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Abstract. In this paper, we define a matrix transform of functionals via the bounded linear operators on
function space. We then establish the existence of the matrix transform for exponential functionals. Finally,
we obtain some fundamental formulas for the matrix transform involving the generalized first variations.

1. Introduction

For a positive real number T, let the triple (C0[0,T],M,m) be the one-parameter Wiener space and let
K ≡ K0[0,T] be the space of complex-valued continuous functions defined on [0,T] which vanish at t = 0.
We denote the Wiener integral of a Wiener integrable functional F by∫

C0[0,T]
F(x)dm(x).

For certain values of the parameters γ and β and for certain classes of functionals, the Fourier-Wiener
transform, the modified Fourier-Wiener transform, the Fourier-Feynman transform and the Gauss transform
are special cases of Lee’s integral transform Fγ,β defined by the formula

Fγ,β(F)(y) =

∫
C0[0,T]

F(γx + βy)dm(x), y ∈ K. (1)

Lee showed that the solution of a differential equation (Cauchy problem) can be obtained by the integral
transform [14]. Many mathematicians have attempted to define a more generalized form of the integral
transform. One of them is the integral transform defined by the formula

F
h1,h2
γ,β (F)(y) =

∫
C0[0,T]

F(γZh1 (x, ·) + βZh2 (y, ·))dm(x), y ∈ K,

for some appropriate functions h1 and h2 on [0,T], where Zh(x, t) =
∫ t

0 h(s)dx is the Paley-Wiener-Zygmund
(PWZ) stochastic integral. One can show that F 1,1

γ,β (F)(y) = Fγ,β(F)(y), see [4]. The other example of
generalized versions is the integral transform defined by the formula

GS,R(F)(y) =

∫
C0[0,T]

F(Sx + Ry)dm(x), y ∈ K, (2)

2020 Mathematics Subject Classification. Primary 60J65 ; Secondary 28C20, 46E20.
Keywords. Matrix transform, bounded liner operator, algebraic calculation for matrices, generalized first variation.
Received: 13 October 2020; Revised: 16 February 2021; Accepted: 22 February 2021
Communicated by Marija Milošević
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where S and R are bounded linear operators on K, see [2, 6, 7, 15].
Recently, a number of studies have been published on the generalized version of Lee’s integral transform.

It is natural that arise the needness to us a more generalized version of them. We have felt the need for a
new integral transform that encompasses all of the concepts of integral transforms to date, and we thought
that a new type of integral transform was needed. We are forcing to define a more generalized version
of integral transform. In order to do this, we define a matrix transform of functionals on function space,
and then we establish some fundamental formulas for the matrix transform involving the generalized first
variations. All results and formulas in previous papers [1–3, 8, 9, 12, 17] are corollaries of our results and
formulas in this paper.

2. Definitions and preliminaries

We first list some definitions and preliminaries to understand this paper.
A subset B of C0[0,T] is said to be scale-invariant measurable provided ρB ∈ M for all ρ > 0, and a scale-

invariant measurable set N is said to be scale-invariant null provided m(ρN) = 0 for all ρ > 0. A property
that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere(s-a.e.) [16].

Let

C′0 ≡ C′0[0,T] =
{
w ∈ C0[0,T] : w(t) =

∫ t

0
zw(s)ds, zw ∈ L2[0,T]

}
.

Then it is a separable infinite dimensional Hilbert space with inner product

(w1,w2)C′0 =

∫ T

0
w′1(t)w′2(t)dt.

Also, let K′ be the complexification of C′0. As is known, (C′0[0,T],C0[0,T],m) is an example of abstract
Wiener spaces [10, 11, 13]. Thus we have ˜C0[0,T] ⊂ ˜C′0[0,T] ≈ C′0[0,T] ⊂ C0[0,T], where S̃ is the topological
dual space of a normed space S. Let X and Y be normed spaces and letL(X : Y) be the space of all bounded
linear operators from X to Y. Hence the space L ≡ L(K : K) is the set of all bounded linear operators on K
into K.

