On the Disjoint Sums of M-Fuzzifying Convex Spaces

Yan Yan Dong ${ }^{\text {a }}$, Fu-Gui Shi ${ }^{\text {a }}$
${ }^{a}$ Beijing Key Laboratory on MCAACI, School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China 102488

Abstract

In this paper, we first extend the concept of the arity in crisp convex spaces to the case of fuzzification and give some related properties. From the view of arity and hull operator, we study the relations between the disjoint sum of M-fuzzifying convex spaces and its factor spaces. We also examine the additivity of the degree of separability $\left(S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right)$. Finally, we show that every factor space is M-fuzzifying JHC iff the corresponding disjoint sum space is JHC.

1. Introduction

Convexity, has been an indispensable tool in studying of extremum problems of many fields. The notion of convexity derives from solving some elementary geometric problems in Euclidean spaces [1]. In fact, many branches of mathematics are closely related to convex theory, such as algebra [12], graphs [3]-5], topology [8, 21]. Many mathematical concepts have been generalized to fuzzy case since the notion of fuzzy sets was introduced by Zadeh [35] such as fuzzy algebras [6], fuzzy topology [28], fuzzy convergence [14, 27] and so on. Considering the axiomatic approach, fuzzy convex spaces was introduced by Rosa [17] as a natural extension of the concept of abstract convex structures [22]. Subsequently, Maruyama [13] further proposed the notion of L-fuzzy convex spaces under the framework of a completely distributive lattice L. In both cases of fuzzy convex spaces and L-fuzzy convex spaces, every convex set is fuzzy, but the convex space formed by these fuzzy convex sets is thought to be crisp. Recently, L-convex structures are studied by many researchers in [2, 7, 9, 15, 16, 18, 29].

To provide a new approach to the fuzzification of convex spaces, the notion of M-fuzzifying convex spaces was proposed by Shi and Xiu [20] under the frame of a completely distributive lattice M.

In fact, an M-fuzzifying convexity \mathscr{C} on X is a mapping from 2^{X} to M and \mathscr{C} satisfying three axiomatic conditions. In this sense, for any subset A of $X, \mathscr{C}(A)$ can be seen as the degree to which A is a convex set. Subsequently, the notion of restricted hull operators in classical convex spaces was extended to the M-fuzzifying case [19], it was shown that M-fuzzifying restricted hull operators and M-fuzzifying convex spaces can be induced by each other, which means that there is a one-to-one correspondence between them. M-fuzzifying JHC property was studied in detail by Wu and Shi [24]. Recently, Liang etl., [10, 11] introduced $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$ separation axioms in M-fuzzifying convex spaces, it means that every M-fuzzifying convex

[^0]space can be seen as $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$ separated in a certain degree. There are many other studies related to M-fuzzifying convex spaces [23, 25, 30-33]

As we all know, it is a common method to construct a new space by using given spaces and the new space is closely connected with its initial spaces. There are many studies on subspaces, product spaces and quotient spaces. For example, Zhou and Shi [36] discussed the hereditary properties and productive properties of separability in L-convex spaces. In 2014, the concept of disjoint sums of M-fuzzifying convex spaces was proposed by Shi and Xiu [20], but beyond that disjoint sums of M-fuzzifying convex spaces have not been studied in detail. So it is necessary to continue to study some properties of the disjoint sum of M-fuzzifying convex spaces and establish the relations between the sum space and its factor spaces.

In Section 2, we will review some necessary notations and definitions in M-fuzzifying convex spaces. In Section 3, we will introduce the notion of the arity of an M-fuzzifying convex space. Furthermore, we will investigate the relations between the arity of a disjoint sum of M-fuzzifying convex spaces and the arity of its factor spaces. In Section 4, we will study the additivity of some properties such as separability ($S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$) in M-fuzzifying convex spaces. And we also prove that every factor space is M-fuzzifying JHC iff the corresponding disjoint sum space is M-fuzzifying JHC.

2. Preliminaries

Throughout this paper, 2^{X} stands for the power set of a nonempty X and $2_{\text {fin }}^{X}$ represents the collection of all finite subsets of X. In this paper, M is a completely distributive lattice with an order-reversing involution 1. We denote the minimal element and the maximal element of M by \perp and T, respectively. The symbol M^{X} represents the family of all M-fuzzy sets of X. For $A \in 2^{X}$, we use $\bigvee A$ and $\wedge A$ to denote the supremum and infimum of A. Let $m, n \in M$, the symbol $m<n$ (m is wedge below n) means that for every $E \subseteq M$, $n \leq \bigvee E$ implies the existence of $e \in E$ such that $m \leq e$. The right adjoint \rightarrow of the meet operation \wedge is a mapping from $M \times M$ to M defined as $m \rightarrow n=\bigvee\{q \in M \mid m \wedge q \leq n\}$. Hence

$$
m \wedge q \leq n \Leftrightarrow q \leq m \rightarrow n
$$

The mapping $\psi^{\rightarrow}: M^{X} \longrightarrow M^{Y}$ is induced by $\psi: X \longrightarrow Y$ as follows:

$$
\forall \lambda \in M^{X}, \forall y \in Y, \quad \psi^{\rightarrow}(\lambda)(y)=\bigvee_{\psi(x)=y} \lambda(x)
$$

And $\psi^{\leftarrow}: M^{Y} \longrightarrow M^{X}$ is induced by ψ as follows:

$$
\forall \mu \in M^{\curlyvee}, \forall x \in X \quad \psi^{\leftarrow}(\mu)(x)=\mu(\psi(x)) .
$$

Definition 2.1. ([20]) An M-fuzzifying convexity on a set X is a mapping $\mathscr{C}: 2^{X} \longrightarrow M$ satisfying the following conditions:
$(\mathrm{MYC1}) \mathscr{C}(\phi)=\mathscr{C}(X)=\mathrm{T} ;$
(MYC2) $\mathscr{C}\left(\bigcap_{i \in T} G_{i}\right) \geq \bigwedge_{i \in T} \mathscr{C}\left(G_{i}\right)$, where $\left\{G_{i}\right\}_{i \in T} \subseteq 2^{X} \backslash \emptyset ;$
(MYC3) $\mathscr{C}\left(\bigcup_{i \in T} G_{i}\right) \geq \bigwedge_{i \in T} \mathscr{C}\left(G_{i}\right)$, where $\left\{G_{i}\right\}_{i \in T} \subseteq 2^{X} \backslash \emptyset$ is totally ordered by inclusion.
In this case, We say the pair (X, \mathscr{C}) is an M-fuzzifying convex space.
Definition 2.2. ([20]) Assume that (X, \mathscr{C}) is an M-fuzzifying convex space and $\emptyset \neq G \subseteq X$. Then the mapping $\left.\mathscr{C}\right|_{G}: 2^{G} \longrightarrow M$ given by

$$
\forall B \in 2^{G},\left.\mathscr{C}\right|_{G}(B)=\bigvee_{D \in 2^{X}, D \cap G=B} \mathscr{C}(D)
$$

is an M-fuzzifying convexity on G. Furthermore, $\left(G,\left.\mathscr{C}\right|_{G}\right)$ is called an M-fuzzifying subspace of (X, \mathscr{C}).

Theorem 2.3. ([20]) Assume that (X, \mathscr{C}) is an M-fuzzifying convex space. Then the mapping $\cos _{\mathscr{C}}: 2^{X} \longrightarrow M^{X}$ (in symbols, co) given by :

$$
\forall G \in 2^{X}, \forall x \in X, c o(G)(x)=\bigwedge_{x \notin D \supseteq G} \mathscr{C}(D)^{\prime}
$$

is a hull operator of \mathscr{C} such that the following conditions hold.
(MCO1) for each $x \in X, \operatorname{co}(\emptyset)(x)=\perp$;
(MCO2) for each $x \in G, \operatorname{co}(G)(x)=\mathrm{T}$;
(MCO3) $\operatorname{co}(G)(x)=\bigwedge_{x \notin D \supseteq G G} \bigvee_{y \notin D} \operatorname{co}(D)(y)$;
$(\mathrm{MFD}) \operatorname{co}(G)(x)=\bigvee_{F \in 2_{\text {fin }}^{G}} \operatorname{co}(F)(x)$.
On the contrary, an operator co : $2^{X} \longrightarrow M^{X}$ satisfying (MCO1) - (MCO3) and (MFD) can be used to induce an M-fuzzifying convexity $\mathscr{C}_{c o}$ on X as follows:

$$
\begin{equation*}
\forall G \in 2^{X}, \mathscr{C}_{c o}(G)=\bigwedge_{x \notin G}[\operatorname{co}(G)(x)]^{\prime} \tag{1}
\end{equation*}
$$

Furthermore, co is the hull operator of $\mathscr{C}_{c o}$. That is to say $\mathrm{co}_{\mathscr{C}_{c 0}}=c o$.
Definition 2.4. ([20]) Assume that $\psi:(X, \mathscr{C}) \longrightarrow(Y, \mathscr{D})$ is a function between two M-fuzzifying convex spaces. Then
(i) ψ is called an M-fuzzifying convexity preserving function (in symbols, $M-C P$) provided that

$$
\forall D \in 2^{Y}, \mathscr{C}\left(\psi^{-1}(D)\right) \geq \mathscr{D}(D)
$$

(ii) ψ is called an M-fuzzifying convex-to-convex function (in symbols, $M-C C$) provided that

$$
\forall B \in M^{X}, \quad \mathscr{D}(\psi(B)) \geq \mathscr{C}(B)
$$

(iii) ψ is called an M-fuzzifying isomorphism provided that ψ is bijective, $M-C P$ and $M-C C$.

