
Filomat 35:14 (2021), 4675–4690
https://doi.org/10.2298/FIL2114675D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we first extend the concept of the arity in crisp convex spaces to the case of
fuzzification and give some related properties. From the view of arity and hull operator, we study the
relations between the disjoint sum of M-fuzzifying convex spaces and its factor spaces. We also examine
the additivity of the degree of separability (S0,S1,S2,S3,S4). Finally, we show that every factor space is
M-fuzzifying JHC iff the corresponding disjoint sum space is JHC.

1. Introduction

Convexity, has been an indispensable tool in studying of extremum problems of many fields. The notion
of convexity derives from solving some elementary geometric problems in Euclidean spaces [1]. In fact,
many branches of mathematics are closely related to convex theory, such as algebra [12], graphs [3–5],
topology [8, 21]. Many mathematical concepts have been generalized to fuzzy case since the notion of
fuzzy sets was introduced by Zadeh [35] such as fuzzy algebras [6], fuzzy topology [28], fuzzy convergence
[14, 27] and so on. Considering the axiomatic approach, fuzzy convex spaces was introduced by Rosa
[17] as a natural extension of the concept of abstract convex structures [22]. Subsequently, Maruyama [13]
further proposed the notion of L-fuzzy convex spaces under the framework of a completely distributive
lattice L. In both cases of fuzzy convex spaces and L-fuzzy convex spaces, every convex set is fuzzy, but
the convex space formed by these fuzzy convex sets is thought to be crisp. Recently, L-convex structures
are studied by many researchers in [2, 7, 9, 15, 16, 18, 29].

To provide a new approach to the fuzzification of convex spaces, the notion of M-fuzzifying convex
spaces was proposed by Shi and Xiu [20] under the frame of a completely distributive lattice M.

In fact, an M-fuzzifying convexity C on X is a mapping from 2X to M and C satisfying three axiomatic
conditions. In this sense, for any subset A of X, C (A) can be seen as the degree to which A is a convex
set. Subsequently, the notion of restricted hull operators in classical convex spaces was extended to the
M-fuzzifying case [19], it was shown that M-fuzzifying restricted hull operators and M-fuzzifying convex
spaces can be induced by each other, which means that there is a one-to-one correspondence between them.
M-fuzzifying JHC property was studied in detail by Wu and Shi [24]. Recently, Liang etl., [10, 11] introduced
S0,S1,S2,S3,S4 separation axioms in M-fuzzifying convex spaces, it means that every M-fuzzifying convex
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space can be seen as S0,S1,S2,S3,S4 separated in a certain degree. There are many other studies related to
M-fuzzifying convex spaces [23, 25, 30–33]

As we all know, it is a common method to construct a new space by using given spaces and the new
space is closely connected with its initial spaces. There are many studies on subspaces, product spaces
and quotient spaces. For example, Zhou and Shi [36] discussed the hereditary properties and productive
properties of separability in L-convex spaces. In 2014, the concept of disjoint sums of M-fuzzifying convex
spaces was proposed by Shi and Xiu [20], but beyond that disjoint sums of M-fuzzifying convex spaces
have not been studied in detail. So it is necessary to continue to study some properties of the disjoint sum
of M-fuzzifying convex spaces and establish the relations between the sum space and its factor spaces.

In Section 2, we will review some necessary notations and definitions in M-fuzzifying convex spaces.
In Section 3, we will introduce the notion of the arity of an M-fuzzifying convex space. Furthermore, we
will investigate the relations between the arity of a disjoint sum of M-fuzzifying convex spaces and the
arity of its factor spaces. In Section 4, we will study the additivity of some properties such as separability
(S0,S1,S2,S3,S4) in M-fuzzifying convex spaces. And we also prove that every factor space is M-fuzzifying
JHC iff the corresponding disjoint sum space is M-fuzzifying JHC.

2. Preliminaries

Throughout this paper, 2X stands for the power set of a nonempty X and 2X
f in represents the collection of

all finite subsets of X. In this paper, M is a completely distributive lattice with an order-reversing involution
′. We denote the minimal element and the maximal element of M by⊥ and>, respectively. The symbol MX

represents the family of all M-fuzzy sets of X. For A ∈ 2X, we use
∨

A and
∧

A to denote the supremum
and infimum of A. Let m,n ∈ M, the symbol m ≺ n (m is wedge below n) means that for every E ⊆ M,
n ≤

∨
E implies the existence of e ∈ E such that m ≤ e. The right adjoint → of the meet operation ∧ is a

mapping from M ×M to M defined as m→ n =
∨
{q ∈M|m ∧ q ≤ n}. Hence

m ∧ q ≤ n⇔ q ≤ m→ n.

The mapping ψ→ : MX
−→MY is induced by ψ : X −→ Y as follows:

∀λ ∈MX,∀y ∈ Y, ψ→(λ)(y) =
∨
ψ(x)=y

λ(x).

And ψ← : MY
−→MX is induced by ψ as follows:

∀µ ∈MY,∀x ∈ X ψ←(µ)(x) = µ(ψ(x)).

Definition 2.1. ([20]) An M-fuzzifying convexity on a set X is a mapping C : 2X
−→ M satisfying the

following conditions:

(MYC1) C (φ) = C (X) = >;

(MYC2) C (
⋂

i∈T Gi) ≥
∧

i∈T C (Gi), where {Gi}i∈T ⊆ 2X
\∅;

(MYC3) C (
⋃

i∈T Gi) ≥
∧

i∈T C (Gi), where {Gi}i∈T ⊆ 2X
\∅ is totally ordered by inclusion.

