Characterization of the Matrix Class $\left(\ell_{\alpha}, \ell_{\beta}\right), 0<\alpha \leq \beta \leq 1$

P. N. Natarajan ${ }^{\text {a }}$
${ }^{a}$ Old No. 2/3; New No. 3/3; Second Main Road; R.A. Puram; Chennai 600 028; INDIA

Abstract

Throughout the present paper, entries of sequences, infinite series and infinite matrices are real or complex numbers. In this paper, we characterize the matrix class $\left(\ell_{\alpha}, \ell_{\beta}\right), 0<\alpha \leq \beta \leq 1$.

1. Introduction and Preliminaries

Throughout the present paper, entries of sequences, infinite series and infinite matrices are real or complex numbers; α, β are real numbers satisfying $0<\alpha \leq \beta \leq 1$.

We need the following sequence space in the sequel.

$$
\ell_{\alpha}=\left\{x=\left\{x_{k}\right\} / \sum_{k=0}^{\infty}\left|x_{k}\right|^{\alpha}<\infty\right\}, \alpha>0
$$

If $A=\left(a_{n k}\right), n, k=0,1,2, \ldots$ is an infinite matrix, we write

$$
A \in\left(\ell_{\alpha}, \ell_{\beta}\right), \alpha, \beta>0
$$

if

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}
$$

is defined, $n=0,1,2, \ldots$ and the sequence $A(x)=\left\{(A x)_{n}\right\} \in \ell_{\beta}$, whenever $x=\left\{x_{k}\right\} \in \ell_{\alpha} . A(x)$ is called the A-transform of x.

We now present a short summary of the research done so far regarding the characterization of the matrix class $\left(\ell_{\alpha}, \ell_{\beta}\right)$. A complete characterization of the matrix class $\left(\ell_{\alpha}, \ell_{\beta}\right), \alpha, \beta \geq 2$, does not seem to be available in the literature. The latest result in this direction [3] characterizes only non-negative matrices in $\left(\ell_{\alpha}, \ell_{\beta}\right)$, $\alpha \geq \beta>1$. A known simple sufficient condition ([4], p. 174, Theorem 9) for $A=\left(a_{n k}\right) \in\left(\ell_{\alpha}, \ell_{\alpha}\right)$ is

$$
A \in\left(\ell_{\infty}, \ell_{\infty}\right) \cap\left(\ell_{1}, \ell_{1}\right)
$$

Sufficient conditions or necessary conditions for $A \in\left(\ell_{\alpha}, \ell_{\beta}\right)$ are available in the literature (for instance, see [7]). Necessary and sufficient conditions for $A \in\left(\ell_{1}, \ell_{1}\right)$ are due to Mears [5] (for alternative proofs, see Knopp and Lorentz [2], Fridy [1]). In [6], Natarajan characterized the matrix class ($\ell_{\alpha}, \ell_{\alpha}$), $0<\alpha \leq 1$.

In the context of the above survey, the main result of the present paper is interesting.

[^0]
2. Main Result

In this section, we need the following lemma.
Lemma 2.1. [([4], p. 22)]
(i)

$$
\begin{equation*}
\|\left. a\right|^{\alpha}-|b|^{\alpha}\left|\leq|a+b|^{\alpha} \leq|a|^{\alpha}+|b|^{\alpha}, 0<\alpha \leq 1 ;\right. \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|a_{k}+b_{k}\right|^{\alpha} \leq \sum_{k=0}^{\infty}\left|a_{k}\right|^{\alpha}+\sum_{k=0}^{\infty}\left|b_{k}\right|^{\alpha}, 0<\alpha \leq 1 \tag{2}
\end{equation*}
$$

We now take up the main result of the paper.
Theorem 2.2. $A=\left(a_{n k}\right) \in\left(\ell_{\alpha}, \ell_{\beta}\right), 0<\alpha \leq \beta \leq 1$, if and only if

$$
\begin{equation*}
\sup _{k \geq 0} \sum_{n=0}^{\infty}\left|a_{n k}\right|^{\beta}<\infty \tag{3}
\end{equation*}
$$