Theorem 2.5. ([26]) A function $\psi:(X, \mathscr{C}) \longrightarrow(Y, \mathscr{D})$ between two M-fuzzifying convex spaces is M-CP iff

$$
\forall F \in 2_{f i n^{\prime}}^{X}, \psi^{\rightarrow}\left(\operatorname{co}_{X}(F)\right) \leq \cos _{Y}(\psi(F))
$$

A function $\psi:(X, \mathscr{C}) \longrightarrow(Y, \mathscr{D})$ between two M-fuzzifying convex spaces is $M-C C$ if and only if

$$
\forall F \in 2_{f i n^{\prime}}^{X}, \psi^{\rightarrow}\left(\operatorname{co}_{X}(F)\right) \geq \cos _{Y}(\psi(F))
$$

Definition 2.6. ([20]) Assume that that $\left\{\left(X_{i}, \mathscr{C}_{i}\right)\right\}_{i \in T}$ is a family of M-fuzzifying convex space and for all $i_{1} \neq i_{2} \in T$ such that $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ (i.e., pairwise disjoint). Put $X=\bigcup_{i \in T} X_{i}$ and consider the usual inclusion mapping $j_{i}: X_{i} \longrightarrow X$ for all $i \in T$ (i.e., $\forall z \in X_{i}, j_{i}(z)=z$). Then the mapping $\mathscr{C}: 2^{X} \longrightarrow M$ given by:

$$
\forall B \in 2^{X}, \mathscr{C}(B)=\bigwedge_{i \in T} \mathscr{C}_{i}\left(j_{i}^{-1}(B)\right)=\bigwedge_{i \in T} \mathscr{C}_{i}\left(B \cap X_{i}\right)
$$

is an M-fuzzifying convexity on X, which is called the disjoint sum of M-fuzzifying convexity $\left\{\mathscr{C}_{i}\right\}_{i \in T}$ and \mathscr{C} is written as $\sum_{i \in T} \mathscr{C}_{i}$. And we say the pair $\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$ is the disjoint sum of M-fuzzifying convex spaces $\left\{\left(X_{i}, \mathscr{C}_{i}\right)\right\}_{i \in T}$.

Definition 2.7. ([10]) Assume that (X, \mathscr{C}) is an M-fuzzifying convex space and $B \in 2^{X}$. We say $\mathcal{H}_{\mathscr{C}}(B)$ given by

$$
\mathcal{H}_{\mathscr{C}}(B)=\mathscr{C}(B) \wedge \mathscr{C}(X \backslash B)
$$

is the degree that B is a biconvex set.
Definition 2.8. ([10, 11]) Assume that (X, \mathscr{C}) is an M-fuzzifying convex space. Then we have the following definitions.
(S0) The degree $S_{0}(X, \mathscr{C})$ that (X, \mathscr{C}) is S_{0} separated is defined by:

$$
S_{0}(X, \mathscr{C})=\bigwedge_{x \neq z}\left(\bigvee_{x \notin B, z \in B} \mathscr{C}(B) \vee \bigvee_{z \notin D, x \in D} \mathscr{C}(D)\right)
$$

(S1) The degree $S_{1}(X, \mathscr{C})$ that (X, \mathscr{C}) is S_{1} separated is defined by: $S_{1}(X, \mathscr{C})=\bigwedge_{z \in X} \mathscr{C}(\{z\})$.
(S2) The degree $S_{2}(X, \mathscr{C})$ that (X, \mathscr{C}) is S_{2} separated is defined by: $S_{2}(X, \mathscr{C})=\bigwedge_{x \neq z} \underset{x \in B, z \notin B}{ } \mathcal{H}_{\mathscr{C}}(B)$.
(S3) The degree $S_{3}(X, \mathscr{C})$ that (X, \mathscr{C}) is S_{3} separated is defined by:

$$
S_{3}(X, \mathscr{C})=\bigwedge_{B \subseteq X} \bigwedge_{z \notin B}\left[\mathscr{C}(B) \rightarrow\left(\bigvee_{B \subseteq D, z \notin D} \mathcal{H}_{\mathscr{C}}(D)\right)\right]
$$

(S4) The degree $S_{4}(X, \mathscr{C})$ that (X, \mathscr{C}) is S_{4} separated is defined by:

$$
S_{4}(X, \mathscr{C})=\bigwedge_{B \cap D=\emptyset}\left[\mathscr{C}(B) \wedge \mathscr{C}(D) \rightarrow\left(\bigvee_{D \subseteq X \backslash H, B \subseteq H} \mathcal{H}_{\mathscr{C}}(H)\right)\right]
$$

Theorem 2.9. ([10, 11]) Assume that $\left(G,\left.\mathscr{C}\right|_{G}\right)$ is the subspace of an M-fuzzifying convex space (X, \mathscr{C}). Then
(i) $S_{0}(X, \mathscr{C}) \leq S_{0}\left(G,\left.\mathscr{C}\right|_{G}\right)$,
(ii) $S_{1}(X, \mathscr{C}) \leq S_{1}\left(G,\left.\mathscr{C}\right|_{G}\right)$,
(iii) $S_{2}(X, \mathscr{C}) \leq S_{2}\left(G,\left.\mathscr{C}\right|_{G}\right)$,
(iv) $S_{3}(X, \mathscr{C}) \leq S_{3}\left(G,\left.\mathscr{C}\right|_{G}\right)$,
(v) $S_{4}(X, \mathscr{C}) \wedge \mathscr{C}(G) \leq S_{4}\left(G,\left.\mathscr{C}\right|_{G}\right)$.

Definition 2.10. ([24]) Assume that (X, \mathscr{C}) is an M-fuzzifying convex space. We say \mathscr{C} is an M-fuzzifying JHC convexity if for arbitrary $y, c \in X$ and $B \in 2^{X} \backslash \emptyset$,

$$
\operatorname{co}(\{c\} \cup B)(y)=\bigvee_{x \in X}(\operatorname{co}(\{c, x\})(y) \wedge \operatorname{co}(B)(x))
$$

3. The Arity of the Disjoint Sum of Convex Spaces

The arity plays an important role in classical convex spaces because it indicates the ability of finite subsets generating the entire space by hull operators. Yao and Chen [34] gave a formal and strict definition of the arity of classical convex space. Next, we will first generalize this concept to M-fuzzifying convex spaces and give some properties. Based on this, we will further study the relations between the arity of a disjoint sum of M-fuzzifying convex spaces and its factor spaces.

Definition 3.1. The arity of an M-fuzzifying convex space (X, \mathscr{C}) is the least natural number n such that:

$$
\begin{equation*}
\forall B \in 2^{X}, \mathscr{C}(B)=\bigwedge_{z \notin B} \bigwedge_{|F| \leq n, F \subseteq B}[c o(F)(z)]^{\prime} . \tag{2}
\end{equation*}
$$

Let us denote the arity of (X, \mathscr{C}) by $\operatorname{ary}(\mathscr{C})$.

Notation. According to the above definition, it is evident that $\operatorname{ary}(\mathscr{C}) \leq n$ iff it satisfies the equality (2), this happens to be the definition of arity $\leq n$ given in [26].

Remark 3.2. From Theorem 2.3 (MDF) and equality (1), we can see

$$
\mathscr{C}(B)=\bigwedge_{z \notin B}[c o(B)(z)]^{\prime}=\bigwedge_{z \notin B} \bigwedge_{F \in 2_{f i n}^{B}}[c o(F)(z)]^{\prime} \leq \bigwedge_{z \notin B} \bigwedge_{|F| \leq n, F \subseteq B}[c o(F)(z)]^{\prime} .
$$

So in order to prove the equality (2) holds, it shall be proved that the following inequality holds:

$$
\bigwedge_{z \notin B} \bigwedge_{|F| \leq n, F \subseteq B}[c o(F)(z)]^{\prime} \leq \mathscr{C}(B) .
$$

Proposition 3.3. Assume that (X, \mathscr{C}) is an M-fuzzifying convex space. Then ary $(\mathscr{C})=n$ implies

$$
\forall m \geq n, \bigwedge_{z \notin B} \bigwedge_{|F| \leq m, F \subseteq B}[\operatorname{co}(F)(z)]^{\prime}=\mathscr{C}(B) .
$$

Proof. By Remark 3.2, we only need to prove $\bigwedge_{z \notin B} \bigwedge_{|F| \leq m, F \subseteq B}[\operatorname{co}(F)(z)]^{\prime} \leq \mathscr{C}(B)$. Since $\operatorname{ary}(\mathscr{C})=n$ and $m \geq n$, we have

$$
\bigwedge_{z \notin B} \bigwedge_{|F| \leq m, F \subseteq B}[c o(F)(z)]^{\prime} \leq \bigwedge_{z \notin B} \bigwedge_{|F| \leq n, F \subseteq B}[c o(F)(z)]^{\prime}=\mathscr{C}(B),
$$

which completes the proof.

Proposition 3.4. Assume that $\psi:\left(X, \mathscr{C}_{X}\right) \longrightarrow\left(Y, \mathscr{C}_{Y}\right)$ is an injection between two M-fuzzifying convex spaces. If ψ is $M-C P$ and $M-C C$, then $\operatorname{ary}\left(\mathscr{C}_{X}\right) \leq \operatorname{ary}\left(\mathscr{C}_{Y}\right)$.