In this case, We say the pair (X,C ) is an M-fuzzifying convex space.

Definition 2.2. ([20]) Assume that (X,C ) is an M-fuzzifying convex space and ∅ , G ⊆ X. Then the mapping
C |G : 2G

−→M given by
∀B ∈ 2G,C |G(B) =

∨
D∈2X ,D∩G=B

C (D)

is an M-fuzzifying convexity on G. Furthermore, (G,C |G) is called an M-fuzzifying subspace of (X,C ).
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Theorem 2.3. ([20]) Assume that (X,C ) is an M-fuzzifying convex space. Then the mapping coC : 2X
−→MX (in

symbols, co) given by :
∀G ∈ 2X,∀x ∈ X, co(G)(x) =

∧
x<D⊇G

C (D)′

is a hull operator of C such that the following conditions hold.

(MCO1) for each x ∈ X, co(∅)(x) = ⊥;
(MCO2) for each x ∈ G, co(G)(x) = >;
(MCO3) co(G)(x) =

∧
x<D⊇G

∨
y<D

co(D)(y);

(MFD) co(G)(x) =
∨

F∈2G
f in

co(F)(x).

On the contrary, an operator co : 2X
−→ MX satisfying (MCO1) − (MCO3) and (MFD) can be used to induce

an M-fuzzifying convexity Cco on X as follows:

∀G ∈ 2X, Cco(G) =
∧
x<G

[co(G)(x)]′. (1)

Furthermore, co is the hull operator of Cco. That is to say coCco = co.

Definition 2.4. ([20]) Assume that ψ : (X,C ) −→ (Y,D) is a function between two M-fuzzifying convex
spaces. Then

(i) ψ is called an M-fuzzifying convexity preserving function (in symbols, M-CP) provided that

∀D ∈ 2Y, C (ψ−1(D)) ≥ D(D).

(ii) ψ is called an M-fuzzifying convex-to-convex function (in symbols, M-CC) provided that

∀B ∈MX, D(ψ(B)) ≥ C (B).

(iii) ψ is called an M-fuzzifying isomorphism provided that ψ is bijective, M-CP and M-CC.

Theorem 2.5. ([26]) A function ψ : (X,C ) −→ (Y,D) between two M-fuzzifying convex spaces is M-CP iff

∀F ∈ 2X
f in, ψ

→(coX(F)) ≤ coY(ψ(F)).

A function ψ : (X,C ) −→ (Y,D) between two M-fuzzifying convex spaces is M-CC if and only if

∀F ∈ 2X
f in, ψ

→(coX(F)) ≥ coY(ψ(F)).

Definition 2.6. ([20]) Assume that that {(Xi,Ci)}i∈T is a family of M-fuzzifying convex space and for all
i1 , i2 ∈ T such that Xi1 ∩ Xi2 = ∅ (i.e., pairwise disjoint). Put X =

⋃
i∈T Xi and consider the usual inclusion

mapping ji : Xi −→ X for all i ∈ T (i.e.,∀z ∈ Xi, ji(z) = z). Then the mapping C : 2X
−→M given by:

∀B ∈ 2X,C (B) =
∧
i∈T

Ci( j−1
i (B)) =

∧
i∈T

Ci(B ∩ Xi)

is an M-fuzzifying convexity on X, which is called the disjoint sum of M-fuzzifying convexity {Ci}i∈T and
C is written as

∑
i∈T

Ci. And we say the pair (X,
∑
i∈T

Ci) is the disjoint sum of M-fuzzifying convex spaces

{(Xi,Ci)}i∈T.

Definition 2.7. ([10]) Assume that (X,C ) is an M-fuzzifying convex space and B ∈ 2X. We sayHC (B) given
by
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HC (B) = C (B) ∧ C (X\B)

is the degree that B is a biconvex set.

Definition 2.8. ([10, 11]) Assume that (X,C ) is an M-fuzzifying convex space. Then we have the following
definitions.

(S0) The degree S0(X,C ) that (X,C ) is S0 separated is defined by:

S0(X,C ) =
∧
x,z

 ∨
x<B,z∈B

C (B) ∨
∨

z<D,x∈D

C (D)

 .
(S1) The degree S1(X,C ) that (X,C ) is S1 separated is defined by: S1(X,C ) =

∧
z∈X

C ({z}).

(S2) The degree S2(X,C ) that (X,C ) is S2 separated is defined by: S2(X,C ) =
∧
x,z

∨
x∈B,z<B

HC (B).

(S3) The degree S3(X,C ) that (X,C ) is S3 separated is defined by:

S3(X,C ) =
∧
B⊆X

∧
z<B

C (B)→

 ∨
B⊆D,z<D

HC (D)


 .

(S4) The degree S4(X,C ) that (X,C ) is S4 separated is defined by:

S4(X,C ) =
∧

B∩D=∅

C (B) ∧ C (D)→

 ∨
D⊆X\H,B⊆H

HC (H)


 .

Theorem 2.9. ([10, 11]) Assume that (G,C |G) is the subspace of an M-fuzzifying convex space (X,C ). Then

(i) S0(X,C ) ≤ S0(G,C |G),

(ii) S1(X,C ) ≤ S1(G,C |G),

(iii) S2(X,C ) ≤ S2(G,C |G),

(iv) S3(X,C ) ≤ S3(G,C |G),

(v) S4(X,C ) ∧ C (G) ≤ S4(G,C |G).

