in RN−1. But t ∈ R is arbitrary, it follows
that P1 ≡ 0 and P2 ≡ 0 in RN−1, and the claim is proved.

Now, to show that span(D) is D-invariant, it is sufficient to check that

∂P
∂xk
∈ span(D), ∀P ∈ D, 1 ≤ k ≤ N − 1.

We first treat the case where P = Fα′ , |α′| ≤ d. We have

∂Fα′
∂x1

(x) = 2α1ε1x1

( m∑
i=1

εix2
i

)α1−1
N−1∏
i=2

xαi
i .

If m + 1 ≤ k ≤ N − 1, then

∂Fα′
∂xk

(x) = αk

( m∑
i=1

εix2
i

)α1
xα2

2 · · · x
αk−1
k−1 xαk−1

k xαk+1
k+1 · · · x

αN−1
N−1 .

On the other hand, if 2 ≤ k ≤ m, then

∂Fα′
∂xk

(x) = αk

( m∑
i=1

εix2
i

)α1
xα2

2 · · · x
αk−1
k−1 xαk−1

k xαk+1
k+1 · · · x

αN−1
N−1 + 2α1εk

( m∑
i=1

εix2
i

)α1−1
xα2

2 · · · x
αk−1
k−1 xαk+1

k xαk+1
k+1 · · · x

αN−1
N−1 .

Above computations evidently give ∂Fα′
∂xk
∈ span(D) for all k = 1, . . . ,N − 1. The same arguments apply to

the case P = Gβ′ , |β′| ≤ d − 1. Here, we only verify that
∂Gβ′

∂x1
∈ span(D). Since ε1x2

1 =
∑m

i=1 εix2
i −

∑m
i=2 εix2

i , we
have

∂Gβ′

∂x1
(x) =

( m∑
i=1

εix2
i

)β1
N−1∏
k=2

xβk

k + 2β1ε1x2
1

( m∑
i=1

εix2
i

)β1−1
N−1∏
k=2

xβk

k

=
( m∑

i=1

εix2
i

)β1
N−1∏
k=2

xβk

k + 2β1

( m∑
i=1

εix2
i

)β1
N−1∏
k=2

xβk

k

− 2β1

m∑
j=2

ε j

( m∑
i=1

εix2
i

)β1−1
xβ2

2 · · · x
β j−1

j−1 xβ j+2
j xβ j+1

j+1 · · · x
βN−1

N−1.

The last polynomial belongs to span{Fα′ : |α′| ≤ d} since |β′| ≤ d−1. Hence,
∂Gβ′

∂x1
∈ span(D), which completes

the proof.

Lemma 3.3. Let 1 ≤ r ≤ s ≤ N. Let q(x) = x2
1 + · · ·+x2

r −x2
r+1−· · ·−x2

s −1 be an irreducible quadratic polynomial on
RN and a ∈ V with V = V(q). Here x2

r+1 + · · ·+ x2
s is taken as 0 when r = s. Then there exists a linear automorphism

Φ : RN
→ RN such that

Φ(V) = V and Φ(a) = (1, 0, . . . , 0).

Proof. Let us take affine isomorphisms φ1, φ2, φ3 such that

φ1 : Rr
→ Rr, φ1(a1, . . . , ar) = (

√√
r∑

i=1

a2
i , 0, . . . , 0) =: (b, 0, . . . , 0);

φ2 : Rs−r
→ Rs−r, φ2(ar+1, . . . , as) = (

√√
s∑

i=r+1

a2
i , 0, . . . , 0) =: (c, 0, . . . , 0), r < s;
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φ3 : RN−s
→ RN−s, φ3(xs+1, . . . , xN) = (xs+1 − as+1, . . . , xN − aN), s < N.

Define an affine automorphism Φ1 of RN by

Φ1 =


(φ1, φ2, φ3) if 1 ≤ r < s < N
(φ1, φ2) if 1 ≤ r < s = N
(φ1, φ3) if r = s < N
φ1 if r = N

Assume that 1 ≤ r < s < N. We have

Φ1(x1, . . . , xN) =
(
φ1(x1, . . . , xr), φ2(xr+1, . . . , xs), φ3(xs+1, . . . , xN)

)
.