Proof. Sufficiency. Let (3) hold. We first claim that $0<\alpha \leq \beta \leq 1$ implies that $\ell_{\alpha} \subseteq \ell_{\beta} \subseteq \ell_{1}$. Let $x=\left\{x_{k}\right\} \in \ell_{\alpha}$, i.e., $\sum_{k=0}^{\infty}\left|x_{k}\right|^{\alpha}<\infty$. So $x_{k} \rightarrow 0, k \rightarrow \infty$. We can find a positive integer N such that

$$
\left|x_{k}\right|<1, k \geq N
$$

Since $\frac{\beta}{\alpha} \geq 1$,

$$
\begin{aligned}
\left|x_{k}\right|^{\frac{\beta}{\alpha}} & \leq\left|x_{k}\right|^{\prime} \\
\text { i.e., }\left|x_{k}\right|^{\beta} & \leq\left|x_{k}\right|^{\alpha}, k \geq N .
\end{aligned}
$$

Thus,

$$
\sum_{k=N}^{\infty}\left|x_{k}\right|^{\beta} \leq \sum_{k=N}^{\infty}\left|x_{k}\right|^{\alpha}<\infty
$$

and so $\sum_{k=0}^{\infty}\left|x_{k}\right|^{\beta}<\infty$, i.e., $x=\left\{x_{k}\right\} \in \ell_{\beta}$. Hence $\ell_{\alpha} \subseteq \ell_{\beta}$. Similarly, $\beta \leq 1$ implies that $\ell_{\beta} \subseteq \ell_{1}$. Consequently, $\ell_{\alpha} \subseteq \ell_{\beta} \subseteq \ell_{1}$. Now, let $x=\left\{x_{k}\right\} \in \ell_{\alpha}$. So $\left\{x_{k}\right\} \in \ell_{1}$, i.e., $\sum_{k=0}^{\infty}\left|x_{k}\right|<\infty$. Using (3), $\sup _{n, k}\left|a_{n k}\right|<\infty$. Hence

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|a_{n k} x_{k}\right| & \leq\left(\sup _{n, k}\left|a_{n k}\right|\right)\left(\sum_{k=0}^{\infty}\left|x_{k}\right|\right) \\
& <\infty
\end{aligned}
$$

from which it follows that $\sum_{k=0}^{\infty} a_{n k} x_{k}$ converges, $n=0,1,2, \ldots$
So,

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}
$$

is defined, $n=0,1,2, \ldots$. Since $\ell_{\alpha} \subseteq \ell_{\beta}, \sum_{k=0}^{\infty}\left|x_{k}\right|^{\beta}<\infty$.
Now, using Lemma 2.1 and condition (3), we get

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|(A x)_{n}\right|^{\beta} & =\sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty} a_{n k} x_{k}\right|^{\beta} \\
& \leq \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|a_{n k}\right|^{\beta}\left|x_{k}\right|^{\beta} \\
& =\sum_{k=0}^{\infty}\left|x_{k}\right|^{\beta} \sum_{n=0}^{\infty}\left|a_{n k}\right|^{\beta} \\
& \leq\left(\sup _{k \geq 0} \sum_{n=0}^{\infty}\left|a_{n k}\right|^{\beta}\right)\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{\beta}\right) \\
& <\infty .
\end{aligned}
$$

Hence $\left\{(A x)_{n}\right\} \in \ell_{\beta}$, i.e., $A \in\left(\ell_{\alpha}, \ell_{\beta}\right)$.
Necessity. Let $A \in\left(\ell_{\alpha}, \ell_{\beta}\right)$. First, we note that

$$
\begin{equation*}
B_{n}=\sup _{k \geq 0}\left|a_{n k}\right|^{\alpha}<\infty, n=0,1,2, \ldots \tag{4}
\end{equation*}
$$