Definition 2.10. ([24]) Assume that (X,C ) is an M-fuzzifying convex space. We say C is an M-fuzzifying
JHC convexity if for arbitrary y, c ∈ X and B ∈ 2X

\∅,

co({c} ∪ B)(y) =
∨
x∈X

(
co({c, x})(y) ∧ co(B)(x)

)
.

3. The Arity of the Disjoint Sum of Convex Spaces

The arity plays an important role in classical convex spaces because it indicates the ability of finite
subsets generating the entire space by hull operators. Yao and Chen [34] gave a formal and strict definition
of the arity of classical convex space. Next, we will first generalize this concept to M-fuzzifying convex
spaces and give some properties. Based on this, we will further study the relations between the arity of a
disjoint sum of M-fuzzifying convex spaces and its factor spaces.
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Definition 3.1. The arity of an M-fuzzifying convex space (X,C ) is the least natural number n such that:

∀B ∈ 2X,C (B) =
∧
z<B

∧
|F|≤n,F⊆B

[co(F)(z)]′. (2)

Let us denote the arity of (X,C ) by ary(C ).

Notation. According to the above definition, it is evident that ary(C ) ≤ n iff it satisfies the equality (2),
this happens to be the definition of arity ≤ n given in [26].

Remark 3.2. From Theorem 2.3 (MDF) and equality (1), we can see

C (B) =
∧
z<B

[co(B)(z)]′ =
∧
z<B

∧
F∈2B

f in

[co(F)(z)]′ ≤
∧
z<B

∧
|F|≤n,F⊆B

[co(F)(z)]′.

So in order to prove the equality (2) holds, it shall be proved that the following inequality holds:∧
z<B

∧
|F|≤n,F⊆B

[co(F)(z)]′ ≤ C (B).

Proposition 3.3. Assume that (X,C ) is an M-fuzzifying convex space. Then ary(C ) = n implies

∀m ≥ n,
∧
z<B

∧
|F|≤m,F⊆B

[co(F)(z)]′ = C (B).

Proof. By Remark 3.2, we only need to prove
∧
z<B

∧
|F|≤m,F⊆B

[co(F)(z)]′ ≤ C (B). Since ary(C ) = n and m ≥ n, we

have ∧
z<B

∧
|F|≤m,F⊆B

[co(F)(z)]′ ≤
∧
z<B

∧
|F|≤n,F⊆B

[co(F)(z)]′ = C (B),

which completes the proof.

Proposition 3.4. Assume that ψ : (X,CX) −→ (Y,CY) is an injection between two M-fuzzifying convex spaces. If ψ
is M-CP and M-CC, then ary(CX) ≤ ary(CY).

Proof. Suppose ary(CY) = n, so we have∧
y<D

∧
|G|≤n,G⊆D

[co(G)(y)]′ = CY(D).

It is sufficient to show that ary(CX) ≤ n. Since ψ is an injection, an M-CP function, and an M-CC function,
then by Theorem 2.5 we have

coY(ψ(F))(ψ(z)) = ψ→(coX(F))(ψ(z)) =
∨

ψ(c)=ψ(z)

coX(F)(c) = coX(F)(z).
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For B ∈ 2X and z ∈ X, we can see that∧
z<B

∧
F⊆B
|F|≤n

[coX(F)(z)]′ =
∧
z<B

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coX(F)(z)]′

=
∧
z<B

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coY(ψ(F))(ψ(z))]′

=
∧

ψ(z)<ψ(B)

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coY(ψ(F))(ψ(z))]′

=
∧

y<ψ(B)
ψ−1(y),∅

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coY(ψ(F))(y)]′

=


∧

y<ψ(B)
ψ−1(y),∅

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coY(ψ(F))(y)]′

 ∧ >.
Next, we want to replace >with

∧
y<ψ(B)
ψ−1(y)=∅

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coY(ψ(F))(y)]′. To do this, we must prove

∧
y<ψ(B)
ψ−1(y)=∅

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coY(ψ(F))(y)]′ = >.

Take y < ψ(B) such that ψ−1(y) = ∅ and F ∈ 2B
f in, then by Theorem 2.5

coY(ψ(F))(y) = ψ→(coX(F))(y) =
∨
ψ(c)=y

coX(F)(c) = ⊥.

This implies our statement holds.
Therefore,

∧
z<B

∧
F⊆B
|F|≤n

[coX(F)(z)]′ =


∧

y<ψ(B)
ψ−1(y),∅

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coY(ψ(F))(y)]′

 ∧


∧
y<ψ(B)
ψ−1(y)=∅

∧
ψ(F)⊆ψ(B)
|ψ(F)|≤n

[coY(ψ(F))(y)]′


=

∧
y<ψ(B)

∧
|U|≤n,U⊆ψ(B)

[coY(U)(y)]′

= CY(ψ(B)) (by ary(CY) = n)
= CX(ψ−1(ψ(B))) = CX(B). (since ψ is injective M-CP,M-CC.)

We thus get ∧
z<B

∧
|F|≤n,F⊆B

[coX(F)(z)]′ ≤ CX(B).

Therefore, ary(CX) ≤ n.

Corollary 3.5. Let (X,C ) = (X,
∑
i∈T

Ci). Then ary(Ci) = ni ( ∀i ∈ T) implies ary
(∑

i∈T
Ci

)
≥

∨
i∈T

ni.



Y. Y. Dong, F.-G. Shi / Filomat 35:14 (2021), 4675–4690 4681

Proof. Consider the usual inclusion mapping ji : Xi −→ X ( ∀i ∈ T). Obviously, ji is an injection, an M-CP

function, and an M-CC function. It follows from Proposition 3.4 that ary
(∑

i∈T
Ci

)
≥ ni ( ∀i ∈ T). So we have

ary
(∑

i∈T
Ci

)
≥

∨
i∈T

ni.

