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Available at: http://www.pmf.ni.ac.rs/filomat

Characterization of the Matrix Class (`α, `β), 0 < α ≤ β ≤ 1

P. N. Natarajana

aOld No. 2/3; New No. 3/3; Second Main Road; R.A. Puram; Chennai 600 028; INDIA

Abstract. Throughout the present paper, entries of sequences, infinite series and infinite matrices are real
or complex numbers. In this paper, we characterize the matrix class (`α, `β), 0 < α ≤ β ≤ 1.

1. Introduction and Preliminaries

Throughout the present paper, entries of sequences, infinite series and infinite matrices are real or
complex numbers; α, β are real numbers satisfying 0 < α ≤ β ≤ 1.

We need the following sequence space in the sequel.

`α =

x = {xk}/
∞∑

k=0

|xk|
α < ∞

 , α > 0.

If A = (ank), n, k = 0, 1, 2, . . . is an infinite matrix, we write

A ∈ (`α, `β), α, β > 0,

if

(Ax)n =

∞∑
k=0

ankxk,

is defined, n = 0, 1, 2, . . . and the sequence A(x) = {(Ax)n} ∈ `β, whenever x = {xk} ∈ `α. A(x) is called the
A-transform of x.

We now present a short summary of the research done so far regarding the characterization of the matrix
class (`α, `β). A complete characterization of the matrix class (`α, `β), α, β ≥ 2, does not seem to be available
in the literature. The latest result in this direction [3] characterizes only non-negative matrices in (`α, `β),
α ≥ β > 1. A known simple sufficient condition ([4], p. 174, Theorem 9) for A = (ank) ∈ (`α, `α) is

A ∈ (`∞, `∞) ∩ (`1, `1).

Sufficient conditions or necessary conditions for A ∈ (`α, `β) are available in the literature (for instance, see
[7]). Necessary and sufficient conditions for A ∈ (`1, `1) are due to Mears [5] (for alternative proofs, see
Knopp and Lorentz [2], Fridy [1]). In [6], Natarajan characterized the matrix class (`α, `α), 0 < α ≤ 1.

In the context of the above survey, the main result of the present paper is interesting.
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2. Main Result

In this section, we need the following lemma.

Lemma 2.1. [([4], p. 22)]

(i)

||a|α − |b|α| ≤ |a + b|α ≤ |a|α + |b|α, 0 < α ≤ 1; (1)

(ii)
∞∑

k=0

|ak + bk|
α
≤

∞∑
k=0

|ak|
α +

∞∑
k=0

|bk|
α, 0 < α ≤ 1. (2)

We now take up the main result of the paper.

Theorem 2.2. A = (ank) ∈ (`α, `β), 0 < α ≤ β ≤ 1, if and only if

sup
k≥0

∞∑
n=0

|ank|
β < ∞. (3)

Proof. Sufficiency. Let (3) hold. We first claim that 0 < α ≤ β ≤ 1 implies that `α ⊆ `β ⊆ `1. Let x = {xk} ∈ `α,

i.e.,
∞∑

k=0

|xk|
α < ∞. So xk → 0, k→∞. We can find a positive integer N such that

|xk| < 1, k ≥ N.

Since β
α ≥ 1,

|xk|
β
α ≤ |xk|,

i.e., |xk|
β
≤ |xk|

α, k ≥ N.

Thus,
∞∑

k=N

|xk|
β
≤

∞∑
k=N

|xk|
α < ∞

and so
∞∑

k=0

|xk|
β < ∞, i.e., x = {xk} ∈ `β. Hence `α ⊆ `β. Similarly, β ≤ 1 implies that `β ⊆ `1. Consequently,

`α ⊆ `β ⊆ `1. Now, let x = {xk} ∈ `α. So {xk} ∈ `1, i.e.,
∞∑

k=0

|xk| < ∞. Using (3), sup
n,k
|ank| < ∞. Hence

∞∑
k=0

|ankxk| ≤

sup
n,k
|ank|


 ∞∑

k=0

|xk|


< ∞,

from which it follows that
∞∑

k=0

ankxk converges, n = 0, 1, 2, . . . .