For v ∈ L2[0,T] and x ∈ C0[0,T], let 〈v, x〉 denote the PWZ stochastic integral. One can show that for each
v ∈ L2[0,T], 〈v, x〉 exists for a.e. x ∈ C0[0,T] and if v ∈ L2[0,T] is a function of bounded variation on [0,T],
〈v, x〉 equals the Riemann-Stieltjes integral

∫ T

0 v(t)dx(t) for s-a.e. x ∈ C0[0,T]. Also, 〈v, x〉 has the expected
linearity property. Furthermore, 〈v, x〉 is a Gaussian random variable with mean 0 and variance ‖v‖22. For a
more detailed study of the PWZ stochastic integral, see [1, 5, 7, 9, 14, 15, 18].

For x ∈ C0[0,T] and w ∈ C′0[0,T] with w(t) =
∫ t

0 z(s)ds for t ∈ [0,T], (w, x)∼ ≡ 〈Dtw, z〉 = 〈z, x〉 is a
well-defined Gaussian random variable with mean 0 and variance ‖w‖2C′0

. Then we have the following
observations :

(i) For x ∈ K and w ∈ C′0[0,T], let (w, x)∼ = (w,Re(x))∼ + i(w, Im(x))∼.
(ii) For x ∈ C0[0,T] and w ∈ K′, let (w, x)∼ = (Re(w), x)∼ + i(Im(w), x)∼.

(iii) In view of (ii) and (iii), for x ∈ K and w ∈ K′, it follows that

(w, x)∼ = (Re(w),Re(x))∼ + i(Im(w),Re(x))∼

+ i(Re(w), Im(x))∼ − (Im(w), Im(x))∼.

In this case (·, ·)∼ is a complex bilinear form on K̃ × K.

Let F be an arbitrary set. For natural numbers k and n, let MFk×n be the set of all matrices whose
components are in F , namely,

M
F

k×n = {A = (ai j)k×n|ai j ∈ F , 1 ≤ i ≤ k, 1 ≤ j ≤ n}.
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Example 2.1. When k = 2,n = 1 and F = K,

M
K
2×1 =

{
X =

(
x
y

)
: x, y ∈ K

}
.

If k = n = 2 and F = L, then

M
L

2×2 =

{
A =

(
T1 T2
T3 T4

)
: T1,T2,T3,T4 ∈ L

}
.

3. Algebraic calculations onML

k×n

In this section, we explain algebraic calculations onMFk×n to develop our theories and results. According
to the various algebraic calculations for the matrices with constant coefficients, we shall introduce some
algebraic calculations onMFk×n. Before do this, we investigate an algebraic structure onMLk×n.

Define a function ‖ · ‖0 onMLk×n by the formula

‖A‖0 = max{‖Ti j‖op : 1 ≤ i ≤ k, 1 ≤ j ≤ n},

where A = (Ti j) ∈ MLk×n and ‖T‖op is the operator norm of T ∈ L. One can see that ‖ · ‖0 is a norm onMLk×nand
hence (MLk×n, ‖ · ‖0) is a normed space.

Theorem 3.1. The space (MLk×n , ‖ · ‖0) is a Banach space.

Proof. Let (Al) ≡ (Al)∞l=1 be a Cauchy sequence inMLk×n. It suffices to show that the sequence (Al) converges.
Let Al = (T(l)

i j ). Since (Al) is Cauchy, for every ε > 0 there is a positive integer N so that for any s, r > N,

‖As − Ar‖0 = max{‖T(s)
i j − T(r)

i j ‖op : 1 ≤ i ≤ k, 1 ≤ j ≤ n} < ε.

This shows that for each fixed i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ n, the sequence (T(p)
i j ) is a Cauchy sequence

in (L, ‖ · ‖op) and so (T(p)
i j ) converges, say, T(p)

i j → T(0)
i j as p→∞. Using these k× n limits, we define A = (T(0)

i j ).

Clearly, A ∈ MLk×n and hence we can conclude that for any p > N

‖Ap − A‖0 < ε.

Hence we have the desired results.