To further study the arity of a disjoint sum of M-fuzzifying convex spaces, the following lemmas are
necessary.

Lemma 3.6. Assume that (G,C |G) is the M-fuzzifying subspace of an M-fuzzifying space (X,C ). Then coC (B) ≥
coC |G (B ∩ Y) for all B ∈ 2X.

Proof. By Theorem 2.3 we get ∀B ∈ 2X and ∀z ∈ X, coC (B)(z) =
∧

x<D⊇B
(C (D))′. Now we claim that coC (B) ≥

coC |G (B ∩ G), we consider two cases below:
Case 1: z ∈ G. Then for each D ∈ 2X,

C |G(D ∩ G) =
∨

E∩G=D∩G

C (E) ≥ C (D).

It implies that C (D)′ ≥ (C |G(D ∩ G))′. Further, we have

coC (B)(z) =
∧

z<D⊇B

(C (D))′ ≥
∧

z<D∩G⊇B∩G

(C (D))′

≥

∧
z<D∩G⊇B∩G

(C |G(D ∩ G))′

=
∧

z<U⊇B∩G

(C |G(U))′ (where U ⊆ G)

= coC |G (B ∩ G)(z).

Case 2: z < G. Since
coC |G (B ∩ G)(z) =

∧
z<U⊇B∩G

(C |G(U))′ ≤ (C |G(G))′ = ⊥,

we have coC (B)(z) ≥ coC |G (B ∩ G)(z). Therefore, coC (B) ≥ coC |G (B ∩ G).

Lemma 3.7. Assume that (X,C ) = (X,
∑
i∈T

Ci). If U ∈ 2Xi0 (i0 ∈ T), then C (U) = Ci0 (U).

Proof. Since U ∈ 2Xi0 , we have ∀i , i0, U ∩ Xi = ∅. It implies Ci(U ∩ Xi) = Ci(∅) = >when i , i0. Therefore,

C (U) =
∧
i∈T

Ci(U ∩ Xi) = Ci0 (U).

Lemma 3.8. Assume that (X,C ) = (X,
∑
i∈T

Ci). Then C |Xi = Ci.

Proof. For any i ∈ T and V ∈ 2Xi , then V ∩ Xi = V. It follows from Lemma 3.7 that

C |Xi (V) =
∨

A∩Xi=V

C (A) ≥ C (V) = Ci(V).

Conversely,
C |Xi (V) =

∨
A∩Xi=V

C (A) =
∨

A∩Xi=V

∧
j∈T

C j(A ∩ X j) ≤
∨

A∩Xi=V

Ci(A ∩ Xi) = Ci(V).

Therefore, C |Xi = Ci.
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Lemma 3.9. Assume that (X,C ) = (X,
∑
i∈T

Ci) and x ∈ X. Then there is an unique i0 ∈ T such that x ∈ Xi0 .

Furthermore, ∀A ∈ 2X, coi(A ∩ Xi)(x) = ⊥ when i , i0.

Proof. Since X =
⋃
i∈T

Xi, we know that there exists i0 ∈ T such that x ∈ Xi0 and for any i , i0, Xi ∩ Xi0 = ∅,

which gives for any i , i0, x < Xi. Take A ∈ 2X, it follows from Theorem 2.3 that

coi(A ∩ Xi)(x) =
∧

x<U⊇A∩Xi

Ci(U)′ ≤ Ci(Xi)′ = ⊥.

In the following, we study the relations between the hull operator of a disjoint sum of M-fuzzifying
convex spaces and its factor spaces.

Theorem 3.10. Assume that (X,C ) = (X,
∑
i∈T

Ci). Then for every x ∈ X and A ∈ 2X, coC (A)(x) =
∨
i∈T

coi(A ∩ Xi)(x).

Proof. By Lemma 3.8, we see that ∀i ∈ T, C |Xi = Ci. Again by Lemma 3.6 we get that ∀i ∈ T, coC (A) ≥
coi(A ∩ Xi), which means coC (A) ≥

∨
i∈T

coi(A ∩ Xi).

Conversely, fixing x ∈ X, so by Lemma 3.9 there exists i0 ∈ T such that x ∈ Xi0 and ∀i , i0, coi(A∩Xi)(x) =
⊥. It implies that ∨

i∈T

coi(A ∩ Xi)(x) = coi0 (A ∩ Xi0 )(x).

Therefore, to show coC (A)(x) ≤
∨
i∈T

coi(A∩Xi)(x), we just need to show that coC (A)(x) ≤ coi0 (A∩Xi0 )(x). That

is ∧
x<B⊇A

C (B)′ ≤
∧

x<V⊇A∩Xi0

Ci0 (V)′.

For any V ∈ 2Xi0 with x < V ⊇ A ∩ Xi0 , we take B∗ = (
⋃
i,i0

Xi) ∪ V = (X\Xi0 ) ∪ V. Since x < Xi for all i , i0, we

have x < B∗ ⊇ (A ∩ Xi0 ) ∪
⋃
i,i0

Xi ⊇ A. Thus

∧
x<B⊇A

C (B)′ ≤ C (B∗)′ =
(∧

i∈T

Ci(B∗ ∩ Xi)
)′

=
∨
i∈T

Ci

[((⋃
i,i0

Xi

)
∪ V

)
∩ Xi

]′
= Ci0(V)′.

This gives
∧

x<B⊇A
C (B)′ ≤

∧
x<V⊇A∩Xi0

Ci0 (V)′ since V is arbitrary.