Proof. Suppose $\operatorname{ary}\left(\mathscr{C}_{Y}\right)=n$, so we have

$$
\bigwedge_{y \notin D} \bigwedge_{|G| \leq n, G \subseteq D}[\operatorname{co}(G)(y)]^{\prime}=\mathscr{C}_{Y}(D) .
$$

It is sufficient to show that $\operatorname{ary}\left(\mathscr{C}_{X}\right) \leq n$. Since ψ is an injection, an $M-C P$ function, and an $M-C C$ function, then by Theorem 2.5we have

$$
\cos _{Y}(\psi(F))(\psi(z))=\psi^{\rightarrow}\left(\cos _{X}(F)\right)(\psi(z))=\bigvee_{\psi(c)=\psi(z)} \cos _{X}(F)(c)=\cos _{X}(F)(z)
$$

For $B \in 2^{X}$ and $z \in X$, we can see that

$$
\begin{aligned}
& \bigwedge_{z \notin B} \bigwedge_{\substack{F \subset B \\
\mid F I \leq n}}\left[\cos _{X}(F)(z)\right]^{\prime}=\bigwedge_{z \notin B} \bigwedge_{\substack{\psi(F) \subseteq \psi(B) \\
\mid \psi(F) \backslash n}}\left[\cos _{X}(F)(z)\right]^{\prime} \\
& =\bigwedge_{z \notin B} \bigwedge_{\substack{\psi(F) \subseteq \psi(B) \\
\mid \psi(F) \leq n}}[\operatorname{cor}(\psi(F))(\psi(z))]^{\prime} \\
& =\bigwedge_{\psi(z) \notin \psi(B)} \bigwedge_{\substack{\psi(F) \subseteq \psi(B) \\
\mid \psi(F) \leq n}}\left[\operatorname{cog}_{Y}(\psi(F))(\psi(z))\right]^{\prime} \\
& =\bigwedge_{\substack{y \notin \psi(B) \\
\psi^{-1}(y) \neq \emptyset}} \bigwedge_{\substack{\psi(F) \subseteq \psi(B) \\
\mid \psi(F) \leq n}}[\operatorname{cor}(\psi(F))(y)]^{\prime} \\
& =\left(\bigwedge_{\substack{y \notin \psi(B) \\
\psi^{-1}(y) \neq 0}} \bigwedge_{\substack{\psi(F) \subseteq \psi(B) \\
\mid \psi(F) \leq n}}\left[\cos _{Y}(\psi(F))(y)\right]^{\prime}\right) \wedge T .
\end{aligned}
$$

Next, we want to replace T with $\left.\bigwedge_{\substack{y \notin(B) \\ \psi^{-1}(y)=\emptyset}}<\substack{\psi(F) \subseteq \psi(B) \\|(F)| \leq n} \substack{ } \cos _{Y}(\psi(F))(y)\right]^{\prime}$. To do this, we must prove

$$
\bigwedge_{\substack{y \notin(B) \\ \psi^{-1}(y)=0}} \bigwedge_{\substack{\psi(F) \subseteq \psi(B) \\ \psi(F) \leq n}}[\cos (\psi(F))(y)]^{\prime}=\mathrm{T} .
$$

Take $y \notin \psi(B)$ such that $\psi^{-1}(y)=\emptyset$ and $F \in 2_{\text {fin }^{B}}^{B}$, then by Theorem 2.5

$$
\cos _{Y}(\psi(F))(y)=\psi^{\rightarrow}\left(\operatorname{co}_{X}(F)\right)(y)=\bigvee_{\psi(c)=y} \operatorname{co}_{X}(F)(c)=\perp
$$

This implies our statement holds.
Therefore,

$$
\begin{aligned}
& =\bigwedge_{y \notin \psi(B)} \bigwedge_{|U| \leq n, U \subseteq \psi(B)}\left[\cos _{Y}(U)(y)\right]^{\prime} \\
& =\mathscr{C}_{Y}(\psi(B)) \quad\left(\text { by } \operatorname{ary}\left(\mathscr{C}_{Y}\right)=n\right) \\
& \left.=\mathscr{C}_{X}\left(\psi^{-1}(\psi(B))\right)=\mathscr{C}_{X}(B) . \quad \text { (since } \psi \text { is injective } M-C P, M-C C .\right)
\end{aligned}
$$

We thus get

$$
\bigwedge_{z \notin B} \bigwedge_{|F| \leq n, F \subseteq B}\left[c_{X}(F)(z)\right]^{\prime} \leq \mathscr{C}_{X}(B)
$$

Therefore, $\operatorname{ary}\left(\mathscr{C}_{X}\right) \leq n$.
Corollary 3.5. Let $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then $\operatorname{ary}\left(\mathscr{C}_{i}\right)=n_{i}(\forall i \in T)$ implies ary $\left(\sum_{i \in T} \mathscr{C}_{i}\right) \geq \bigvee_{i \in T} n_{i}$.

Proof. Consider the usual inclusion mapping $j_{i}: X_{i} \longrightarrow X(\forall i \in T)$. Obviously, j_{i} is an injection, an M-CP function, and an M-CC function. It follows from Proposition 3.4 that $\operatorname{ary}\left(\sum_{i \in T} \mathscr{C}_{i}\right) \geq n_{i}(\forall i \in T)$. So we have $\operatorname{ary}\left(\sum_{i \in T} \mathscr{C}_{i}\right) \geq \bigvee_{i \in T} n_{i}$.

To further study the arity of a disjoint sum of M-fuzzifying convex spaces, the following lemmas are necessary.
Lemma 3.6. Assume that $\left(G,\left.\mathscr{C}\right|_{G}\right)$ is the M-fuzzifying subspace of an M-fuzzifying space (X, \mathscr{C}). Then co $\mathscr{C}(B) \geq$ $\operatorname{co}_{\left.\mathscr{G}\right|_{G}}(B \cap Y)$ for all $B \in 2^{X}$.

Proof. By Theorem 2.3 we get $\forall B \in 2^{X}$ and $\forall z \in X, \cos _{\mathscr{C}}(B)(z)=\bigwedge_{x \notin D \supseteq B}(\mathscr{C}(D))^{\prime}$. Now we claim that $c_{\mathscr{C}}(B) \geq$ $c_{\left.\mathscr{C}\right|_{G}}(B \cap G)$, we consider two cases below:

Case 1: $z \in G$. Then for each $D \in 2^{X}$,

$$
\left.\mathscr{C}\right|_{G}(D \cap G)=\bigvee_{E \cap G=D \cap G} \mathscr{C}(E) \geq \mathscr{C}(D)
$$

It implies that $\mathscr{C}(D)^{\prime} \geq\left(\left.\mathscr{C}\right|_{G}(D \cap G)\right)^{\prime}$. Further, we have

$$
\begin{aligned}
\cos _{\mathscr{C}}(B)(z)=\bigwedge_{z \notin D \supseteq B}(\mathscr{C}(D))^{\prime} & \geq \bigwedge_{z \notin D \cap G \supseteq B \cap G}(\mathscr{C}(D))^{\prime} \\
& \geq \bigwedge_{z \notin D \cap G \supseteq B \cap G}\left(\left.\mathscr{C}\right|_{G}(D \cap G)\right)^{\prime} \\
& =\bigwedge_{z \notin U \supseteq B \cap G}\left(\left.\mathscr{C}\right|_{G}(U)\right)^{\prime} \quad(\text { where } U \subseteq G) \\
& =\operatorname{co\mathscr {C}|_{G}(B\cap G)(z).}
\end{aligned}
$$

Case 2: $z \notin G$. Since

$$
\operatorname{co}_{\left.\mathscr{C}\right|_{G}}(B \cap G)(z)=\bigwedge_{z \notin U \supseteq B \cap G}\left(\left.\mathscr{C}\right|_{G}(U)\right)^{\prime} \leq\left(\left.\mathscr{C}\right|_{G}(G)\right)^{\prime}=\perp,
$$

we have $\operatorname{co}_{\mathscr{C}}(B)(z) \geq \cos _{\left.\mathscr{C}\right|_{G}}(B \cap G)(z)$. Therefore, $\operatorname{co}_{\mathscr{C}}(B) \geq \operatorname{co}_{\left.\mathscr{C}\right|_{G}}(B \cap G)$.
Lemma 3.7. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. If $U \in 2^{X_{i_{0}}}\left(i_{0} \in T\right)$, then $\mathscr{C}(U)=\mathscr{C}_{i_{0}}(U)$.
Proof. Since $U \in 2^{X_{i 0}}$, we have $\forall i \neq i_{0}, U \cap X_{i}=\emptyset$. It implies $\mathscr{C}_{i}\left(U \cap X_{i}\right)=\mathscr{C}_{i}(\emptyset)=\top$ when $i \neq i_{0}$. Therefore,

$$
\mathscr{C}(U)=\bigwedge_{i \in T} \mathscr{C}_{i}\left(U \cap X_{i}\right)=\mathscr{C}_{i_{0}}(U)
$$

Lemma 3.8. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then $\left.\mathscr{C}\right|_{X_{i}}=\mathscr{C}_{i}$.
Proof. For any $i \in T$ and $V \in 2^{X_{i}}$, then $V \cap X_{i}=V$. It follows from Lemma 3.7 that

$$
\left.\mathscr{C}\right|_{X_{i}}(V)=\bigvee_{A \cap X_{i}=V} \mathscr{C}(A) \geq \mathscr{C}(V)=\mathscr{C}_{i}(V)
$$

Conversely,

$$
\left.\mathscr{C}\right|_{X_{i}}(V)=\bigvee_{A \cap X_{i}=V} \mathscr{C}(A)=\bigvee_{A \cap X_{i}=V} \bigwedge_{j \in T} \mathscr{C}_{j}\left(A \cap X_{j}\right) \leq \bigvee_{A \cap X_{i}=V} \mathscr{C}_{i}\left(A \cap X_{i}\right)=\mathscr{C}_{i}(V)
$$

Therefore, $\left.\mathscr{C}\right|_{X_{i}}=\mathscr{C}{ }_{i}$.