From now on, we are going to explain algebraic calculations on MLk×n for k = 2 and n = 1, 2 via the
properties of matrices for real or complex numbers as below :

(a) For A ∈ ML2×2 and X ∈ MK
2×1, let

AX =

(
T1 T2
T3 T4

) (
x
y

)
=

(
T1x + T2y
T3x + T4y

)
. (3)

Then AX ∈ MK
2×1.

(b) For A1,A2 ∈ M
L

2×2, let

A1A2 =

(
T11 T12
T13 T14

) (
T21 T22
T23 T24

)
=

(
T11T21 + T12T23 T11T22 + T12T24
T13T21 + T14T23 T13T22 + T14T24

)
(4)

where T1T2 is the composition of T1 and T2. Then A1A2 is also inML2×2 and A1A2 , A2A1 generally.
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(c) We next shall introduce a transformH onMK
2×1 intoMK

1×1 defined by the formula

H

((x
y

))
= x + y. (5)

In fact,MK
1×1 = K. ThenH is a linear operator onMK

2×1 intoMK
1×1.

(d) Let F be a complex-valued functional on K. According to three algebraic calculations (3), (4) and (5),
one can observe that (F ◦ H) is defined onMK2×1 into C and

(F ◦ H)(X) = F(H(X)) = F(x + y)

where X =

(
x
y

)
. Furthermore, we can see that for A ∈ ML2×2 and X ∈ MK

2×1,

(F ◦ H)(AX) = F((T1 + T3)x + (T2 + T4)y)

where A =

(
T1 T2
T3 T4

)
.

(e) Using some technic and methods on the theory of matrices, we have the following observations.

(i) For A ∈ ML2×2 with A =

(
T1 T2
T3 T4

)
, let A(1) and A(2) be sub-matrices of A, namely, A can be written

by
A =

(
A(1)|A(2)

)
where A(1) =

(
T1
T3

)
and A(2) =

(
T2
T4

)
.

(ii) For A ∈ MLk×n, let At be the transposed matrix of A. Then At is an element ofMLn×k.
(iii) For A = (Ti j) ∈ MLk×n, let A∗ = (T∗i j) be the matrix of adjoint operators, where T∗ is the adjoint

operator of T. For example, if A =

(
T1 T2
T3 T4

)
, then A∗ =

(
T∗1 T∗2
T∗3 T∗4

)
.

(iv) In view of (i), (ii) and (iii), one can see that for all A ∈ MLk×n, (A∗)t = (At)∗. Furthermore, for

A ∈ ML2×2 with A =

(
T1 T2
T3 T4

)
, we have

A(1)(A∗(1))
t =

(
T1
T3

) (
T∗1 T∗3

)
=

(
T1T∗1 T1T∗3
T3T∗1 T3T∗3

)
and it is an element ofML2×2.

4. Matrix transform with some fundamental formulas

In this section, we define a matrix transform of functionals on K, and then establish some fundamental
formulas for the matrix transform.

We start this section by giving the class of functionals on function space used in this paper. For each
w ∈ K̃, let Φw be a functional on K of the form

Φw(x) = exp{(w, x)∼}. (6)

The functionals of the form (6) are called the exponential type functionals. We note that K̃ ⊂ K̃′ ≈ K′ ⊂ K
and so for each T ∈ L and w ∈ K̃, we have

exp{(w,Tx)∼} = exp{(T∗w, x)∼}.
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We next state the following useful formula for Wiener integrals; namely that for w ∈ K̃ and x ∈ C0[0,T],∫
C0[0,T]

exp{(w, x)∼}dm(x) = exp
{1

2
(w,w)∼

}
. (7)

If w ∈ C′0, then it follows that ∫
C0[0,T]

exp{(w, x)∼}dm(x) = exp
{1

2
‖w‖2C′0

}
.

We are ready to define a matrix transform via the bounded linear operators on function space.

Definition 4.1. Let F be a functional on K and let H be as in equation (5). For a given A ∈ ML2×2, the H-matrix
transform THA (F) of F is defined by the formula

THA (F)(y) =

∫
C0[0,T]

(F ◦ H)(AX)dm(x), y ∈ K (8)

if it exists, where X =

(
x
y

)
.