With the help of some properties of the arity, the relations between the arity of a disjoint sum of
M-fuzzifying convex spaces and the arity of its factor spaces are investigeted as follows.

Theorem 3.11. Assume that (X,C ) = (X,
∑
i∈T

Ci). If ary(Ci) = ni (∀i ∈ T), then ary(C ) =
∨
i∈T

ni.

Proof. We write
∨
i∈T

ni = n. Then we can see that ary(C ) ≥ n from Corollary 3.5. In order to prove ary(C ) = n,

by Definition 3.1 and Remark 3.2, we only need to prove

∀A ⊆ X,
∧
x<A

∧
|F|≤n,F⊆A

[coC (F)(x)]′ ≤ C (A).
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Since for any i ∈ T, ary(Ci) = ni, by Definition 3.1 and Proposition 3.3, we have

C (A) =
∧
i∈T

Ci(A ∩ Xi) =
∧
i∈T

∧
y<A∩Xi

y∈Xi

∧
G⊆A∩Xi
|G|≤ni

[coi(G)(y)]′

=
∧
i∈T

∧
y<A∩Xi

y∈Xi

∧
G⊆A∩Xi
|G|≤n

[coi(G)(y)]′. (3)

Again by Theorem 3.10, we have∧
x<A

∧
|F|≤n,F⊆A

[coC (F)(x)]′ =
∧
x<A

∧
|F|≤n,F⊆A

[∨
i∈T

coi(F ∩ Xi)(x)
]′

=
∧
i∈T

∧
x<A

∧
|F|≤n,F⊆A

[coi(F ∩ Xi)(x)]′. (4)

Fixing i ∈ T in (3). For any y ∈ Xi with y < A ∩ Xi, so y < A. Take any G ⊆ A ∩ Xi and |G| ≤ n, so G ⊆ A. It
implies ∧

x<A

∧
|F|≤n,F⊆A

[coi(F ∩ Xi)(x)]′ ≤ [coi(G ∩ Xi)(y)]′ = [coi(G)(y)]′.

By the arbitrariness of y and G, we further get∧
x<A

∧
|F|≤n,F⊆A

[coi(F ∩ Xi)(x)]′ ≤
∧

y<A∩Xi
y∈Xi

∧
G⊆Xi
|G|≤n

[coi(G)(y)]′.

This implies (4) ≤ (3). Therefore,
∧

x<A

∧
|F|≤n,F⊆A

[coC (F)(x)]′ ≤ C (A).

4. The Additivity of Separability

In this part, we will verify separability (S0,S1,S2,S3,S4) is additive in the sense of the following definition.
Moreover, we will show that a disjoint sum of M-fuzzifying convex spaces is JHC iff its every factor space
is JHC.

Definition 4.1. Assume that {(Xi,Ci)}i∈T is a family of pairwise disjoint M-fuzzifying convex space. We say
that the property P of an M-fuzzifying convex space is additive, provided that the infimum of the degrees
that every factor space (Xi,Ci) possesses the property P, is equal to the degree that the disjoint sum space
(X,

∑
i∈T

Ci) possesses property P.

Theorem 4.2. Assume that (X,C ) = (X,
∑
i∈T

Ci). Then S0(X,C ) =
∧
i∈T

S0(Xi,Ci).

Proof. From Theorem 2.9 (i), wa can see that S0(X,C ) ≤
∧
i∈T

S0(Xi,Ci).

Conversely, consider a ≺
∧
i∈T

S0(Xi,Ci). Then for each i ∈ T and x, y ∈ Xi,

a ≺
∧
x,y

( ∨
x<U,y∈U

Ci(U) ∨
∨

y<V,x∈V

Ci(V)
)
.

Further, we aim to verify for x, y ∈ X,

a ≤ S0(X,C ) =
∧
x,y

( ∨
x<A,y∈A

C (A) ∨
∨

y<B,x∈B

C (B)
)
.
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For this purpose, we must show that for x, y ∈ X with x , y, a ≤
∨

x<A,y∈A
C (A) ∨

∨
y<B,x∈B

C (B).

Take x, y ∈ X with x , y and consider two cases below:
Case1: x, y ∈ Xi0 for some i0 ∈ T. Since

a ≺
∧
x,y

( ∨
x<U,y∈U

Ci0 (U) ∨
∨

y<V,x∈V

Ci0 (V)
)
,

there exists U ∈ 2Xi0 such that x < U, y ∈ U, a ≤ Ci0 (U) or V ∈ 2Xi0 such that x ∈ V, y < V, a ≤ Ci0 (V). By
Lemma 3.7 we have∨

x<A,y∈A

C (A) ∨
∨

y<B,x∈B

C (B) ≥ C (U) ∨ C (V)

=

(∧
i∈T

Ci(U ∩ Xi)
)
∨

(∧
i∈T

Ci(V ∩ Xi)
)

= Ci0 (U) ∨ Ci0 (V) ≥ a.

Case2: x ∈ Xr, y ∈ Xs with r , s. It implies x ∈ Xr, y < Xr and y ∈ Xs, x < Xs. So∨
x<A,y∈A

C (A) ∨
∨

y<B,x∈B

C (B) ≥ C (Xr) ∨ C (Xs) = > ≥ a.

According to the arbitrariness of x and y, we concluded that a ≤
∧
x,y

( ∨
x<A,y∈A

C (A) ∨
∨

y<B,x∈B
C (B)

)
. This implies

S0(X,C ) ≥
∧
i∈T

S0(Xi,Ci).