Suppose not. Then, for some positive integer m,

$$
B_{m}=\sup _{k \geq 0}\left|a_{m k}\right|^{\alpha}=\infty
$$

We can now choose a strictly increasing sequence $\{k(i)\}$ of positive integers such that

$$
\left|a_{m, k(i)}\right|^{\alpha}>i^{2}, i=1,2, \ldots
$$

Define the sequence $x=\left\{x_{k}\right\}$ by

$$
x_{k}= \begin{cases}\frac{1}{a_{m, k(i)}}, & \text { if } k=k(i) ; \\ 0, & \text { if } k \neq k(i), i=1,2, \ldots\end{cases}
$$

$x=\left\{x_{k}\right\} \in \ell_{\alpha}$, for,

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|x_{k}\right|^{\alpha} & =\sum_{i=1}^{\infty}\left|x_{k(i)}\right|^{\alpha}=\sum_{i=1}^{\infty} \frac{1}{\left|a_{m, k(i)}\right|^{\alpha}} \\
& <\sum_{i=1}^{\infty} \frac{1}{i^{2}} \\
& <\infty
\end{aligned}
$$

On the other hand,

$$
a_{m, k(i)} x_{k(i)}=1 \nrightarrow 0, i \rightarrow \infty
$$

which implies that

$$
(A x)_{m}=\sum_{k=0}^{\infty} a_{m k} x_{k}
$$

is not defined, a contradiction, proving (4). For $k=0,1,2, \ldots$, the sequence $x=\left\{x_{k}\right\}=\{0,0, \ldots, 0,1,0, \ldots\}, 1$ occurring in the k th place, is in ℓ_{α} for which $(A x)_{n}=a_{n k} .\left\{(A x)_{n}\right\}=\left\{a_{n k}\right\}_{n=0}^{\infty} \in \ell_{\beta}$ implies that

$$
\mu_{k}=\sum_{n=0}^{\infty}\left|a_{n k}\right|^{\beta}<\infty, k=0,1,2, \ldots
$$

We, now, claim that $\left\{\mu_{k}\right\}$ is bounded. Suppose not, i.e., $\left\{\mu_{k}\right\}$ is unbounded. Choose a positive integer $k(1)$ such that

$$
\mu_{k(1)}>3
$$

We now choose a positive integer $n(1)$ such that

$$
\sum_{n=n(1)+1}^{\infty}\left|a_{n, k(1)}\right|^{\beta}<1
$$

so that

$$
\begin{aligned}
& \mu_{k(1)}=\sum_{n=0}^{n(1)}\left|a_{n, k(1)}\right|^{\beta}+\sum_{n=n(1)+1}^{\infty}\left|a_{n, k(1)}\right|^{\beta}, \\
& \text { i.e., } \begin{aligned}
\sum_{n=0}^{n(1)}\left|a_{n, k(1)}\right|^{\beta} & =\mu_{k(1)}-\sum_{n=n(1)+1}^{\infty}\left|a_{n, k(1)}\right|^{\beta} \\
& >3-1 \\
& =2 .
\end{aligned}
\end{aligned}
$$

More generally, having chosen the positive integers $k(j), n(j), j \leq m-1$, choose the positive integers $k(m), n(m)$ such that $k(m)>k(m-1), n(m)>n(m-1)$,

$$
\begin{align*}
& \sum_{n=n(m-2)+1}^{n(m-1)} \sum_{k=k(m)}^{\infty} B_{n}^{\beta / \alpha} k^{-2}<1, \tag{5}\\
& \mu_{k(m)}>2 \sum_{n=0}^{n(m-1)} B_{n}+\rho^{-\alpha} m^{2}\left\{2+\sum_{i=1}^{m-1} i^{-2} \mu_{k(i)}\right\} \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=n(m)+1}^{\infty}\left|a_{n, k(m)}\right|^{\beta}<\sum_{n=0}^{n(m-1)} B_{n} \tag{7}
\end{equation*}
$$