Remark 4.2. When A =

(
T1 0
0 T4

)
, we have

THA (F)(y) = GT1,T4 (F)(y)

for all y ∈ K if they exist, where GT1,T4 is the generalized integral transform defined by equation (2). In particular, for

nonzero complex numbers γ and β, if A =

(
γ 0
0 β

)
, then

THA (F)(y) = Fγ,β(F)(y)

for all y ∈ K if they exist, where Fγ,β is the generalized integral transform defined by equation (1).

In order to establish various fundamental formulas and results, we need the following Lemma 4.3.

Lemma 4.3. Let A ∈ ML2×2 with its sub-matrices A(1) and A(2) and letH be ginve by equation (5). Then we have

H

(
A(1)(A∗(1))

t
(
w
w

))
= (T1T∗1 + T1T∗3 + T3T∗1 + T3T∗3)w (9)

and

(A∗(2))
t
(
w
w

)
= (T2 + T4)∗w (10)

Proof. Let A =

(
T1 T2
T3 T4

)
and hence A(1) =

(
T1
T3

)
, A(2) =

(
T2
T4

)
and A∗ =

(
T∗1 T∗2
T∗3 T∗4

)
. One can see that

A(1)(A∗(1))
t =

(
T1T∗1 T1T∗3
T3T∗1 T3T∗3

)
and so

A(1)(A∗(1))
t
(
w
w

)
=

(
T1T∗1 T1T∗3
T3T∗1 T3T∗3

) (
w
w

)
=

(
T1T∗1w + T1T∗3w
T3T∗1w + T3T∗3w

)
.
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This yields equation (9). Also, we have

(A∗(2))
t
(
w
w

)
=

(
T∗2 T∗4

) (w
w

)
= T∗2w + T∗4w

and so equation (10) is obtained.

For notational convenience we adopt the following notation: for A1,A2, . . . ,An ∈ M
L

2×2 and w ∈ K̃, let

B(A1, . . . ,An : w) ≡ exp
{1

2

n∑
j=1

(
H(A( j1)(A∗( j1))

tW),w
)∼}
, (11)

where W =

(
w
w

)
and A( j1) is the first part of sub-matrix of A j for each j = 1, 2, . . . ,n. Note that the symmetric

property for B(·; w) holds. That is to say,

B(A1,A2, . . . ,An : w) = B(Aπ(1),Aπ(2), . . . ,Aπ(n) : w)

for any permutation π of {1, . . . ,n}.
In Theorem 4.4, we establish the existence ofH-matrix transform THA (Φw) of an exponential functional

Φw.

Theorem 4.4. Let Φw be an exponential type functional and let A,A(1) and A(2) be as in Lemma 4.3 above. Then the
H-matrix transform THA (Φw) of Φw exists and is given by the formula

THA (Φw)(y) = B(A : w)Φ(T2+T4)∗w(y) (12)

for y ∈ K. Furthermore, using the algebraic calculations, we have

THA (Φw)(y) = B(A : w)Φ(A∗(2))
tW(y) (13)

for y ∈ K.

Proof. We start to establish (12). By using equations (7), (8) and (6). Then we have

THA (Φw)(y) =

∫
C0[0,T]

(Φw ◦ H)(AX)dm(x)

=

∫
C0[0,T]

Φw((T1 + T3)x + (T2 + T4)y)dm(x)

=

∫
C0[0,T]

exp{((T∗1 + T∗3)w, x)∼ + ((T∗2 + T∗4)w, y)∼}dm(x)

= Φ(T2+T4)∗w(y)

× exp
{1

2

[
(T1T∗1w,w)∼ + (T3T∗3w,w)∼ + (T1T∗3w,w)∼ + (T3T∗1w,w)∼

]}
for y ∈ K. Now using equation (9) in Lemma 4.3 and equation (11) above, we can establish equation (12) as
desired. Also, using equation (10), equation (13) is also obtained. Hence we have the desired results.