Theorem 4.3. Assume that (X,C ) = (X,
∑
i∈T

Ci). Then S1(X,C ) =
∧
i∈T

S1(Xi,Ci).

Proof. By Definition 2.8 (S1), we have

S1(X,C ) =
∧
z∈X

∧
i∈T

Ci({z} ∩ Xi) =
∧

z∈
⋃

j∈T X j

∧
i∈T

Ci({z} ∩ Xi)

=
∧
j∈T

∧
z∈X j

∧
i∈T

Ci({z} ∩ Xi)

=
∧
j∈T

∧
z∈X j

C j({z})

=
∧
j∈T

S1(X j,C j) =
∧
i∈T

S1(Xi,Ci).

Theorem 4.4. Assume that (X,C ) = (X,
∑
i∈T

Ci). Then S2(X,C ) =
∧
i∈T

S2(Xi,Ci).

Proof. From Theorem 2.9 (iii) it is easy to see S2(X,C ) ≤
∧
i∈T

S2(X,Ci). The converse inequality can be proved

in the following.
Take a ≺

∧
i∈T

S2(Xi,Ci). We thus get for each i ∈ T and x, y ∈ Xi,

a ≺ S2(Xi,Ci) =
∧
x,y

∨
x∈U,y<U

Ht(U).
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In fact, it suffices to see that for x, y ∈ X with x , y, a ≤
∨

x∈A,y<A
HC (A).

Now let x, y ∈ X with x , y and consider two cases below:
Case1: x, y ∈ Xi0 for some i0 ∈ T. Since

a ≺ S2(Xi0 ,Ci0 ) =
∧
x,y

∨
x∈U,y<U

Hi0 (U),

we know that there exists U ∈ 2Xi0 with x ∈ U, y < U such that a ≤ Hi0 (U). So for A ∈ 2X,∨
x∈A,y<A

HC (A) ≥ C (U) ∧ C (X\U)

=

∧
i∈T

Ci(U ∩ Xi)

 ∧
∧

i∈T

Ci((X\U) ∩ Xi)


=

∧
i∈T

Ci(U ∩ Xi)

 ∧
∧

i∈T

Ci(Xi\(U ∩ Xi))


= Ci0 (U) ∧ Ci0 (Xi0\U) (by U ⊆ Xi0 )
= Hi0 (U) ≥ a.

Case2: x ∈ Xr, y ∈ Xs with r , s. It follows that x ∈ Xr, y < Xr. So we have∨
x∈A,y<A

HC (A) ≥ HC (Xr) = C (Xr) ∧ C (X\Xr) = > ≥ a.

Since x and y are arbitrary, we have a ≤
∧
x,y

∨
x∈A,y<A

HC (A). This implies S2(X,C ) ≥
∧
i∈T

S2(Xi,Ci).

Theorem 4.5. Assume that (X,C ) = (X,
∑
i∈T

Ci). Then S3(X,C ) =
∧
i∈T

S3(Xi,Ci).

Proof. By Theorem 2.9 (v), it is immediately clear that S3(X,C ) ≤
∧
i∈T

S3(Xi,Ci). The converse inequality can

be proved in the following.
Take a ≺

∧
i∈T

S3(Xi,Ci). We thus get ∀i ∈ T and x ∈ Xi,

a ≺ S3(Xi,Ci) =
∧

U⊆Xi

∧
x<U

[
Ci(U)→

( ∨
U⊆V,x<V

Ht(V)
)]
.

We aim to show a ≤ S3(X,C ), that is

a ≤
∧
A⊆X

∧
x<A

[
C (A)→

( ∨
A⊆B,x<B

HC (B)
)]
.

Since for each i ∈ T, a ≺ S3(Xi,Ci), we know that for any U ⊆ Xi with x < U,

a ∧ Ci(U) ≤
∨

U⊆V,x<V

Hi(V).

Let A ⊆ X with x < A. Then there is a i0 such that x ∈ Xi0 , so x < A ∩ Xi0 . Since A ∩ Xi0 ⊆ Xi0 , we have

a ∧ Ci0 (A ∩ Xi0 ) ≤
∨

A∩Xi0⊆V,x<V

Hi0 (V).
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Take V ⊆ Xi0 with A ∩ Xi0 ⊆ V, x < V, and let B∗ = V ∪
⋃
i,i0

Xi. Since x ∈ Xi0 , it is clear that A ⊆ B∗ and x < B∗.

Further, we have

HC (B∗) = C (B∗) ∧ C (X\B∗)

=
∧
i∈T

Ci(B∗ ∩ Xi) ∧
∧
i∈T

Ci(Xi\(B∗ ∩ Xi))

=
∧
i∈T

Ci

[(
V ∪

⋃
i,i0

Xi

)
∩ Xi

]
∧

∧
i∈T

Ci

[
Xi\

((
V ∪

⋃
i,i0

Xi

)
∩ Xi

)]
= Ci0 (V) ∧ Ci0 (Xi0\V) (by V ⊆ Xi0 )

= Hi0 (V).

This implies
∨

A⊆B,x<B
HC (B) ≥

∨
A∩Xi0⊆V,x<V

Hi0 (V). Therefore,

a ∧ C (A) = a ∧
∧
i∈T

Ci(A ∩ Xi) ≤ a ∧ Ci0 (A ∩ Xi0 )

≤

∨
A∩Xi0⊆V,x<V

Hi0 (V)

≤

∨
A⊆B,x<B

HC (B).