where, $0<\rho<1$. Now, using (6) and (7), we get

$$
\begin{align*}
\sum_{n=n(m-1)+1}^{n(m)}\left|a_{n, k(m)}\right|^{\beta} & =\mu_{k(m)}-\sum_{n=0}^{n(m-1)}\left|a_{n, k(m)}\right|^{\beta}-\sum_{n=n(m)+1}^{\infty}\left|a_{n, k(m)}\right|^{\beta} \\
& >2 \sum_{n=0}^{n(m-1)} B_{n}+\rho^{-\alpha} m^{2}\left\{2+\sum_{i=1}^{m-1} i^{-2} \mu_{k(i)}\right\}-\sum_{n=0}^{n(m-1)} B_{n}-\sum_{n=0}^{n(m-1)} B_{n} \\
& =\rho^{-\alpha} m^{2}\left\{2+\sum_{i=1}^{m-1} i^{-2} \mu_{k(i)}\right\} . \tag{8}
\end{align*}
$$

Now, for every $i=1,2,3, \ldots$, we can choose a non-negative integer $\lambda(i)$ such that

$$
\begin{equation*}
\rho^{\lambda(i)+1} \leq i^{-\frac{2}{\alpha}}<\rho^{\lambda(i)} . \tag{9}
\end{equation*}
$$

Define the sequence $x=\left\{x_{k}\right\}$, where

$$
x_{k}= \begin{cases}\rho^{\lambda(i)+1}, & \text { if } k=k(i) \\ 0, & \text { if } k \neq k(i), i=1,2, \ldots\end{cases}
$$

We note that $x=\left\{x_{k}\right\} \in \ell_{\alpha}$, since

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|x_{k}\right|^{\alpha} & =\sum_{i=1}^{\infty}\left|x_{k(i)}\right|^{\alpha} \\
& =\sum_{i=1}^{\infty} \rho^{(\lambda(i)+1) \alpha} \\
& \leq \sum_{i=1}^{\infty} \frac{1}{i^{2}}, \text { using }(9) \\
& <\infty
\end{aligned}
$$

In view of Lemma 2.1, we have

$$
\sum_{n=n(m-1)+1}^{n(m)}\left|(A x)_{n}\right|^{\beta} \geq \Sigma_{1}-\Sigma_{2}-\Sigma_{3}
$$

where

$$
\begin{aligned}
& \Sigma_{1}=\sum_{n=n(m-1)+1}^{n(m)}\left|a_{n, k(m)}\right|^{\beta}\left|x_{k(m)}\right|^{\beta}, \\
& \Sigma_{2}=\sum_{n=n(m-1)+1}^{n(m)} \sum_{i=1}^{m-1}\left|a_{n, k(i)}\right|^{\beta}\left|x_{k(i)}\right|^{\beta}
\end{aligned}
$$

and

$$
\Sigma_{3}=\sum_{n=n(m-1)+1}^{n(m)} \sum_{i=m+1}^{\infty}\left|a_{n, k(i)}\right|^{\beta}\left|x_{k(i)}\right|^{\beta} .
$$

Now,

$$
\begin{align*}
\Sigma_{1} & =\sum_{n=n(m-1)+1}^{n(m)}\left|a_{n, k(m)}\right|^{\beta} \rho^{(\lambda(m)+1) \alpha} \\
& >\rho^{\alpha} \sum_{n=n(m-1)+1}^{n(m)}\left|a_{n, k(m)}\right|^{\beta} m^{-2}, \operatorname{using}(9) \\
& =\rho^{\alpha} m^{-2} \sum_{n=n(m-1)+1}^{n(m)}\left|a_{n, k(m)}\right|^{\beta} \\
& >2+\sum_{i=1}^{m-1} i^{-2} \mu_{k(i)}, \operatorname{using}(8) \tag{10}
\end{align*}
$$