Lemma 3.9. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$ and $x \in X$. Then there is an unique $i_{0} \in T$ such that $x \in X_{i_{0}}$. Furthermore, $\forall A \in 2^{X}, \operatorname{co}_{i}\left(A \cap X_{i}\right)(x)=\perp$ when $i \neq i_{0}$.

Proof. Since $X=\bigcup_{i \in T} X_{i}$, we know that there exists $i_{0} \in T$ such that $x \in X_{i_{0}}$ and for any $i \neq i_{0}, X_{i} \cap X_{i_{0}}=\emptyset$, which gives for any $i \neq i_{0}, x \notin X_{i}$. Take $A \in 2^{X}$, it follows from Theorem 2.3 that

$$
\operatorname{co}_{i}\left(A \cap X_{i}\right)(x)=\bigwedge_{x \notin U \supseteq A \cap X_{i}} \mathscr{C}_{i}(U)^{\prime} \leq \mathscr{C}_{i}\left(X_{i}\right)^{\prime}=\perp .
$$

In the following, we study the relations between the hull operator of a disjoint sum of M-fuzzifying convex spaces and its factor spaces.

Theorem 3.10. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then for every $x \in X$ and $A \in 2^{X}, \operatorname{co} \mathscr{C}(A)(x)=\bigvee_{i \in T} \operatorname{co}_{i}\left(A \cap X_{i}\right)(x)$.
Proof. By Lemma 3.8, we see that $\forall i \in T,\left.\mathscr{C}\right|_{X_{i}}=\mathscr{C}_{i}$. Again by Lemma 3.6 we get that $\forall i \in T, \operatorname{co}_{\mathscr{C}}(A) \geq$ $\operatorname{co}_{i}\left(A \cap X_{i}\right)$, which means $\operatorname{co} \mathscr{C}_{\mathscr{C}}(A) \geq \bigvee_{i \in T} \operatorname{co}_{i}\left(A \cap X_{i}\right)$.

Conversely, fixing $x \in X$, so by Lemma 3.9 there exists $i_{0} \in T$ such that $x \in X_{i_{0}}$ and $\forall i \neq i_{0}, \operatorname{co}_{i}\left(A \cap X_{i}\right)(x)=$ \perp. It implies that

$$
\bigvee_{i \in T} \operatorname{co}_{i}\left(A \cap X_{i}\right)(x)=\operatorname{co}_{i_{0}}\left(A \cap X_{i_{0}}\right)(x)
$$

Therefore, to show $\operatorname{co}_{\mathscr{C}}(A)(x) \leq \bigvee_{i \in T} \operatorname{co}_{i}\left(A \cap X_{i}\right)(x)$, we just need to show that $\cos _{\mathscr{C}}(A)(x) \leq \operatorname{co}_{i_{0}}\left(A \cap X_{i_{0}}\right)(x)$. That is

$$
\bigwedge_{x \notin B \supseteq A} \mathscr{C}(B)^{\prime} \leq \bigwedge_{x \models V \supseteq A \cap X_{i_{0}}} \mathscr{C}_{i_{0}}(V)^{\prime} .
$$

For any $V \in 2^{X_{i_{0}}}$ with $x \notin V \supseteq A \cap X_{i_{0}}$, we take $B_{*}=\left(\bigcup_{i \neq i_{0}} X_{i}\right) \cup V=\left(X \backslash X_{i_{0}}\right) \cup V$. Since $x \notin X_{i}$ for all $i \neq i_{0}$, we have $x \notin B_{*} \supseteq\left(A \cap X_{i_{0}}\right) \cup \bigcup_{i \neq i_{0}} X_{i} \supseteq A$. Thus

$$
\begin{aligned}
\bigwedge_{x \notin B \supseteq A} \mathscr{C}(B)^{\prime} \leq \mathscr{C}\left(B_{*}\right)^{\prime} & =\left(\bigwedge_{i \in T} \mathscr{C}_{i}\left(B_{*} \cap X_{i}\right)\right)^{\prime} \\
& =\bigvee_{i \in T} \mathscr{C}_{i}\left[\left(\left(\bigcup_{i \neq i_{0}} X_{i}\right) \cup V\right) \cap X_{i}\right]^{\prime} \\
& =\mathscr{C}_{i_{0}}(V)^{\prime} .
\end{aligned}
$$

This gives $\bigwedge_{x \notin B \supseteq A} \mathscr{C}(B)^{\prime} \leq \bigwedge_{x \nsubseteq V A \cap X_{i_{0}}} \mathscr{C}_{i_{0}}(V)^{\prime}$ since V is arbitrary.
With the help of some properties of the arity, the relations between the arity of a disjoint sum of M-fuzzifying convex spaces and the arity of its factor spaces are investigeted as follows.

Theorem 3.11. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. If $\operatorname{ary}\left(\mathscr{C}_{i}\right)=n_{i}(\forall i \in T)$, then $\operatorname{ary}(\mathscr{C})=\bigvee_{i \in T} n_{i}$.
Proof. We write $\bigvee_{i \in T} n_{i}=n$. Then we can see that $\operatorname{ary}(\mathscr{C}) \geq n$ from Corollary 3.5 In order to prove $\operatorname{ary}(\mathscr{C})=n$, by Definition 3.1 and Remark 3.2, we only need to prove

$$
\forall A \subseteq X, \bigwedge_{x \notin A} \bigwedge_{|F| \leq n, F \subseteq A}\left[\operatorname{co\mathscr {C}}_{\mathscr{C}}(F)(x)\right]^{\prime} \leq \mathscr{C}(A) .
$$

Since for any $i \in T, \operatorname{ary}\left(\mathscr{C}_{i}\right)=n_{i}$, by Definition 3.1 and Proposition 3.3. we have

$$
\begin{align*}
\mathscr{C}(A)=\bigwedge_{i \in T} \mathscr{C}_{i}\left(A \cap X_{i}\right) & =\bigwedge_{i \in T} \bigwedge_{\substack{y \notin \cap \cap X_{i} \\
y \in X_{i}}} \bigwedge_{\substack{G \subseteq A \cap X_{i} \\
|G| \leq n_{i}}}\left[c o_{i}(G)(y)\right]^{\prime} \\
& =\bigwedge_{i \in T} \bigwedge_{\substack{y \in A \cap X_{i} \\
y \in X_{i}}} \bigwedge_{\substack{G \leq A \cap X_{i} \\
|G| \leq n}}\left[c o_{i}(G)(y)\right]^{\prime} . \tag{3}
\end{align*}
$$

Again by Theorem 3.10, we have

$$
\begin{align*}
\bigwedge_{x \notin A} \bigwedge_{|F| \leq n, F \subseteq A}[\operatorname{co\mathscr {C}}(F)(x)]^{\prime} & =\bigwedge_{x \notin A} \bigwedge_{|F| \leq n, F \subseteq A}\left[\bigvee_{i \in T} c o_{i}\left(F \cap X_{i}\right)(x)\right]^{\prime} \\
& =\bigwedge_{i \in T} \bigwedge_{x \notin A} \bigwedge_{|F| \leq n, F \subseteq A}\left[\cos _{i}\left(F \cap X_{i}\right)(x)\right]^{\prime} . \tag{4}
\end{align*}
$$

Fixing $i \in T$ in (3). For any $y \in X_{i}$ with $y \notin A \cap X_{i}$, so $y \notin A$. Take any $G \subseteq A \cap X_{i}$ and $|G| \leq n$, so $G \subseteq A$. It implies

$$
\bigwedge_{x \notin A} \bigwedge_{|F| \leq n, F \subseteq A}\left[\operatorname{co}_{i}\left(F \cap X_{i}\right)(x)\right]^{\prime} \leq\left[c_{i}\left(G \cap X_{i}\right)(y)\right]^{\prime}=\left[c_{i}(G)(y)\right]^{\prime} .
$$

By the arbitrariness of y and G, we further get

$$
\bigwedge_{x \notin A} \bigwedge_{|F| \leq n, F \subseteq A}\left[o_{i}\left(F \cap X_{i}\right)(x)\right]^{\prime} \leq \bigwedge_{\substack{y \notin A \cap X_{i} \\ y \in X_{i}}} \bigwedge_{\substack{\left|G \subseteq X_{i}\\\right| G \mid \leq n}}\left[c o_{i}(G)(y)\right]^{\prime} .
$$

This implies $(4) \leq(3)$. Therefore, $\bigwedge_{x \notin A|F| \leq n, F \subseteq A}\left[\operatorname{co⿻}_{\mathscr{C}}(F)(x)\right]^{\prime} \leq \mathscr{C}(A)$.