It is easily seen that

Φ1(V) = V and Φ1(a) = (b, 0, . . . , 0, c, 0 . . . , 0) =: a∗.

We consider the linear mapping Φ2 : RN
→ RN defined by

Φ2(x1, . . . , xN) = (bx1 − cxr+1, x2, . . . , xr, cx1 − bxr+1, . . . , xN).

Since b2
− c2 = 1, Φ2 is an automorphism. Evidently, Φ2(a∗) = (1, 0, . . . , 0). Moreover, if we set y = Φ2(x) then

y2
1 + · · · + y2

r − y2
r+1 − · · · − y2

s = x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

s .

Therefore, Φ2(V) = V, and hence it suffices to choose Φ = Φ2 ◦ Φ1. The case where 1 ≤ r < s = N can be
done in the same way as above. In two remaining cases, we take Φ = Φ1. The details of the proof are left to
the reader.

Lemma 3.4. Every point on the irreducible quadratic hypersurface V = V(q) is D-invariant of order d for d ≥ 1,
where q(x) = x2

1 + · · · + x2
r − x2

r+1 − · · · − x2
s − 1, 1 ≤ r ≤ s ≤ N.

Proof. By Lemmas 2.6 and 3.3, it suffices to prove the assertion for a = (1, 0, . . . , 0). For convenience, we
write q(x) =

∑s
i=1 εix2

i − 1 with ε1 = 1, εi = ±1 for i ≥ 2. A local parametrization of V at a is L = (0,U,R)
where U is a neighborhood of 0 in RN−1 and R : U→ RN given by

R(y2, . . . , yN) =
(√√

1 −
s∑

i=2

εiy2
i , y2, . . . , yN

)
, y = (y2, . . . , yN) ∈ U. (8)

Since x2
s = εs − εs

∑s−1
i=1 εix2

i , we can write each polynomial p ∈ Pd(V) into the form

p(x) = p1(x1 − 1, x2, . . . , xs−1, xs+1, . . . , xN) + xsp2(x1 − 1, x2, . . . , xs−1, xs+1, . . . , xN), (9)

where p1 ∈ P
d(RN−1), p2 ∈ P

d−1(RN−1). Hence

(p ◦ R)(y2, . . . , yN) = p1

(√√
1 −

s∑
i=2

εiy2
i − 1, y2, . . . , ys−1, ys+1, . . . , yN

)
+ ysp2

(√√
1 −

s∑
i=2

εiy2
i − 1, y2, . . . , ys−1, ys+1, . . . , yN

)
. (10)
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We have√√
1 −

s∑
i=2

εiy2
i − 1 = −

1
2

s∑
i=2

εiy2
i + (terms of higher 0-order). (11)

It follows from (10) that Pd
L↓

contains the following polynomials

Pα(y) :=
( s∑

i=2

εiy2
i

)α1
N∏

i=2,i,s

yαi
i , α = (α1, . . . , αs−1, αs+1, . . . , αN), |α| ≤ d

and

Qβ(y) := ys

( s∑
i=2

εiy2
i

)β1
N∏

i=2,i,s

yβi

i , β = (β1, . . . , βs−1, βs+1, . . . , βN), |β| ≤ d − 1.

Remark that the s-index does not appear in α and β. Let us set

Dd = {Pα,Qβ : |α| ≤ d, |β| ≤ d − 1}.

By Lemma 3.2,Dd consists of
(N+d

N
)
−
(N+d−2

N
)

independent polynomials onRN−1 and span(Dd) is D-invariant.
On the other hand(

N + d
N

)
−

(
N + d − 2

N

)
= md(V) = dimPd

L↓
.

It follows thatDd forms a basis for Pd
L↓

and Pd
L↓

is D-invariant. The proof is complete.

Lemma 3.5. Let q(x) = x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

s , 1 ≤ r < s ≤ N, s ≥ 3, be an irreducible quadratic polynomial
on RN and a ∈ V0 with V = V(q). Then there exists a linear automorphism Φ : RN

→ RN such that

Φ(V) = V and Φ(a) = (1, 0, . . . , 0, 1, 0, . . . , 0),

where the first and s-th entries are equal to 1.