Hence a ≤ C (A)→
∨

A⊆B,x<B
HC (B). By the arbitrariness of x and A, we thus get

a ≤
∧
A⊆X

∧
x<A

[
C (A)→

( ∨
A⊆B,x<B

HC (B)
)]
.

Therefore, S3(X,C ) ≥
∧
i∈T

S3(Xi,Ci).

Theorem 4.6. Assume that (X,C ) = (X,
∑
i∈T

Ci). Then S4(X,C ) =
∧
i∈T

S4(Xi,Ci).

Proof. By Theorem 2.9 and Lemma 3.8, it is immediately clear that S4(X,C ) ∧ C (Xi) ≤ S4(Xi,Ci). Again by
Lemma 3.8 we can see C (Xi) = >. This gives for each i ∈ T, S4(X,C ) ≤ S4(Xi,Ci). So S4(X,C ) ≤

∧
i∈T

S4(Xi,Ci).

The converse inequality can be proved in the following.
Take a ≤

∧
i∈T

S4(Xi,Ci), so we have a ≤ S4(Xi,Ci) for all i ∈ T. From Definition 2.8, we know that for every

U,V ⊆ 2Xi with U ∩ V = ∅,

a ≤ Ci(U) ∧ Ci(V)→
( ∨

U⊆Q,V⊆Xi\Q

Hi(Q)
)
.

This implies a ∧ Ci(U) ∧ Ci(V) ≤
∨

U⊆Q,V⊆Xi\Q
Hi(Q). Next, we aim to prove a ≤ S4(X,C ), that is

a ≤
∧

A∩B=∅

[
C (A) ∧ C (B)→

 ∨
B⊆X\C,A⊆C

HC (C)

 ].
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In fact, for any A,B ∈ 2X with A∩ B = ∅, we consider Ui = A∩Xi and Vi = B∩Xi for all i ∈ T, which means
Ui,Vi ⊆ Xi and Ui ∩ Vi = ∅. So we have a ∧ Ci(Ui) ∧ Ci(Vi) ≤

∨
Ui⊆Q,Vi⊆Xi\Q

Hi(Q) Therefore,

a ∧ C (A) ∧ C (B) = a ∧
∧
i∈T

Ci(A ∩ Xi) ∧
∧
i∈T

Ci(B ∩ Xi)

= a ∧
∧
i∈T

Ci(Ui) ∧
∧
i∈T

Ci(Vi)

≤

∧
i∈T

∨
Ui⊆Q,Vi⊆Xi\Q

Hi(Q)

=
∨

f∈
∏
i∈T

Ji

∧
i∈T

Hi( f (i)),

where Ji = {Q ∈ Xi : Ui ⊆ Q,Vi ⊆ Xi\Q}, f (i) ∈ Ji. Since for each f ∈
∏
i∈T

Ji and i ∈ T, there exists Qi ∈ Ji such

that f (i) = Qi. Thus Ui ⊆ Qi,Vi ⊆ Xi\Qi, which implies

A =
⋃
i∈T

(A ∩ Xi) =
⋃
i∈T

Ui ⊆
⋃
i∈T

Qi.

In a similar way, we can get B ⊆ X\(
⋃
i∈T

Qi). We take C∗ =
⋃
i∈T

Qi =
⋃
j∈T

Q j, and so A ⊆ C∗, B ⊆ X\C∗. We thus get

H(C∗) = C (C∗) ∧ C (X\C∗)

=
∧
i∈T

Ci(C∗ ∩ Xi) ∧ Ci((X\C∗) ∩ Xi)

=
∧
i∈T

Ci(C∗ ∩ Xi) ∧ Ci(Xi\(C∗ ∩ Xi))

=
∧
i∈T

Ci

[(⋃
j∈T

Q j

)
∩ Xi

]
∧ Ci

[
Xi\

((⋃
j∈T

Q j

)
∩ Xi

)]
=

∧
i∈T

Ci(Qi) ∧ Ci(Xi\Qi) (since for j , i, Q j ∩ Xi ⊆ X j ∩ Xi = ∅)

=
∧
i∈T

Hi(Qi) =
∧
i∈T

Hi( f (i)).

Since f is arbitrary, we have ∨
f∈

∏
i∈T

Ji

∧
i∈T

Hi( f (i)) ≤
∨

B⊆X\C,A⊆C

HC(C).

Thus
a ∧ C (A) ∧ C (B) ≤

∨
B⊆X\C,A⊆C

HC(C).

So

a ≤ C (A) ∧ C (B)→
( ∨

B⊆X\C,A⊆C

HC (C)
)
.

Since A and B are arbitrary, which gives a ≤ S4(X,C ). Therefore, S4(X,C ) ≥
∧
i∈T

S4(Xi,Ci).

Theorem 4.7. Assume that (X,C ) = (X,
∑
i∈T

Ci). Then for each i ∈ T, (Xi,Ci) is an M-fuzzifying JHC convexity if

and only if (X,C ) is an M-fuzzifying JHC convexity.
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Proof. Sufficiency. For our purpose, we must show that for a fixed i ∈ T, ∀b, y ∈ Xi,∀U ⊆ Xi,

coi({b} ∪U)(y) =
∨
c∈Xi

[
coi({b, c})(y) ∧ coi(U)(c)

]
.

By the fact that b, y ∈ Xi and U ⊆ Xi, it follows from Lemma 3.9 and Theorem 3.10 that

coC ({b} ∪U)(y) =
∨
i∈T

[
coi(({b} ∪U) ∩ Xi)(y)

]
= coi({b} ∪U)(y).