4. The Additivity of Separability

In this part, we will verify separability $\left(S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right)$ is additive in the sense of the following definition. Moreover, we will show that a disjoint sum of M-fuzzifying convex spaces is JHC iff its every factor space is JHC.

Definition 4.1. Assume that $\left\{\left(X_{i}, \mathscr{C}_{i}\right)\right\}_{i \in T}$ is a family of pairwise disjoint M-fuzzifying convex space. We say that the property P of an M-fuzzifying convex space is additive, provided that the infimum of the degrees that every factor space $\left(X_{i}, \mathscr{C}_{i}\right)$ possesses the property P, is equal to the degree that the disjoint sum space $\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$ possesses property P.

Theorem 4.2. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then $S_{0}(X, \mathscr{C})=\bigwedge_{i \in T} S_{0}\left(X_{i}, \mathscr{C}_{i}\right)$.
Proof. From Theorem 2.9 (i), wa can see that $S_{0}(X, \mathscr{C}) \leq \bigwedge_{i \in T} S_{0}\left(X_{i}, \mathscr{C}_{i}\right)$.
Conversely, consider $a<\bigwedge_{i \in T} S_{0}\left(X_{i}, \mathscr{C}_{i}\right)$. Then for each $i \in T$ and $x, y \in X_{i}$,

$$
a<\bigwedge_{x \neq y}\left(\bigvee_{x \notin U, y \in U} \mathscr{C}_{i}(U) \vee \bigvee_{y \notin V, x \in V} \mathscr{C}_{i}(V)\right) .
$$

Further, we aim to verify for $x, y \in X$,

$$
a \leq S_{0}(X, \mathscr{C})=\bigwedge_{x \neq y}\left(\bigvee_{x \notin A, y \in A} \mathscr{C}(A) \vee \bigvee_{y \notin B, x \in B} \mathscr{C}(B)\right)
$$

For this purpose, we must show that for $x, y \in X$ with $x \neq y, a \leq \underset{x \notin A, y \in A}{ } \mathscr{C}(A) \vee \underset{y \notin B, x \in B}{\bigvee} \mathscr{C}(B)$.
Take $x, y \in X$ with $x \neq y$ and consider two cases below:
Case1: $x, y \in X_{i_{0}}$ for some $i_{0} \in T$. Since

$$
a<\bigwedge_{x \neq y}\left(\bigvee_{x \notin U, y \in U} \mathscr{C}_{i_{0}}(U) \vee \bigvee_{y \notin V, x \in V} \mathscr{C}_{i_{0}}(V)\right),
$$

there exists $U \in 2^{X_{i_{0}}}$ such that $x \notin U, y \in U, a \leq \mathscr{C}_{i_{0}}(U)$ or $V \in 2^{X_{i_{0}}}$ such that $x \in V, y \notin V, a \leq \mathscr{C}_{i_{0}}(V)$. By Lemma 3.7we have

$$
\begin{aligned}
\bigvee_{x \notin A, y \in A} \mathscr{C}(A) \vee \bigvee_{y \notin B, x \in B} \mathscr{C}(B) & \geq \mathscr{C}(U) \vee \mathscr{C}(V) \\
& =\left(\bigwedge_{i \in T} \mathscr{C}_{i}\left(U \cap X_{i}\right)\right) \vee\left(\bigwedge_{i \in T} \mathscr{C}_{i}\left(V \cap X_{i}\right)\right) \\
& =\mathscr{C}_{i_{0}}(U) \vee \mathscr{C}_{i_{0}}(V) \geq a .
\end{aligned}
$$

Case2: $x \in X_{r}, y \in X_{s}$ with $r \neq s$. It implies $x \in X_{r}, y \notin X_{r}$ and $y \in X_{s}, x \notin X_{s}$. So

$$
\bigvee_{x \notin A, y \in A} \mathscr{C}(A) \vee \bigvee_{y \notin B, x \in B} \mathscr{C}(B) \geq \mathscr{C}\left(X_{r}\right) \vee \mathscr{C}\left(X_{s}\right)=\mathrm{T} \geq a
$$

According to the arbitrariness of x and y, we concluded that $a \leq \bigwedge_{x \neq y}(\underset{x \notin A, y \in A}{\vee} \mathscr{C}(A) \vee \underset{y \notin B, x \in B}{\vee} \mathscr{C}(B))$. This implies $S_{0}(X, \mathscr{C}) \geq \bigwedge_{i \in T} S_{0}\left(X_{i}, \mathscr{C}_{i}\right)$.

Theorem 4.3. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then $S_{1}(X, \mathscr{C})=\bigwedge_{i \in T} S_{1}\left(X_{i}, \mathscr{C}_{i}\right)$.
Proof. By Definition $2.8\left(S_{1}\right)$, we have

$$
\begin{aligned}
S_{1}(X, \mathscr{C})=\bigwedge_{z \in X} \bigwedge_{i \in T} \mathscr{C}_{i}\left(\{z\} \cap X_{i}\right) & =\bigwedge_{z \in \cup_{j \in T} X_{j}} \bigwedge_{i \in T} \mathscr{C}_{i}\left(\{z\} \cap X_{i}\right) \\
& =\bigwedge_{j \in T} \bigwedge_{z \in X_{j}} \bigwedge_{i \in T} \mathscr{C}_{i}\left(\{z\} \cap X_{i}\right) \\
& =\bigwedge_{j \in T} \bigwedge_{z \in X_{j}} \mathscr{C}_{j}(\{z\}) \\
& =\bigwedge_{j \in T} S_{1}\left(X_{j}, \mathscr{C}_{j}\right)=\bigwedge_{i \in T} S_{1}\left(X_{i}, \mathscr{C}_{i}\right) .
\end{aligned}
$$

Theorem 4.4. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then $S_{2}(X, \mathscr{C})=\bigwedge_{i \in T} S_{2}\left(X, \mathscr{C}_{i}\right)$.
Proof. From Theorem 2.9 (iii) it is easy to see $S_{2}(X, \mathscr{C}) \leq \bigwedge_{i \in T} S_{2}\left(X, \mathscr{C}_{i}\right)$. The converse inequality can be proved in the following.
Take $a<\bigwedge_{i \in T} S_{2}\left(X_{i}, \mathscr{C}_{i}\right)$. We thus get for each $i \in T$ and $x, y \in X_{i}$,

$$
a<S_{2}\left(X_{i}, \mathscr{C}_{i}\right)=\bigwedge_{x \neq y} \bigvee_{x \in U, y \notin U} \mathcal{H}_{t}(U)
$$

In fact, it suffices to see that for $x, y \in X$ with $x \neq y, a \leq \underset{x \in A, y \notin A}{ } \mathcal{H}_{\mathscr{C}}(A)$.
Now let $x, y \in X$ with $x \neq y$ and consider two cases below:
Case1: $x, y \in X_{i_{0}}$ for some $i_{0} \in T$. Since

$$
a<S_{2}\left(X_{i_{0}}, \mathscr{C}_{i_{0}}\right)=\bigwedge_{x \neq y} \bigvee_{x \in U, y \notin U} \mathcal{H}_{i_{0}}(U),
$$

we know that there exists $U \in 2^{X_{i_{0}}}$ with $x \in U, y \notin U$ such that $a \leq \mathcal{H}_{i_{0}}(U)$. So for $A \in 2^{X}$,

$$
\begin{aligned}
\bigvee_{x \in A, y \notin A} \mathcal{H}_{\mathscr{C}}(A) & \geq \mathscr{C}(U) \wedge \mathscr{C}(X \backslash U) \\
& =\left(\bigwedge_{i \in T} \mathscr{C}_{i}\left(U \cap X_{i}\right)\right) \wedge\left(\bigwedge_{i \in T} \mathscr{C}_{i}\left((X \backslash U) \cap X_{i}\right)\right) \\
& =\left(\bigwedge_{i \in T} \mathscr{C}_{i}\left(U \cap X_{i}\right)\right) \wedge\left(\bigwedge_{i \in T} \mathscr{C}_{i}\left(X_{i} \backslash\left(U \cap X_{i}\right)\right)\right) \\
& =\mathscr{C}_{i_{0}}(U) \wedge \mathscr{C}_{i_{0}}\left(X_{i_{0}} \backslash U\right) \quad\left(\text { by } U \subseteq X_{i_{0}}\right) \\
& =\mathcal{H}_{i_{0}}(U) \geq a .
\end{aligned}
$$

Case2: $x \in X_{r}, y \in X_{s}$ with $r \neq s$. It follows that $x \in X_{r}, y \notin X_{r}$. So we have

$$
\bigvee_{x \in A, y \notin A} \mathcal{H}_{\mathscr{C}}(A) \geq \mathcal{H}_{\mathscr{C}}\left(X_{r}\right)=\mathscr{C}\left(X_{r}\right) \wedge \mathscr{C}\left(X \backslash X_{r}\right)=\mathrm{T} \geq a
$$