$$
\begin{align*}
\Sigma_{2} & =\sum_{n=n(m-1)+1}^{n(m)} \sum_{i=1}^{m-1}\left|a_{n, k(i)}\right|^{\beta} \rho^{(\lambda(i)+1) \beta} \\
& <\sum_{n=n(m-1)+1}^{n(m)} \sum_{i=1}^{m-1}\left|a_{n, k(i)}\right|^{\beta} \rho^{(\lambda(i)+1) \alpha}, \\
& \text { since } 0<\rho<1 \text { and } \alpha \leq \beta \\
& =\sum_{n=n(m-1)+1}^{n(m)} \sum_{i=1}^{m-1}\left|a_{n, k(i)}\right|^{\beta} i^{-2}, \text { using }(9) \\
& \leq \sum_{i=1}^{m-1} i^{-2} \sum_{n=n(m-1)+1}^{n(m)}\left|a_{n, k(i)}\right|^{\beta} \\
& =\left.\sum_{i=1}^{m-1} i^{-2} i_{n, k(i)}\right|^{\beta}
\end{align*}
$$

and

$$
\begin{align*}
\Sigma_{3} & =\sum_{n=n(m-1)+1}^{n(m)} \sum_{i=m+1}^{\infty}\left|a_{n, k(i)}\right|^{\beta} \rho^{(\lambda(i)+1) \beta} \\
& <\sum_{n=n(m-1)+1}^{n(m)} \sum_{i=m+1}^{\infty}\left|a_{n, k(i)}\right|^{\beta} \rho^{(\lambda(i)+1) \alpha} \\
& \quad \text { since } 0<\rho<1 \text { and } \alpha \leq \beta \\
& \leq \sum_{n=n(m-1)+1}^{n(m)} \sum_{i=m+1}^{\infty} B_{n}^{\beta / \alpha} i^{-2}, \text { using }(4) \\
& <1, \text { using }(5) . \tag{12}
\end{align*}
$$

Now, using (10), (11) and (12), we get

$$
\begin{aligned}
\sum_{n=n(m-1)+1}^{n(m)}\left|(A x)_{n}\right|^{\beta} & >2+\sum_{i=1}^{m-1} i^{-2} \mu_{k(i)}-\sum_{i=1}^{m-1} i^{-2} \mu_{k(i)}-1 \\
& =1, m=2,3, \ldots
\end{aligned}
$$

from which it follows that $\left\{(A x)_{n}\right\} \notin \ell_{\beta}$, while, $x=\left\{x_{k}\right\} \in \ell_{\alpha}$, which is a contradiction. Thus (3) is necessary, completing the proof of the theorem.

Corollary 2.3. If we put $\beta=\alpha$, we get a characterization of the matrix class $\left(\ell_{\alpha}, \ell_{\alpha}\right), 0<\alpha \leq 1$, which was obtained by the author in [6].

Corollary 2.4. $A=\left(a_{n k}\right) \in\left(\ell_{\alpha}, \ell_{\beta}\right), 0<\alpha<\beta \leq 1$ if and only if

$$
A \in\left(\ell_{\beta}, \ell_{\beta}\right)
$$

References

[1] J.A. Fridy, A note on absolute summability, Proc. Amer. Math. Soc. 20 (1969) 285-286.
[2] K. Knopp, G.G. Lorentz, Beiträge zur absoluten Limitierung, Arch. Math. 2 (1949) 10-16.
[3] M. Koskela, A characterization of non-negative matrix operators on ℓ^{p} to ℓ^{q} with $\infty>p \geq q>1$, Pacific J. Math. 75 (1978) 165-169.
[4] I.J. Maddox, Elements of Functional Analysis, Cambridge (1977).
[5] F.M. Mears, Absolute regularity and the Nörlund mean, Ann. of Math. 38 (1937) 594-601.
[6] P.N. Natarajan, Some properties of the matrix class $\left(\ell_{\alpha}, \ell_{\alpha}\right), 0<\alpha \leq 1$ (Communicated for publication).
[7] M. Stieglitz, H. Tietz, Matrix transformationen von Folgenräumen eine Ergebnisübersicht, Math. Z. 154 (1977) 1-16.

[^0]: 2020 Mathematics Subject Classification. Primary 40C05, 40D05, 40 H05.
 Keywords. matrix class, characterization.
 Received: 12 October 2020; Revised: 14 December 2020; Accepted: 14 December 2020
 Communicated by Eberhard Malkowsky
 Email address: pinnangudinatarajan@gmail.com (P. N. Natarajan)