Proof. Since a = (a1, . . . , aN) ∈ V0,
√∑r

i=1 a2
i =

√∑s
i=r+1 a2

i denoted shortly by b is different from 0. Let us
take linear isomorphisms φ1, φ2, φ3 such that

ϕ1 : Rr
→ Rr, ϕ1(a1, . . . , ar) = (

√√
r∑

i=1

a2
i , 0, . . . , 0) =: (b, 0, . . . , 0);

ϕ2 : Rs−r
→ Rs−r, ϕ2(ar+1, . . . , as) = (0, . . . , 0,

√√
s∑

i=r+1

a2
i ) = (0, . . . , 0, b);

ϕ3 : RN−s
→ RN−s, ϕ3(xs+1, . . . , xN) = (xs+1 − as+1, . . . , xN − aN), s < N.

We define a linear automorphism of RN by

Φ1 =

(ϕ1, ϕ2, ϕ3) if 1 ≤ r < s < N,
(ϕ1, ϕ2) if 1 ≤ r < s = N.

Then Φ1(V) = V and Φ1(a) = (b, 0, . . . , 0, b, 0, . . . , 0), where the first and s-th entries are equal to b. Let Φ2 be
the dilation defined by Φ2(x) = x

b . Then Φ2(V) = V and

Φ2(b, 0, . . . , 0, b, 0, . . . , 0) = (1, 0, . . . , 0, 1, 0, . . . , 0).

The composed mapping Φ := Φ2 ◦Φ1 satisfies the desired properties, and the proof is complete.
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Lemma 3.6. Every regular point on the irreducible quadratic hypersurface V = V(q) is D-invariant of order d for
d ≥ 1, where q(x) = x2

1 + · · · + x2
r − x2

r+1 − · · · − x2
s , 1 ≤ r < s ≤ N, s ≥ 3.

Proof. Analysis similar to that in the proof of Lemma 3.3 shows that we need only to prove the assertion
for a = (1, 0, . . . , 0, 1, 0 . . . , 0) in which the first and s-th entries are equal to 1. For simplicity, we write
q(x) =

∑s
i=1 εix2

i with ε1 = 1, εs = −1 and εi = ±1. Let a = (0, . . . 0, 1, 0, . . . , 0) ∈ RN−1 where only s-th entry is
equal to 1. We denote by L = (a,U,R) the local parametrization of V at a, U is a neighborhood of a in RN−1

and R : U→ RN defined by

R(y2, . . . , yN) =
(√√
−

s∑
i=2

εiy2
i , y2, . . . , yN

)
, y = (y2, . . . , yN) ∈ U.

For each α ∈NN, |α| ≤ d, let us consider the polynomial

qα(x) = (x1 − xs)α1 xα2
2 · · · x

αs−1
s−1 (xs − 1)αs xαs+1

s+1 · · · x
αN
N .

Evidently,

(qα ◦ R)(y) =
(√√
−

s∑
i=2

εiy2
i − ys

)α1
(ys − 1)αs

N∏
i=2,i,s

yαi
i .

We have√√
−

s∑
i=2

εiy2
i − ys =

√√√
1 + 2(ys − 1) + (ys − 1)2 −

s−1∑
i=2

εiy2
i − ys

= −ys + 1 +
1
2

(
2(ys − 1) + (ys − 1)2

−

s−1∑
i=2

εiy2
i

)
−

1
8

(
2(ys − 1) + (ys − 1)2

−

s−1∑
i=2

εiy2
i

)2
+ (terms of higher a-order)

= −
1
2

s−1∑
i=2

εiy2
i + (terms of higher a-order).

It follows that

(qα ◦ R)a,↓(y) = (−1/2)α1
( s−1∑

i=2

εiy2
i

)α1
(ys − 1)αs

N∏
i=2,i,s

yαi
i , |α| ≤ d.

By definition, we obtain

P
d
L↓

⊃ span
{( s−1∑

i=2

εiy2
i

)α1
(ys − 1)αs

N∏
i=2,i,s

yαi
i , |α| ≤ d

}
= span

{( s−1∑
i=2

εiy2
i

)α1
N∏

i=2

yαi
i , |α| ≤ d

}
=: Qd.