Since x and y are arbitrary, we have $a \leq \bigwedge_{x \neq y} \underset{x \in A, y \notin A}{ } \mathcal{H}_{\mathscr{C}}(A)$. This implies $S_{2}(X, \mathscr{C}) \geq \bigwedge_{i \in T} S_{2}\left(X_{i}, \mathscr{C}_{i}\right)$.
Theorem 4.5. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then $S_{3}(X, \mathscr{C})=\bigwedge_{i \in T} S_{3}\left(X_{i}, \mathscr{C}_{i}\right)$.
Proof. By Theorem $2.9(v)$, it is immediately clear that $S_{3}(X, \mathscr{C}) \leq \bigwedge_{i \in T} S_{3}\left(X_{i}, \mathscr{C}_{i}\right)$. The converse inequality can be proved in the following.
Take $a<\bigwedge_{i \in T} S_{3}\left(X_{i}, \mathscr{C}_{i}\right)$. We thus get $\forall i \in T$ and $x \in X_{i}$,

$$
a<S_{3}\left(X_{i}, \mathscr{C}_{i}\right)=\bigwedge_{U \subseteq X_{i}} \bigwedge_{x \notin U}\left[\mathscr{C}_{i}(U) \rightarrow\left(\bigvee_{U \subseteq V, x \notin V} \mathcal{H}_{t}(V)\right)\right] .
$$

We aim to show $a \leq S_{3}(X, \mathscr{C})$, that is

$$
a \leq \bigwedge_{A \subseteq X} \bigwedge_{x \notin A}\left[\mathscr{C}(A) \rightarrow\left(\bigvee_{A \subseteq B, x \notin B} \mathcal{H}_{\mathscr{C}}(B)\right)\right] .
$$

Since for each $i \in T, a<S_{3}\left(X_{i}, \mathscr{C}_{i}\right)$, we know that for any $U \subseteq X_{i}$ with $x \notin U$,

$$
a \wedge \mathscr{C}_{i}(U) \leq \bigvee_{U \subseteq V, x \notin V} \mathcal{H}_{i}(V)
$$

Let $A \subseteq X$ with $x \notin A$. Then there is a i_{0} such that $x \in X_{i_{0}}$, so $x \notin A \cap X_{i_{0}}$. Since $A \cap X_{i_{0}} \subseteq X_{i_{0}}$, we have

$$
a \wedge \mathscr{C}_{i_{0}}\left(A \cap X_{i_{0}}\right) \leq \bigvee_{A \cap X_{i_{0}} \subseteq V, x \notin V} \mathcal{H}_{i_{0}}(V)
$$

Take $V \subseteq X_{i_{0}}$ with $A \cap X_{i_{0}} \subseteq V, x \notin V$, and let $B^{*}=V \cup \bigcup_{i \neq i_{0}} X_{i}$. Since $x \in X_{i_{0}}$, it is clear that $A \subseteq B^{*}$ and $x \notin B^{*}$. Further, we have

$$
\begin{aligned}
\mathcal{H}_{\mathscr{C}}\left(B^{*}\right) & =\mathscr{C}\left(B^{*}\right) \wedge \mathscr{C}\left(X \backslash B^{*}\right) \\
& =\bigwedge_{i \in T} \mathscr{C}_{i}\left(B^{*} \cap X_{i}\right) \wedge \bigwedge_{i \in T} \mathscr{C}_{i}\left(X_{i} \backslash\left(B^{*} \cap X_{i}\right)\right) \\
& \left.=\bigwedge_{i \in T} \mathscr{C}_{i}\left[\left(V \cup \bigcup_{i \neq i_{0}} X_{i}\right) \cap X_{i}\right] \wedge \bigwedge_{i \in T} \mathscr{C}_{i}\left[X_{i} \backslash\left(V \cup \bigcup_{i \neq i_{0}} X_{i}\right) \cap X_{i}\right)\right] \\
& =\mathscr{C}_{i_{0}}(V) \wedge \mathscr{C}_{i_{0}}\left(X_{i_{0}} \backslash V\right) \quad \quad\left(\text { by } V \subseteq X_{i_{0}}\right) \\
& =\mathcal{H}_{i_{0}}(V) .
\end{aligned}
$$

This implies $\underset{A \subseteq B, x \notin B}{\bigvee} \mathcal{H}_{\mathscr{C}}(B) \geq \underset{A \cap X_{i_{0}} \subseteq V, x \notin V}{\bigvee} \mathcal{H}_{i_{0}}(V)$. Therefore,

$$
\begin{aligned}
a \wedge \mathscr{C}(A)=a \wedge \bigwedge_{i \in T} \mathscr{C}_{i}\left(A \cap X_{i}\right) & \leq a \wedge \mathscr{C}_{i_{0}}\left(A \cap X_{i_{0}}\right) \\
& \leq \bigvee_{A \cap X_{i_{0}} \subseteq V, x \notin V} \mathcal{H}_{i_{0}}(V) \\
& \leq \bigvee_{A \subseteq B, x \notin B} \mathcal{H}_{\mathscr{C}}(B) .
\end{aligned}
$$

Hence $a \leq \mathscr{C}(A) \rightarrow \underset{A \subseteq B, x \notin B}{\bigvee} \mathcal{H}_{\mathscr{C}}(B)$. By the arbitrariness of x and A, we thus get

$$
a \leq \bigwedge_{A \subseteq X} \bigwedge_{x \notin A}\left[\mathscr{C}(A) \rightarrow\left(\bigvee_{A \subseteq B, x \notin B} \mathcal{H}_{\mathscr{C}}(B)\right)\right]
$$

Therefore, $S_{3}(X, \mathscr{C}) \geq \bigwedge_{i \in T} S_{3}\left(X_{i}, \mathscr{C}_{i}\right)$.
Theorem 4.6. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then $S_{4}(X, \mathscr{C})=\bigwedge_{i \in T} S_{4}\left(X, \mathscr{C}_{i}\right)$.
Proof. By Theorem 2.9 and Lemma 3.8 , it is immediately clear that $S_{4}(X, \mathscr{C}) \wedge \mathscr{C}\left(X_{i}\right) \leq S_{4}\left(X_{i}, \mathscr{C}_{i}\right)$. Again by Lemma 3.8 we can see $\mathscr{C}\left(X_{i}\right)=T$. This gives for each $i \in T, S_{4}(X, \mathscr{C}) \leq S_{4}\left(X_{i}, \mathscr{C}_{i}\right)$. So $S_{4}(X, \mathscr{C}) \leq \bigwedge_{i \in T} S_{4}\left(X_{i}, \mathscr{C}_{i}\right)$.

The converse inequality can be proved in the following.
Take $a \leq \bigwedge_{i \in T} S_{4}\left(X_{i}, \mathscr{C}_{i}\right)$, so we have $a \leq S_{4}\left(X_{i}, \mathscr{C}_{i}\right)$ for all $i \in T$. From Definition 2.8, we know that for every $U, V \subseteq 2^{X_{i}}$ with $U \cap V=\emptyset$,

$$
a \leq \mathscr{C}_{i}(U) \wedge \mathscr{C}_{i}(V) \rightarrow\left(\bigvee_{U \subseteq Q, V \subseteq X_{i} \backslash Q} \mathcal{H}_{i}(Q)\right)
$$

This implies $a \wedge \mathscr{C}_{i}(U) \wedge \mathscr{C}_{i}(V) \leq \underset{U \subseteq Q, V \subseteq X_{i} \backslash Q}{V} \mathcal{H}_{i}(Q)$. Next, we aim to prove $a \leq S_{4}(X, \mathscr{C})$, that is

$$
a \leq \bigwedge_{A \cap B=\emptyset}\left[\mathscr{C}(A) \wedge \mathscr{C}(B) \rightarrow\left(\bigvee_{B \subseteq X \backslash C, A \subseteq C} \mathcal{H}_{\mathscr{C}}(C)\right)\right]
$$

In fact, for any $A, B \in 2^{X}$ with $A \cap B=\emptyset$, we consider $U_{i}=A \cap X_{i}$ and $V_{i}=B \cap X_{i}$ for all $i \in T$, which means $U_{i}, V_{i} \subseteq X_{i}$ and $U_{i} \cap V_{i}=\emptyset$. So we have $a \wedge \mathscr{C}_{i}\left(U_{i}\right) \wedge \mathscr{C}_{i}\left(V_{i}\right) \leq \underset{U_{i} \subseteq Q, V_{i} \subseteq X_{i} \backslash Q}{V} \mathcal{H}_{i}(Q)$ Therefore,

$$
\begin{aligned}
a \wedge \mathscr{C}(A) \wedge \mathscr{C}(B) & =a \wedge \bigwedge_{i \in T} \mathscr{C}_{i}\left(A \cap X_{i}\right) \wedge \bigwedge_{i \in T} \mathscr{C}_{i}\left(B \cap X_{i}\right) \\
& =a \wedge \bigwedge_{i \in T} \mathscr{C}_{i}\left(U_{i}\right) \wedge \bigwedge_{i \in T} \mathscr{C}_{i}\left(V_{i}\right) \\
& \leq \bigwedge_{i \in T} \bigvee_{U_{i} \subseteq Q, V_{i} \subseteq X_{i} \backslash Q} \mathcal{H}_{i}(Q) \\
& =\bigvee_{f \in \prod_{i \in T}} \bigwedge_{i \in T} \mathcal{H}_{i}(f(i))
\end{aligned}
$$

where $J_{i}=\left\{Q \in X_{i}: U_{i} \subseteq Q, V_{i} \subseteq X_{i} \backslash Q\right\}, f(i) \in J_{i}$. Since for each $f \in \prod_{i \in T} J_{i}$ and $i \in T$, there exists $Q_{i} \in J_{i}$ such that $f(i)=Q_{i}$. Thus $U_{i} \subseteq Q_{i}, V_{i} \subseteq X_{i} \backslash Q_{i}$, which implies

$$
A=\bigcup_{i \in T}\left(A \cap X_{i}\right)=\bigcup_{i \in T} U_{i} \subseteq \bigcup_{i \in T} Q_{i}
$$