Since (X,C ) is M-fuzzifying JHC, we have

coC({b} ∪U)(y) =
∨
c∈X

[
coC ({b, c})(y) ∧ coC (U)(c)

]
=

(∨
c∈Xi

[
coC ({b, c})(y) ∧ coC (U)(c)

])
∨

(∨
c<Xi

[
coC ({b, c})(y) ∧ coC (U)(c)

])

=

(∨
c∈Xi

[
coi({b, c})(y) ∧ coi(U)(c)

])
∨

(∨
c<Xi

[
coC ({b, c})(y) ∧ coC (U)(c)

])
.

The last equality holds because by Lemma 3.9, b, c, y ∈ Xi and U ⊆ Xi implies∨
c∈Xi

[
coC ({b, c})(y) ∧ coC (U)(c)

]
=

∨
c∈Xi

[
coi({b, c})(y) ∧ coi(U)(c)

]
.

Now, we note that
∨

c<Xi

[coC ({b, c})(y) ∧ coC (U)(c)] = ⊥. Since U ⊆ Xi, then for every c < Xi, coC (U)(c) = ⊥ by

Lemma 3.9, this implies our statement holds. Thus,

coi({b} ∪U)(y) =
∨
c∈Xi

[
coi({b, c})(y) ∧ coi(U)(c)

]
.

Necessity. Since for each i ∈ T, (Xi,Ci) is an M-fuzzifying JHC convexity, we know that ∀b, y ∈ Xi,∀U ⊆
Xi,

coi({b} ∪U)(y) =
∨
x∈Xi

[
coi({b, x})(y) ∧ coi(U)(x)

]
.

Next, we prove ∀a, z ∈ X,∀A ⊆ X,

coC ({a} ∪ A)(z) =
∨
x∈X

[
coC ({a, x})(z) ∧ coC (A)(x)

]
.

We first note that for any x ∈ X,

coC ({a} ∪ A)(z) ≥ coC ({a, x})(z) ∧ coC (A)(x).

To do this, by Theorem 2.3 we need to prove∧
z<D⊇{a}∪A

C (D)′ ≥
∧

z<B⊇{a,x}

C (B)′ ∧
∧

x<C⊇A

C (C)′.

Now let D ⊆ X such that z < D ⊇ {a} ∪ A and consider two cases below:
Case1: x < D. So x < D ⊇ A, which implies that∧

x<C⊇A

C (C)′ ≤ C (D)′.
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Case2: x ∈ D. So z < D ⊇ {a, x}, which implies∧
z<B⊇{a,x}

C (B)′ ≤ C (D)′.

Hence we obtain that ∧
z<D⊇{a}∪A

C (D)′ ≥
∧

z<B⊇{a,x}

C (B)′ ∧
∧

x<C⊇A

C (C)′.

The converse inequality can be proved in the following.
Since a, z ∈ X, there exist r, s ∈ T such that a ∈ Xr and z ∈ Xs. By Lemma 3.9 and Theorem 3.10, we have

coC ({a} ∪ A)(z) =
∨
i∈T

coi(({a} ∪ A) ∩ Xi)(z) = cos(({a} ∪ A) ∩ Xs)(z) (∗)

and ∨
x∈X

[
coC ({a, x})(z) ∧ coC (A)(x)

]
=

∨
x∈X

∨
i∈T

coi({a, x} ∩ Xi)(z) ∧
∨
i∈T

coi(A ∩ Xi)(x)


=

∨
x∈X

cos({a, x} ∩ Xs)(z) ∧
∨
i∈T

coi(A ∩ Xi)(x)


≥

∨
x∈Xs

cos({a, x} ∩ Xs)(z) ∧
∨
i∈T

coi(A ∩ Xi)(x)


=

∨
x∈Xs

[
cos({a, x})(z) ∧ cos(A ∩ Xs)(x)

]
. (?)

The last equality holds because by Lemma 3.9, x ∈ Xs implies
∨
i∈T

coi(A ∩ Xi)(x) = cos(A ∩ Xs)(x).

Next, we consider two cases below:
Case 1: r , s. i.e., a < Xs. Then ∗ = cos(A ∩ Xs)(z). It follows from z ∈ Xs that

? ≥ cos({z})(z) ∧ cos(A ∩ Xs)(z) = cos(A ∩ Xs)(z) = ∗.

Case 2: r = s. i.e., a, z ∈ Xs. Since Cs is M-fuzzifying JHC, we have

∗ = cos({a} ∪ (A ∩ Xs))(z) =
∨
x∈Xs

[
cos({a, x})(z) ∧ cos(A ∩ Xs)(x)

]
.

Further, we have
? =

∨
x∈Xs

[
cos({a, x})(z) ∧ cos(A ∩ Xs)(x)

]
= ∗.

Hence ∨
x∈X

[
coC ({a, x})(z) ∧ coC (A)(x)

]
≥ coC ({a} ∪ A)(z).

5. Conclusions

Based on the definition of the disjoint sum of M-fuzzifying convex spaces mentioned in [20], some related
properties are studied in detail. the notion of the arity of an M-fuzzifying convex space is introduced. With
the help of arity, the connections between the disjoint sum of M-fuzzifying convex spaces and its factor
spaces are established. It is proved that the arity of the disjoint sum of M-fuzzifying convex spacesis is equal
to the supremum of the family of arity of every factor space. Furthermore, we show that some properties of
M-fuzzifying convex spaces are additive in the sense of Definition 4.1 such as separability. It is shown that
a disjoint sum of M-fuzzifying convex spaces is JHC iff its every factor space is JHC. Of course, there are
many other properties of M-fuzzifying convex spaces that can be verified to be additive in a similar way.
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