Let us consider the special polynomials in Qd

P̂α̂(y) :=
( s−1∑

i=2

εiy2
i

)α1
N∏

i=2,i,s−1

yαi
i , α̂ = (α1, . . . , αs−2, αs, . . . , αN), |̂α| ≤ d.
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and

Q̂β̂(y) := ys−1

( s−1∑
i=2

εiy2
i

)β1
N∏

i=2,i,s−1

yβi

i , β̂ = (β1, . . . , βs−2, βs, . . . , βN), |β̂| ≤ d − 1.

By Lemma 3.2, the set

D̂d = {P̂α̂, Q̂β̂ : |̂α| ≤ d, |β̂| ≤ d − 1}

are linearly independent and ]D̂d = md(V). Consequently,

md(V) = dim span
(
D̂d

)
≤ dimQd ≤ dimPd

L↓
= md(V).

It follows that
P

d
L↓

= Qd = span
(
D̂d

)
.

Lemma 3.2 also implies that Pd
L↓

is D-invariant. The proof is complete.

Lemma 3.7. Let x = (x, xN) ∈ RN−1
× R, q(x) = xN −

∑s
i=1 εix2

i with 1 ≤ s ≤ N − 1 and εi = ±1 for i = 1, . . . , s.
Then every point on V(q) is D-invariant of order d for d ≥ 1.

Proof. Let a = (a, aN) be a point on V(q). We denote by L = (a,RN−1,R) the trivial parametrization of V(q) at
a,

R(x1, . . . , xN−1) = (x1, . . . , xN−1,
s∑

i=1

εix2
i ), (x1, . . . , xN−1) ∈ RN−1.

Define

pα(x) =

N−1∏
i=1

(xi − ai)αi
(
xN −

s∑
i=1

εi(2xiai − a2
i )
)αN
, |α| ≤ d.

Then

(pα ◦ R)a,↓(x) =

N−1∏
i=1

(xi − ai)αi
( s∑

i=1

εi(xi − ai)2
)αN
, |α| ≤ d

and hence

P
d
L↓
⊃ span

{ N−1∏
i=1

(xi − ai)αi
( s∑

i=1

εi(xi − ai)2
)αN

: |α| ≤ d
}

= span
{ N−1∏

i=1

xαi
i (

s∑
i=1

εix2
i )αN : |α| ≤ d

}
.

Analysis similar to that in the proof of Lemma 3.6 shows that

P
d
L↓

= span
{
P̃α̃, Q̃β̃ : |α̃| ≤ d, |β̃| ≤ d − 1

}
= span

{ N−1∏
i=1

xαi
i (

s∑
i=1

εix2
i )αN : |α| ≤ d

}
. (12)

where

P̃α̃(x) =

N−1∏
i=2

xαi
i (

s∑
i=1

εix2
i )αN , α̃ = (α2, . . . , αN), |α̃| ≤ d (13)
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and

Q̃β̃(x) = x1

N−1∏
i=2

xβi

i (
s∑

i=1

εix2
i )βN , β̃ = (β2, . . . , βN), |β̃| ≤ d − 1. (14)

Hence, by Lemma 3.2, Pd
L↓

is D-invariant, and the proof is complete.

Proof. [Proof of Theorem 3.1] By performing a change of variables, we may assume that q is one of the three
forms defined in Lemmas 3.4, 3.6 and 3.7. The assertion follows directly from these three lemmas.

Proposition 3.8. Let N ≥ 3 and q(x) be an irreducible quadratic polynomial on RN with V0 , ∅, V = V(q). Let L
be a local parametrization of V at a regular point a ∈ V0. Then, for d ≥ 1,

P
d(RN−1) ⊆ Pd

L↓
and P

d+1(RN−1) * Pd
L↓
.

Proof. Looking at Proposition 2.4 and relation (5), and performing a change of variables, we need only
prove the claim for q and a in Lemmas 3.4, 3.6 and 3.7. Since the bases of the least spaces on the three
lemmas are of the same form, we need only to prove the claim for q and a in the last lemma. Let

V =
{
x : xN =

s∑
i=1

εix2
i : x = (x1, . . . , xN−1) ∈ RN−1

}
, εi = ±1,

a ∈ V andL the trivial parametrization. By (12) it is obvious that xα1
1 · · · x

αN−1
N−1 belongs toPd

L↓
forα1+· · ·+αN−1 ≤

d. Therefore,

P
d(RN−1) ⊆ Pd

L↓
.