In a similar way, we can get $B \subseteq X \backslash\left(\bigcup_{i \in T} Q_{i}\right)$. We take $C^{*}=\bigcup_{i \in T} Q_{i}=\bigcup_{j \in T} Q_{j}$, and so $A \subseteq C^{*}, B \subseteq X \backslash C^{*}$. We thus get

$$
\begin{aligned}
\mathcal{H}\left(C^{*}\right) & =\mathscr{C}\left(C^{*}\right) \wedge \mathscr{C}\left(X \backslash C^{*}\right) \\
& =\bigwedge_{i \in T} \mathscr{C}_{i}\left(C^{*} \cap X_{i}\right) \wedge \mathscr{C}_{i}\left(\left(X \backslash C^{*}\right) \cap X_{i}\right) \\
& =\bigwedge_{i \in T} \mathscr{C}_{i}\left(C^{*} \cap X_{i}\right) \wedge \mathscr{C}_{i}\left(X_{i} \backslash\left(C^{*} \cap X_{i}\right)\right) \\
& =\bigwedge_{i \in T} \mathscr{C}_{i}\left[\left(\bigcup_{j \in T} Q_{j}\right) \cap X_{i}\right] \wedge \mathscr{C}_{i}\left[X_{i} \backslash\left(\left(\bigcup_{j \in T} Q_{j}\right) \cap X_{i}\right)\right] \\
& =\bigwedge_{i \in T} \mathscr{C}_{i}\left(Q_{i}\right) \wedge \mathscr{C}_{i}\left(X_{i} \backslash Q_{i}\right) \quad \quad\left(\text { since for } j \neq i, \quad Q_{j} \cap X_{i} \subseteq X_{j} \cap X_{i}=\emptyset\right) \\
& =\bigwedge_{i \in T} \mathcal{H}_{i}\left(Q_{i}\right)=\bigwedge_{i \in T} \mathcal{H}_{i}(f(i)) .
\end{aligned}
$$

Since f is arbitrary, we have

$$
\bigvee_{f \in \prod_{i \in T} J_{i}} \bigwedge_{i \in T} \mathcal{H}_{i}(f(i)) \leq \bigvee_{B \subseteq X \mid C, A \subseteq C} \mathcal{H}_{\mathscr{C}}(C)
$$

Thus

$$
a \wedge \mathscr{C}(A) \wedge \mathscr{C}(B) \leq \bigvee_{B \subseteq X \backslash C, A \subseteq C} \mathcal{H}_{\mathscr{C}}(C)
$$

So

$$
a \leq \mathscr{C}(A) \wedge \mathscr{C}(B) \rightarrow\left(\bigvee_{B \subseteq X \backslash C, A \subseteq C} \mathcal{H}_{\mathscr{C}}(C)\right)
$$

Since A and B are arbitrary, which gives $a \leq S_{4}(X, \mathscr{C})$. Therefore, $S_{4}(X, \mathscr{C}) \geq \bigwedge_{i \in T} S_{4}\left(X_{i}, \mathscr{C}_{i}\right)$.
Theorem 4.7. Assume that $(X, \mathscr{C})=\left(X, \sum_{i \in T} \mathscr{C}_{i}\right)$. Then for each $i \in T,\left(X_{i}, \mathscr{C}_{i}\right)$ is an M-fuzzifying JHC convexity if and only if (X, \mathscr{C}) is an M-fuzzifying JHC convexity.

Proof. Sufficiency. For our purpose, we must show that for a fixed $i \in T, \forall b, y \in X_{i}, \forall U \subseteq X_{i}$,

$$
\operatorname{co}_{i}(\{b\} \cup U)(y)=\bigvee_{c \in X_{i}}\left[\cos _{i}(\{b, c\})(y) \wedge c o_{i}(U)(c)\right]
$$

By the fact that $b, y \in X_{i}$ and $U \subseteq X_{i}$, it follows from Lemma 3.9 and Theorem 3.10 that

$$
\begin{aligned}
\operatorname{co}_{\mathscr{C}}(\{b\} \cup U)(y) & =\bigvee_{i \in T}\left[\operatorname{co}_{i}\left((\{b\} \cup U) \cap X_{i}\right)(y)\right] \\
& =\operatorname{co}_{i}(\{b\} \cup U)(y) .
\end{aligned}
$$

Since (X, \mathscr{C}) is M-fuzzifying JHC, we have

$$
\left.\left.\begin{array}{rl}
\cos _{\mathscr{C}}(\{b\} \cup U)(y) & =\bigvee_{c \in X}[\operatorname{co⿻} \mathscr{\mathscr { C }}(\{b, c\})(y) \wedge \operatorname{co⿻} \\
\mathscr{C}
\end{array}(U)(c)\right]\right)
$$

The last equality holds because by Lemma3.9, $b, c, y \in X_{i}$ and $U \subseteq X_{i}$ implies

$$
\bigvee_{c \in X_{i}}\left[\cos _{\mathscr{C}}(\{b, c\})(y) \wedge \cos _{\mathscr{C}}(U)(c)\right]=\bigvee_{c \in X_{i}}\left[\operatorname{co}_{i}(\{b, c\})(y) \wedge c o_{i}(U)(c)\right]
$$

Now, we note that $\bigvee_{c \notin X_{i}}\left[\cos _{\mathscr{C}}(\{b, c\})(y) \wedge \cos _{\mathscr{C}}(U)(c)\right]=\perp$. Since $U \subseteq X_{i}$, then for every $c \notin X_{i}, \cos (U)(c)=\perp$ by Lemma 3.9, this implies our statement holds. Thus,

$$
\operatorname{co}_{i}(\{b\} \cup U)(y)=\bigvee_{c \in X_{i}}\left[c_{i}(\{b, c\})(y) \wedge c_{i}(U)(c)\right]
$$

Necessity. Since for each $i \in T,\left(X_{i}, \mathscr{C}_{i}\right)$ is an M-fuzzifying JHC convexity, we know that $\forall b, y \in X_{i}, \forall U \subseteq$ X_{i},

$$
c o_{i}(\{b\} \cup U)(y)=\bigvee_{x \in X_{i}}\left[c o_{i}(\{b, x\})(y) \wedge c o_{i}(U)(x)\right]
$$

Next, we prove $\forall a, z \in X, \forall A \subseteq X$,

$$
\cos _{\mathscr{C}}(\{a\} \cup A)(z)=\bigvee_{x \in X}\left[\operatorname{co}_{\mathscr{C}}(\{a, x\})(z) \wedge \cos _{\mathscr{C}}(A)(x)\right]
$$

We first note that for any $x \in X$,

$$
\cos _{\mathscr{C}}(\{a\} \cup A)(z) \geq \cos _{\mathscr{C}}(\{a, x\})(z) \wedge \operatorname{co}_{\mathscr{C}}(A)(x) .
$$

To do this, by Theorem 2.3 we need to prove

$$
\bigwedge_{z \notin D \supseteq\{a\} \cup A} \mathscr{C}(D)^{\prime} \geq \bigwedge_{z \notin B \supseteq\{a, x\}} \mathscr{C}(B)^{\prime} \wedge \bigwedge_{x \notin C \supseteq A} \mathscr{C}(C)^{\prime} .
$$

Now let $D \subseteq X$ such that $z \notin D \supseteq\{a\} \cup A$ and consider two cases below:
Case1: $x \notin D$. So $x \notin D \supseteq A$, which implies that

$$
\bigwedge_{x \notin C \supseteq A} \mathscr{C}(C)^{\prime} \leq \mathscr{C}(D)^{\prime}
$$

Case2: $x \in D$. So $z \notin D \supseteq\{a, x\}$, which implies

$$
\bigwedge_{z \notin B \supseteq\{a, x\}} \mathscr{C}(B)^{\prime} \leq \mathscr{C}(D)^{\prime}
$$

Hence we obtain that

$$
\bigwedge_{z \notin D \supseteq\{a\} \cup A} \mathscr{C}(D)^{\prime} \geq \bigwedge_{z \notin B \supseteq\{a, x\}} \mathscr{C}(B)^{\prime} \wedge \bigwedge_{x \notin \supseteq \supseteq A} \mathscr{C}(C)^{\prime} .
$$

The converse inequality can be proved in the following.
Since $a, z \in X$, there exist $r, s \in T$ such that $a \in X_{r}$ and $z \in X_{s}$. By Lemma 3.9and Theorem 3.10, we have

$$
\begin{equation*}
\cos _{\mathscr{C}}(\{a\} \cup A)(z)=\bigvee_{i \in T} \operatorname{co}\left((\{a\} \cup A) \cap X_{i}\right)(z)=\cos _{s}\left((\{a\} \cup A) \cap X_{s}\right)(z) \tag{*}
\end{equation*}
$$

and

$$
\begin{align*}
& \bigvee_{x \in X}\left[\cos _{\mathscr{C}}(\{a, x\})(z) \wedge \cos _{\mathscr{C}}(A)(x)\right]=\bigvee_{x \in X}\left(\bigvee_{i \in T} \operatorname{co}\left(\{a, x\} \cap X_{i}\right)(z) \wedge \bigvee_{i \in T} \cos _{i}\left(A \cap X_{i}\right)(x)\right) \\
& =\bigvee_{x \in X}\left(\cos \left(\{a, x\} \cap X_{s}\right)(z) \wedge \bigvee_{i \in T} \operatorname{co}_{i}\left(A \cap X_{i}\right)(x)\right) \\
& \geq \bigvee_{x \in X_{s}}\left(\cos \left(\{a, x\} \cap X_{s}\right)(z) \wedge \bigvee_{i \in T} \operatorname{co}\left(A \cap X_{i}\right)(x)\right) \\
& =\bigvee_{x \in X_{s}}\left[\cos (\{a, x\})(z) \wedge c_{s}\left(A \cap X_{s}\right)(x)\right] \text {. }
\end{align*}
$$