In the second theorem, we give a formula for the commutativity ofH-matrix transform of exponential
functionals.
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Theorem 4.5. Let Φw be an exponential type functional and let

A1 =

(
T11 T12
T13 T14

)
and A2 =

(
T21 T22
T23 T24

)
be elements ofML2×2.Then the Fubini theorem forH-matrix transform is given by the formula

THA2
(THA1

(Φw))(y) = THA1
(THA2

(Φw))(y) (14)

for y ∈ K if and only if the following conditions : T12 + T14 and T22 + T24 are commutative, and

B(A1 : w)B(A2 : (T12 + T14)∗w) = B(A2 : w)B(A1 : (T22 + T24)∗w) (15)

hold. Furthermore, the composition formula is given by the formula

THA2
(THA1

(Φw))(y) = THA3
(Φw)(y) (16)

for y ∈ K, where A3 =

(
T31 T32
T33 T34

)
, if and only if the following conditions :

B(A1 : w)B(A2 : (T12 + T14)∗w) = B(A3 : w) (17)

and

(T22 + T24)∗(T12 + T14)∗ = (T32 + T34)∗ (18)

hold.

Proof. We first use equations (7), (8), (3) and (12) to establish the left-hand side of equation (14). Then we
have

THA2
(THA1

(Φw))(y)

=

∫
C0[0,T]

THA1
(Φw)((T21 + T23)x + (T22 + T24)y)dm(x)

= B(A1 : w)
∫

C0[0,T]
Φ(T12+T14)∗w((T21 + T23)x + (T22 + T24)y)dm(x)

= B(A1 : w)B(A2 : (T12 + T14)∗w) exp
{(

(T22 + T24)∗(T12 + T14)∗w, y
)∼}

= B(A1 : w)B(A2 : (T12 + T14)∗w)Φ(T22+T24)∗(T12+T14)∗w(y).

Also using equations (7), (8), (4) and (12) again, we obtain that

THA1
(THA2

(Φw))(y) = B(A2 : w)B(A1 : (T22 + T24)∗w)Φ(T12+T14)∗(T22+T24)∗w(y).

Hence we can complete the proof of Theorem 4.5 as desired.

In our next theorem, we establish the inverse transform forH-matrix transform.

Theorem 4.6. Let Φw be an exponential type functional and let

A =

(
T11 T12
T13 T14

)
be an element ofML2×2. Then the equation

THA0
(THA (Φw))(y) = Φw(y) = THA (THA0

(Φw))(y)



H.S. Chung / Filomat 35:13 (2021), 4459–4468 4466

holds if and only if T12 + T14 and T02 + T04 are commutative,

B(A1 : w)B(A0 : (T12 + T14)∗w) = B(A0 : w)B(A1 : (T02 + T04)∗w),

B(A1 : w)B(A0 : (T12 + T14)∗w) = 1

and
(T02 + T04)∗(T12 + T14)∗ = I

for y ∈ K, where A0 =

(
T01 T02
T03 T04

)
. These tell that the inverse matrix transform exists and is given by the formula

(THA )−1 = THA0
.

Proof. The proof of Theorem 4.6 is established from equations (14) thru (18) in Theorem 4.5 above.

5. More formulas involving the generalized first variations

In this section, we give some fundamental formulas for theH-matrix transform involving the general-
ized first variation.

We state the definition of the generalized first variation of functionals on K, see [8, 9].

Definition 5.1. Let Ψ be a functional on K and let S ∈ L. Then the generalized first variation δS(Ψ|u) of Ψ is
defined by the formula (if it exists)

δSΨ(x|u) =
∂
∂k

Ψ(x + kSu)
∣∣∣∣∣
k=0
, x,u ∈ K. (19)

Remark 5.2. The generalized first variation δSΨ(x|u) acts like a directional derivative in the direction of Su. If S = I,
where I is the identity operator, then δSΨ(x|u) = δΨ(x|u) which was used in [4, 6]. We will explain the meaning of
the generalized first variation δSΨ(x|u) as follows: For an orthonormal set {φ1, · · · , φn} in C′0, let S1 : C′0 → C′0 be
the linear operator defined by

S1x(t) =

n∑
j=1

(φ j, x)C′0φ j(t).