It is well-known that the number of independent homogenenous polynomials of degree d + 1 in RN−1 is
equal to

(d+N−1
N−2

)
. On the other hand, from (13) we see that, in the set {P̃α̃ : |α̃| ≤ d}, there are exactly h1

homogenenous polynomials of degree d + 1, where

h1 =

(
N + d − 4

N − 3

)
+

(
N + d − 6

N − 3

)
+ · · · +

(
N + d − 2[ d+1

2 ] − 2
N − 3

)
.

Similarly, there are exactly h2 homogenenous polynomials of degree d + 1 in the set {Q̃β̃ : |β̃| ≤ d − 1}, where

h2 =

(
N + d − 5

N − 3

)
+

(
N + d − 7

N − 3

)
+ · · · +

(
N + d − 2[ d

2 ] − 3
N − 3

)
.

It follows that the basis of Pd
L↓

contains (h1 + h2) homogenenous polynomials of degree d + 1. A direct
computation gives

h1 + h2 =

(
N + d − 4

N − 3

)
+

(
N + d − 5

N − 3

)
+ · · · +

(
N − 3
N − 3

)
=

(
N + d − 3

N − 2

)
<

(
N + d − 1

N − 2

)
.

Hence, we can find a homogenenous polynomial of degree d + 1 that does not belong to Pd
L↓

, and the proof
is complete.
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The concept of local approximation order was introduced by de Boor and Ron. Let A0 be the space of
all analytic functions at the origin in RN−1. LetH be a finite-dimensional linear subspace of A0. The local
approximation order of H is the largest integer m for which, for every f ∈ C∞(RN−1), there exists h ∈ H
such that

( f − h)(x) = O(‖x‖m) as x→ 0.

Let L = (0,U,R) be a local parametrization of V at a regular point a ∈ V0. Evidently, Pd
L

= Pd(RN) ◦ R is a
finite-dimensional linear subspace ofA0. Proposition 3.8 and [4, Corollary 2.14] give the following result.

Corollary 3.9. Let N ≥ 3 and q(x) be an irreducible quadratic polynomial on RN with V0 , ∅, V = V(q). Let
L = (0,U,R) be a local parametrization of V at a regular point a ∈ V0. Then the local approximation order of Pd

L
is

d + 1.

Example 3.10. Let V be the unit sphere inR3, V = {x ∈ R3 : x2
1 +x2

2 +x2
3 = 1}, and a = (1, 0, 0). LetL1 = (0,U1,R1)

be a local parametrization of V at a where R1 : U1 → V given by

R1(y, z) =
(√

1 − y2 − z2, y, z
)
, (y, z) ∈ U1 = {(y, z) ∈ R2 : y2 + z2 < 1}.

From computations in Lemma 3.4 we have

P
1
L1↓

= span
{
1, y, z, y2 + z2

}
.

If L2 = (0,U2,R2) is a local parametrization of V at a defined by

R2(y, z) =
(√

1 − (y + z)2 − z2, y + z, z
)
, (y, z) ∈ U2 = {(y, z) ∈ R2 : (y + z)2 + z2 < 1},

then

P
1
L2↓

= span
{
1, y, z, y2 + 2yz + 2z2

}
which differs from P1

L1↓
. A similar example can be found in [9, Example 1].

4. Local Taylor interpolation at D-invariant points

We first recall the construction of the local Taylor interpolation introduced by Bos and Calvi [6]. Let
V = {x ∈ RN : q(x) = 0} where q is an irreducible polynomial on RN such that V0 , ∅. Let L = (a,U,R) be a
local parametrization of V at a ∈ V0. For Q(x) =

∑
α cα(x − a)α belonging to the least space, we associate a

local differential operator QL(D) defined on the space of sufficiently smooth functions on a neighborhood
of a by

QL(D)( f ) :=
∑
α

cαDα( f ◦ R)(a).

Here, in this section, the multi-indices are all inNN−1. Remark that if a = 0, then we can write

QL(D)( f ) = Q(D)( f ◦ R)(0).

Let Dif(L, d) be the linear space spanned by local differential operators of degree at most d,

Dif(L, d) = span
{
QL(D) : Q ∈ Pd

L↓

}
.