The last equality holds because by Lemma 3.9. $x \in X_{s}$ implies $\bigvee_{i \in T} \operatorname{co}_{i}\left(A \cap X_{i}\right)(x)=\cos _{s}\left(A \cap X_{s}\right)(x)$.
Next, we consider two cases below:
Case 1: $r \neq s$. i.e., $a \notin X_{s}$. Then $*=c o_{s}\left(A \cap X_{s}\right)(z)$. It follows from $z \in X_{s}$ that

$$
\star \geq \cos _{s}(\{z\})(z) \wedge \cos _{s}\left(A \cap X_{s}\right)(z)=\cos _{s}\left(A \cap X_{s}\right)(z)=*
$$

Case 2: $r=s$. i.e., $a, z \in X_{s}$. Since \mathscr{C}_{s} is M-fuzzifying JHC, we have

$$
*=\operatorname{co}_{s}\left(\{a\} \cup\left(A \cap X_{s}\right)\right)(z)=\bigvee_{x \in X_{s}}\left[\cos (\{a, x\})(z) \wedge \operatorname{co}_{s}\left(A \cap X_{s}\right)(x)\right] .
$$

Further, we have

$$
\star=\bigvee_{x \in X_{s}}\left[\operatorname{co}_{s}(\{a, x\})(z) \wedge \operatorname{co}_{s}\left(A \cap X_{s}\right)(x)\right]=*
$$

Hence

$$
\bigvee_{x \in X}\left[\cos _{\mathscr{C}}(\{a, x\})(z) \wedge \cos _{\mathscr{C}}(A)(x)\right] \geq \operatorname{co}_{\mathscr{C}}(\{a\} \cup A)(z) .
$$

5. Conclusions

Based on the definition of the disjoint sum of M-fuzzifying convex spaces mentioned in [20], some related properties are studied in detail. the notion of the arity of an M-fuzzifying convex space is introduced. With the help of arity, the connections between the disjoint sum of M-fuzzifying convex spaces and its factor spaces are established. It is proved that the arity of the disjoint sum of M-fuzzifying convex spacesis is equal to the supremum of the family of arity of every factor space. Furthermore, we show that some properties of M-fuzzifying convex spaces are additive in the sense of Definition 4.1 such as separability. It is shown that a disjoint sum of M-fuzzifying convex spaces is JHC iff its every factor space is JHC. Of course, there are many other properties of M-fuzzifying convex spaces that can be verified to be additive in a similar way.

Acknowledgement

The authors want to express their heartfelt thanks to the reviewers for their careful reading and constructive comments.

References

[1] M. Berger, Convexity, Amer. Math. Monthly 97 (1990) 650-678.
[2] F.-H. Chen, C. Shen, F.-G. Shi, A new approach to the fuzzification of arity, JHC and CUP of L-convexites, J. Intell. Fuzzy Syst. 34 (2018) 221-231.
[3] M. Farber, R.E.Jamison, Convexity in graphs and hyper graphs, SIAM J. Algebraic Discrete Methods 7 (1986) 433-444.
[4] M. Farber, R.E. Jamison, On local convexity in graphs, Discrete Math. 66 (1987) 231-247.
[5] F. Harary, J. Nieminen, Convexity in graphs, DiKerential Geom. 16 (1981) 185-190.
[6] C.S. Hoo, Fuzzy ideals of BCI and MV-algebras, Fuzzy Sets Syst. 62 (1994) 111-114.
[7] Q. Jin, L.-Q. Li, On the embedding of L-convex spaces in stratified L-convex spaces, SpringerPlus 5 (2016) 1610.
[8] H. Komiya, Convex structure on a topological space, Fund. Math. 111 (1981) 107-113.
[9] H.-Y. Li, K. Wang, L-ordered neighborhood systems of stratified L-concave structures, J. Nonlinear Convex Anal. 21 (2020) 2783-2793.
[10] C.Y. Liang, F.H. Li, A degree approach to separation axioms in M-fuzzifying convex spaces, J. Intell. Fuzzy Syst. 36 (2019) 2885-2893.
[11] C.Y. Liang, F. Li, S_{3} and S_{4} seraration axioms in M-fuzzifying convex spaces, J. Nonlinear Convex Anal. 21 (2020) $2737-2745$.
[12] E. Marczewski, Independence in abstract algebras results and problems, Colloq. Math. 14 (1966) 169-188.
[13] Y. Marugama, Lattice-Valued fuzzy convex geometry, RIMS Kokyuroku 1641 (2009) 22-37.
[14] B. Pang, Convenient properties of stratified L-convergence tower spaces, Filomat 33 (2019) 4811-4825.
[15] B. Pang, F.-G. Shi, Fuzzy counterparts of hull operators and interval operators in the framework of L-convex spaces, Fuzzy Sets Syst. 369 (2019) 20-39.
[16] B. Pang, Z.-Y. Xiu, Lattice-valued interval operators and its induced lattice-valued convex structures, IEEE Trans. Fuzzy Syst. 26 (2018) 1525-1534.
[17] M.V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets Syst. 62 (1994) 97-100.
[18] C. Shen, F.-G. Shi, L-convex systems and the categorical isomorphism to Scott-hull operators, Iran. J. Fuzzy Syst. 15 (2018) 23-40.
[19] F.-G. Shi, E.-Q. Li, The restricted hull operators of M-fuzzifying convex structures, J. Intell. Fuzzy Syst. 30 (2015) 409-421.
[20] F.-G. Shi, Z.-Y. Xiu, A new approach to the fuzzification of convex structures, J. Appl. Math. (2014) Article ID 249183.
[21] M. van de Vel, On the rank of a topological convex structure, Fund. Math. 119 (1984) 17-48.
[22] M. van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993.
[23] K. Wang, F.-G. Shi, M-fuzzifying topological convex spaces, Iran. J. Fuzzy Syst. 15 (2018) 159-174.
[24] X.-Y. Wu, S.-Z. Bai, On M-fuzzifying JHC convex structures and M-fuzzifying Peano interval spaces, J. Intell. Fuzzy Syst. 30 (2016) 2447-2458.
[25] X.-Y. Wu, E.-Q. Li and S.-Z. Bai, Geometric properties of M-fuzzifying convex structures, J. Intell. Fuzzy Syst. 32 (2017) 4273-4284.
[26] Z.-Y. Xiu, Studies on (L,M)-fuzzy convexity spaces and related theory, PhD thesis, Beijing Institute of Technology, Beijing, China, 2015 (in Chinese).
[27] Z.-Y. Xiu, Convergence structures in L-concave spaces, J. Nonlinear Convex Anal. 21 (2020) 2693-2703.
[28] Z.-Y. Xiu, Q.-H. Li, Degrees of L-continuity for mappings between L-topological spaces, Mathematics 7 (2019) $1013-1028$.
[29] Z.-Y. Xiu, Q.-H. Li, B. Pang, Fuzzy convergence structures in the framework of L-convex spaces, Iran. J. Fuzzy Syst. 17 (2020) 139-150.
[30] Z.-Y, Xiu, L. Li, Y. Zhu, A degree approach to special mappings between (L, M)-fuzzy convex spaces, J. Nonlinear Convex Anal. 21 (2020) 2625-2635.
[31] Z.-Y. Xiu, B. Pang, M-fuzzifying cotopological spaces and M-fuzzifying convex spaces as M-fuzzifying closure spaces, J. Intell. Fuzzy Syst. 33 (2017) 613-620.
[32] Z.-Y. Xiu, B. Pang, Base axioms and subbase axioms in M-fuzzifying convex spaces, Iran. J. Fuzzy Syst. 15 (2018) 75-87.
[33] Z.-Y. Xiu, F.-G. Shi, M-fuzzifying interval spaces, Iran. J. Fuzzy Syst. 14 (2017) 145-162.
[34] W. Yao, Y. Chen, The arity of convex spaces, J. Intell. Fuzzy Syst. 40 (2015) 11455-11462.
[35] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353.
[36] X.-W. Zhou, Fu-Gui Shi, Some separation axioms in L-convex spaces, J. Intell. Fuzzy Syst. 37 (2019) 8053-8062.

[^0]: 2020 Mathematics Subject Classification. Primary 03E72; Secondary 52A01, 54A40
 Keywords. M-fuzzifying convex space, disjoint sum of M-fuzzifying convex spaces, arity, separability, additivity
 Received: 07 November 2020; Revised: 10 August 2021; Accepted: 13 August 2021
 Communicated by Ljubiša D.R. Kočinac
 This project is supported by the National Natural Science Foundation of China (11871097, 12071033), Beijing Institute of Technology Science and Technology Innovation Plan Cultivation Project (No. 2020CX01030).

 Email addresses: dongyanyan187@163.com (Yan Yan Dong), fuguishi@bit.edu.cn (Fu-Gui Shi)