Also, let S2 : C′0 → C′0 be the linear operator defined by

S2w(t) =

∫ t

0
w(s)db(s).

Then

S∗2w(t) = w(T)t −
∫ t

0
w(s)ds =

∫ t

0
[w(T) − w(s)]ds

and so the linear operator A = S∗2S2 is given by

Aw(t) =

∫ T

0
min{s, t}w(s)ds.

And hence A is a self-adjoint operator on C′0 and

(w1,Aw2)C′0 = (S2w1,S2w2)C′0 =

∫ T

0
w1(s)w2(s)ds

for all w1,w2 ∈ C′0. Thus A is a positive definite operator. From two examples, we can tell that our generalized first
variation is better to explain various circumvents.
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In our next theorem, we establish a relationship between the H-matrix transform THA (Φw) and the
generalized first variation δS(Φw) of exponential functionals.

Theorem 5.3. Let Φw be an exponential type functional and let A =

(
T1 T2
T3 T4

)
be an element ofML2×2. Let S ∈ L and

let u ∈ C′0. Then

THA (δ(T2+T4)SΦw(·|u))(y) = δS(THA (Φw))(y|u) (20)

for y ∈ K.

Proof. Using equations (8), (12) and (19), it follows that for all y ∈ K,

THA (δ(T2+T4)SΦw(·|u))(y) =

∫
C0[0,T]

((δ(T2+T4)SΦw) ◦ H)(AX|u)dm(x)

=

∫
C0[0,T]

∂
∂k

(Φw ◦ H)(AX′)
∣∣∣∣∣
k=0

dm(x)

=
∂
∂k

∫
C0[0,T]

Φw(H(AX) + k(T2 + T4)Su)dm(x)
∣∣∣∣∣
k=0

= (S∗(T2 + T4)∗w,u)∼B(A : w)Φ(T2+T4)∗w(y)

(21)

where X′ = X +

(
k(T2 + T4)Su

0

)
. Also, using equations (8), (12) and (19), it follows that for all y ∈ K,

δS(THA (Φw))(y|u)

=
∂
∂k
THA (Φw)(y + kSu)

∣∣∣∣∣
k=0

=
∂
∂k

(
B(A : w)Φ(T2+T4)∗w(y + kSu)

)∣∣∣∣∣
k=0

=
∂
∂k

(
B(A : w) exp{((T2 + T4)∗w, y)∼ + k(S∗(T2 + T4)∗w,u)∼}

)∣∣∣∣∣
k=0

= (S∗(T2 + T4)∗w,u)∼B(A : w)Φ(T2+T4)∗w(y).

(22)

Comparing two equations (21) and (22), we complete the proof of Theorem 5.3 as desired.

In the last theorem, we give a fundamental formula involving the generalized first variation.

Theorem 5.4. Let Φw,A1,A2,A3 be as in Theorem 4.5, and let S and u be as in Theorem 5.3. Then we have

THA2
(THA1

(δ(T12+T14)(T22+T24)SΦw(·|u)))(y) = THA3
(δ(T32+T34)SΦw(·|u)))(y) (23)

for y ∈ K.

Proof. First using equation (20) twice, it follows that for all y ∈ K,

THA2
(THA1

(δ(T12+T14)(T22+T24)SΦw(·|u)))(y)

= THA2
(δ(T22+T24)ST

H

A1
(Φw)(·|u))(y)

= δST
H

A2
(THA1

(Φw))(y|u).

We now use equation (13) to yield the equation

THA2
(THA1

(δ(T12+T14)(T22+T24)SΦw(·|u)))(y) = δST
H

A3
(Φw)(y|u).
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Using equation (20) again, we obtain

THA3
(δ(T32+T34)S(Φw)(·|u)))(y) = δST

H

A3
(Φw)(y|u),

which completes the proof of Theorem 5.4 as desired.
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