Lemma 3.2 in [6] points out that Dif(L, d)
∣∣∣∣
Pd(V)

is identical with the dual space of Pd(V). In particular,

dim Dif(L, d) = md(V). This result leads to the definition of the local Taylor interpolation polynomial (see
[6, Theorem 3.3]).
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Theorem 4.1. Let q be a non-constant irreducible real polynomial such that V0(q) , ∅. Let a ∈ V0(q) and L be a
local parametrization of V(q) at a. Then for every sufficiently smooth function f in a neighborhood of a, there exists a
unique polynomial p in Pd(V) such that

µ(p) = µ( f ), ∀µ ∈ Dif(L, d).

The polynomial p is called the L-Taylor interpolation polynomial of f at a to the order d and denoted by Td
L

( f ).

The following theorem is an extension of [7, Theorem 3.2]. A similar result was obtained in [13] for
the complex case. Note that our proof is different from [13]. Here Aa is the space of analytic functions in
neighborhoods of a in V0.

Theorem 4.2. A point a ∈ V0 is D-invariant of order d if and only if, for any (or some) local parametrization L of
V at a, ker Td

L
= { f ∈ Aa : Td

L
( f ) = 0} is an ideal inAa.

Proof. Without loss of generality we assume that a = 0. Suppose that a is D-invariant. Let f ∈ ker Td
L

.
Hence P(D)( f ◦R)(0) = 0 for all P ∈ Pd

L↓
. SincePd

L↓
is D-invariant, (DαP)(D)( f ◦R)(0) = 0 for all P ∈ Pd

L↓
and

α ∈ NN−1. For 1 ∈ Aa, using the Leibniz-Hörmander formula (see for instance [12, p. 177] or [11, p. 243]),
we have

P(D)
(
( f1) ◦ R

)
(0) = P(D)

(
( f ◦ R)(1 ◦ R)

)
(0)

=
∑

|α|≤deg P

(DαP)(D)( f ◦ R)(0)
1
α!

Dα(1 ◦ R)(0)

= 0.

Conversely, assume that ker Td
L

is an ideal in Aa and that there exist P ∈ Pd
L↓

and 0 < |α| < deg P such
that DαP < Pd

L↓
. We look for a contradiction. We take a basis Bd = {p1, . . . , pm} for Pd(V) with m = md(V).

Let {µ1, . . . , µm} ⊂ Dif(L, d) be the dual basis for Bd, i.e., µi(p j) = δi j for 1 ≤ i, j ≤ m. We can find Qi ∈ P
d
L↓

such that µi( f ) = Qi(D)( f ◦ R)(0) for i = 1, . . . ,m. It is easily seen that

Td
L

( f ) =

m∑
i=1

µi( f )pi, f ∈ Aa. (15)

We will denote by µ̂ the differential operator defined by µ̂( f ) = (DαP)(D)( f ◦ R)(0), f ∈ Aa. Assume that

µ̂
(
Td
L

( f )
)

= µ̂( f ), ∀ f ∈ Aa.

From (15) we obtain

µ̂( f ) =

m∑
i=1

µ̂(pi)µi( f ) =

m∑
i=1

ciµi( f ), ∀ f ∈ Aa,

where ci = µ̂(pi). In other words,(
DαP −

m∑
i=1

ciQi

)
(D)( f ◦ R)(0) = 0, ∀ f ∈ Aa. (16)

Suppose that DαP −
∑m

i=1 ciQi contains a nonzero term Q(x) = bγxγ. By the immersion theorem (see for
instance [11, Theorem 4.3.1]) there exists f0 ∈ Aa such that f0 ◦ R = Q in a neighborhood of 0 ∈ RN−1. An
easy computation shows that (16) does not hold for f0, a contradiction. It follows that DαP =

∑m
i=1 ciQi,

which contradicts the assumption DαP < Pd
L↓

. Therefore, we can find f ∈ Aa such that

(DαP)(D)
(

f ◦ R
)
(0) , (DαP)(D)

(
Td
L

( f ) ◦ R
)
(0).