So,

(Ax)n =

∞∑
k=0

ankxk
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is defined, n = 0, 1, 2, . . . . Since `α ⊆ `β,
∞∑

k=0

|xk|
β < ∞.

Now, using Lemma 2.1 and condition (3), we get

∞∑
n=0

|(Ax)n|
β =

∞∑
n=0

∣∣∣∣∣∣∣
∞∑

k=0

ankxk

∣∣∣∣∣∣∣
β

≤

∞∑
n=0

∞∑
k=0

|ank|
β
|xk|

β

=

∞∑
k=0

|xk|
β
∞∑

n=0

|ank|
β

≤

sup
k≥0

∞∑
n=0

|ank|
β


 ∞∑

k=0

|xk|
β


< ∞.

Hence {(Ax)n} ∈ `β, i.e., A ∈ (`α, `β).

Necessity. Let A ∈ (`α, `β). First, we note that

Bn = sup
k≥0
|ank|

α < ∞,n = 0, 1, 2, . . . . (4)

Suppose not. Then, for some positive integer m,

Bm = sup
k≥0
|amk|

α = ∞.

We can now choose a strictly increasing sequence {k(i)} of positive integers such that

|am,k(i)|
α > i2, i = 1, 2, . . . .

Define the sequence x = {xk} by

xk =

 1
am,k(i)

, if k = k(i);

0, if k , k(i), i = 1, 2, . . . .

x = {xk} ∈ `α, for,
∞∑

k=0

|xk|
α =

∞∑
i=1

|xk(i)|
α =

∞∑
i=1

1
|am,k(i)|

α

<
∞∑

i=1

1
i2

< ∞.

On the other hand,

am,k(i)xk(i) = 1 6→ 0, i→∞,

which implies that

(Ax)m =

∞∑
k=0

amkxk
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is not defined, a contradiction, proving (4). For k = 0, 1, 2, . . . , the sequence x = {xk} = {0, 0, . . . , 0, 1, 0, . . . }, 1
occurring in the kth place, is in `α for which (Ax)n = ank. {(Ax)n} = {ank}

∞

n=0 ∈ `β implies that

µk =

∞∑
n=0

|ank|
β < ∞, k = 0, 1, 2, . . . .

We, now, claim that {µk} is bounded. Suppose not, i.e., {µk} is unbounded. Choose a positive integer k(1)
such that

µk(1) > 3.

We now choose a positive integer n(1) such that
∞∑

n=n(1)+1

|an,k(1)|
β < 1,

so that

µk(1) =

n(1)∑
n=0

|an,k(1)|
β +

∞∑
n=n(1)+1

|an,k(1)|
β,

i.e.,
n(1)∑
n=0

|an,k(1)|
β = µk(1) −

∞∑
n=n(1)+1

|an,k(1)|
β

> 3 − 1
= 2.

More generally, having chosen the positive integers k( j), n( j), j ≤ m−1, choose the positive integers k(m),n(m)
such that k(m) > k(m − 1), n(m) > n(m − 1),

n(m−1)∑
n=n(m−2)+1

∞∑
k=k(m)

Bβ/αn k−2 < 1, (5)

µk(m) > 2
n(m−1)∑

n=0

Bn + ρ−αm2

2 +

m−1∑
i=1

i−2µk(i)

 (6)

and
∞∑

n=n(m)+1

|an,k(m)|
β <

n(m−1)∑
n=0

Bn, (7)

where, 0 < ρ < 1. Now, using (6) and (7), we get

n(m)∑
n=n(m−1)+1

|an,k(m)|
β = µk(m) −

n(m−1)∑
n=0

|an,k(m)|
β
−

∞∑
n=n(m)+1

|an,k(m)|
β

> 2
n(m−1)∑

n=0

Bn + ρ−αm2

2 +

m−1∑
i=1

i−2µk(i)

 −
n(m−1)∑

n=0

Bn −

n(m−1)∑
n=0

Bn

= ρ−αm2

2 +

m−1∑
i=1

i−2µk(i)

 . (8)
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Now, for every i = 1, 2, 3, . . . , we can choose a non-negative integer λ(i) such that

ρλ(i)+1
≤ i−

2
α < ρλ(i). (9)

Define the sequence x = {xk}, where

xk =

ρλ(i)+1, if k = k(i);
0, if k , k(i), i = 1, 2, . . . .

We note that x = {xk} ∈ `α, since
∞∑

k=0

|xk|
α =

∞∑
i=1

|xk(i)|
α

=

∞∑
i=1

ρ(λ(i)+1)α

≤

∞∑
i=1

1
i2
, using (9)

< ∞.

In view of Lemma 2.1, we have

n(m)∑
n=n(m−1)+1

|(Ax)n|
β
≥ Σ1 − Σ2 − Σ3,

where

Σ1 =

n(m)∑
n=n(m−1)+1

|an,k(m)|
β
|xk(m)|

β,

Σ2 =

n(m)∑
n=n(m−1)+1

m−1∑
i=1

|an,k(i)|
β
|xk(i)|

β

and

Σ3 =

n(m)∑
n=n(m−1)+1

∞∑
i=m+1

|an,k(i)|
β
|xk(i)|

β.

Now,

Σ1 =

n(m)∑
n=n(m−1)+1

|an,k(m)|
βρ(λ(m)+1)α

> ρα
n(m)∑

n=n(m−1)+1

|an,k(m)|
βm−2, using (9)

= ραm−2
n(m)∑

n=n(m−1)+1

|an,k(m)|
β

> 2 +

m−1∑
i=1

i−2µk(i), using (8); (10)
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Σ2 =

n(m)∑
n=n(m−1)+1

m−1∑
i=1

|an,k(i)|
βρ(λ(i)+1)β

<
n(m)∑

n=n(m−1)+1

m−1∑
i=1

|an,k(i)|
βρ(λ(i)+1)α,

since 0 < ρ < 1 and α ≤ β

≤

n(m)∑
n=n(m−1)+1

m−1∑
i=1

|an,k(i)|
βi−2, using (9)

=

m−1∑
i=1

i−2
n(m)∑

n=n(m−1)+1

|an,k(i)|
β

≤

m−1∑
i=1

i−2
∞∑

n=0

|an,k(i)|
β

=

m−1∑
i=1

i−2µk(i) (11)

and

Σ3 =

n(m)∑
n=n(m−1)+1

∞∑
i=m+1

|an,k(i)|
βρ(λ(i)+1)β

<
n(m)∑

n=n(m−1)+1

∞∑
i=m+1

|an,k(i)|
βρ(λ(i)+1)α

since 0 < ρ < 1 and α ≤ β

≤

n(m)∑
n=n(m−1)+1

∞∑
i=m+1

Bβ/αn i−2, using (4)

< 1, using (5). (12)

Now, using (10), (11) and (12), we get

n(m)∑
n=n(m−1)+1

|(Ax)n|
β > 2 +

m−1∑
i=1

i−2µk(i) −

m−1∑
i=1

i−2µk(i) − 1

= 1,m = 2, 3, . . . ,

from which it follows that {(Ax)n} < `β, while, x = {xk} ∈ `α, which is a contradiction. Thus (3) is necessary,
completing the proof of the theorem.

Corollary 2.3. If we put β = α, we get a characterization of the matrix class (`α, `α), 0 < α ≤ 1, which was obtained
by the author in [6].

Corollary 2.4. A = (ank) ∈ (`α, `β), 0 < α < β ≤ 1 if and only if

A ∈ (`β, `β).
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[2] K. Knopp, G.G. Lorentz, Beiträge zur absoluten Limitierung, Arch. Math. 2 (1949) 10-16.
[3] M. Koskela, A characterization of non-negative matrix operators on `p to `q with∞ > p ≥ q > 1, Pacific J. Math. 75 (1978) 165–169.
[4] I.J. Maddox, Elements of Functional Analysis, Cambridge (1977).
[5] F.M. Mears, Absolute regularity and the Nörlund mean, Ann. of Math. 38 (1937) 594–601.
[6] P.N. Natarajan, Some properties of the matrix class (`α, `α), 0 < α ≤ 1 (Communicated for publication).
[7] M. Stieglitz, H. Tietz, Matrix transformationen von Folgenräumen eine Ergebnisübersicht, Math. Z. 154 (1977) 1–16.