P. V. Manh at el. / Filomat 35:14 (2021), 4715–4730 4729

Hence, if we set h = f − Td
L

( f ), then h ∈ ker Td
L

and (DαP)(D)(h ◦ R)(0) , 0. Using the immersion theorem
again, we can find 1 ∈ Aa such that 1 ◦ R = xα. We easily see that

1
β!

Dβ(1 ◦ R)(0) = δαβ, ∀β ∈N
N−1,

where δαβ stands for the Kronecker symbol. It follows that

P(D)
(
(1h) ◦ R

)
(0) =

∑
|β|≤deg P

(DβP)(D)(h ◦ R)(0)
1
β!

Dβ(1 ◦ R)(0)

= (DαP)(D)(h ◦ R)(0) , 0.

Hence 1h < ker Td
L

, contrary to the hypothesis.

Remark 4.3. Theorem 4.2 remains true when we replace the spaceAa by the space C`({a}) of all functions of class C`

in neighborhoods of a, where
` := max{deg p : p ∈ Pd

L↓
}.

In [6, p. 42], the authors point out that ` does not depend on L.

Proposition 4.4. If a is D-invariant of order d and L is a local parametrization of V at a, then for suitably defined
functions f and 1 we have
a) Td

L

(
f Td
L

(1)
)

= Td
L

( f1);

b) Td
L

(
Td
L

( f )Td
L

(1)
)

= Td
L

( f1).

Proof. It is sufficient to prove the first assertion. The second assertion is an immediate consequence of the
first one. Without loss of generality we assume that a = 0. For every P ∈ Pd

L↓
, using the Leibniz-Hörmander

formula again, we obtain

P(D)
((

f Td
L

(1)
)
◦ R

)
(0) = P(D)

(
( f ◦ R)(Td

L
(1) ◦ R)

)
(0)

=
∑

|α|≤deg P

(DαP)(D)
(
Td
L

(1) ◦ R
)
(0)

1
α!

Dα( f ◦ R)(0).

Now, since Pd
L↓

is D-invariant, DαP ∈ Pd
L↓

. Hence, the interpolation conditions of the local Taylor operator
give

(DαP)(D)
(
Td
L

(1) ◦ R
)
(0) = (DαP)(D)

(
1 ◦ R

)
(0).

Consequently,

P(D)
((

f Td
L

(1)
)
◦ R

)
(0) =

∑
|α|≤deg P

(DαP)(D)
(
1 ◦ R

)
(0)

1
α!

Dα( f ◦ R)(0)

= P(D)
(
( f1) ◦ R

)
(0).

The last equation implies the desired relation.

Remark 4.5. Let V be an irreducible quadratic hypersurface in RN with V0 , ∅, N ≥ 3. Let L = (0,U,R) be a local
parametrization of V at a regular point a ∈ V0 and f ∈ Aa. By Proposition 3.8 and Theorem 4.1, we have

Dα
(
Td
L

( f ) ◦ R
)
(0) = Dα( f ◦ R)(0), |α| ≤ d.

Using the usual Taylor expansion of Td
L

( f ) ◦ R and f ◦ R about 0, we can write

f ◦ R(x) − Td
L

( f ) ◦ R(x) = O(‖x‖d+1) as x→ 0. (17)
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There exist positive constants M1, M2 and a neighborhood U1 of 0 ∈ RN−1 with U1 ⊂ U such that

M1‖x‖ ≤ ‖R(x) − R(0)|| ≤M2‖x‖, x ∈ U1.

The estimation in (17) implies

f (x) − Td
L

( f )(x) = O(‖x − a‖d+1), x ∈ V, x→ a.

Remark 4.6. Let V be an irreducible quadratic curve in R2. Since any point a ∈ V is d-Taylorian for d ≥ 1, the
space Pd

L↓
contains all monomials of degree less than md(V). While it is well known that md(V) = 2d + 1 as the

degree d parts of Hilbert functions of V. Then all the derivatives of
(

f − Td
L

)
◦ R(t) of order 0, 1, . . . , 2d at 0 vanish,

where (0,U,R) is a local parametrization of V at a. This implies that
(

f − Td
L

)
◦ R(t) = O(|t|2d+1) by the usual Taylor

expansion. Using the same arguments in Remark 4.5, we obtain

f (x) − Td
L

( f )(x) = O(‖x − a‖2d+1), x ∈ V, x→ a.
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