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Abstract. In this paper, we have defined rough statistical convergence in intuitionistic fuzzy normed
spaces which is an useful characterization in the field of statistical convergence. We have proved some
properties related to rough convergence which provides some new functional tools in the situation of
uncertainty like intuitionistic fuzzy normed spaces. Further, we have established the relationship between
the set of statistical limit points and set of cluster points of rough statistically convergent sequences in these
spaces.

1. Introduction

Rough convergence deals with the approximate solution of any real life situation from numerical point
of view. It helps to verify the correctness of solution obtained from computer programs and to draw
conclusion from scientific experiments. The rough convergence has been initially introduced by Phu[27] as
an interesting generalization of usual convergence for the sequences on finite dimensional normed linear
spaces and later on introduced on infinite dimensional normed linear spaces[28]. Apart from defining the
idea of rough convergence, he also contributed towards the properties like closeness and convexity of the
rough limit set.

Definition 1.1. [27] A sequence x = {xk} in a normed linear space (X, ‖.‖) is said to be rough convergent to ξ ∈ X
for some non-negative number r if for every ε > 0 there exists k0 ∈N such that ‖xk − ξ‖ < r + ε for all k ≥ k0.

Aytar[2] extended the rough convergence to rough statistical convergence like usual convergence is ex-
tended to statistical convergence with the help of natural density by Fast[8]. Although, natural density
of set A, where A ⊆ N, has given by δ(A) = limn→∞

1
n | {a ≤ n : a ∈ A} |, provided limit exists, where

| . | designates the order of the enclosed set. Further, A sequence x = {xk} converges statistically to ξ, if
A(ε) = {k ∈ N : |xk − ξ| > ε} has natural density zero (see [9]). Moreover, Aytar[3] also examined some
criteria associated with the convexity and closeness of the set of rough statistical limit points. In fact, he
established the properties related to this set with the set of rough cluster points of a sequence.

Definition 1.2. [2] A sequence x = {xk} in a normed linear space (X, ‖.‖) is said to be rough statistically convergent
to ξ ∈ X for some non-negative number r if for every ε > 0 we have

δ({k ∈N : ‖xk − ξ‖ ≥ r + ε}) = 0,
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and ξ is known as r-St-limit of sequence x = {xk}.

This idea of rough convergence has motivated many authors to use this concept not only in usual sense but
also in statistical mode in the different forms like double sequences[17, 18] and triple sequences[7], lacunary
sequences[13], real valued function sequences[16], ideals[19, 26] etc. Besides these above mentioned forms
it is also established for the different spaces like metric spaces[6], random normed spaces[1], cone metric
spaces[4], probabilistic normed spaces[29] etc. More investigations, generalizations and applications of the
rough convergence can be further revealed using statistical convergence as well as generalized statistical
convergence in different directions as in [5, 10, 11, 14, 20–25].

In the literature, during last few years, considerable progress is going on this field of rough convergence
which leads us to study the concept of rough statistical convergence in the intuitionistic fuzzy normed
spaces. As intuitionistic fuzzy normed space itself is a well motivated area of research being a natural tool
for modeling imprecision in real life situations.

Saadati and Park[30] presented the idea of intuitionistic fuzzy normed spaces as generalization of fuzzy
metric spaces. Following the work of Saadati and Park[30], Lael and Nourouzi[15] have given a new variant
of intuitionistic fuzzy normed spaces which is defined as follows.

Definition 1.3. [15] An intuitionistic fuzzy normed space(IFNS) is the triplet (X, ϕ, ϑ) with vector space X and
fuzzy sets ϕ, ϑ on X ×R, if for each x, y ∈ X and s, t ∈ R, we have

(i) ϕ(x, t) = 0 and ϑ(x, t) = 1 for t < R+,
(ii) ϕ(x, t) = 1 and ϑ(x, t) = 0 for t ∈ R+ iff x = 0,

(iii) ϕ(αx, t) = ϕ(x, t
|α| ) and ϑ(αx, t) = ϑ(x, t

|α| ) for α , 0,
(iv) min{ϕ(x, s), ϕ(y, t)} ≤ ϕ(x + y, s + t) and max{ϑ(x, s), ϑ(y, t)} ≥ ϑ(x + y, s + t),
(v) limt→∞ ϕ(x, t) = 1, limt→0 ϕ(x, t) = 0, limt→∞ ϑ(x, t) = 0 and limt→0 ϑ(x, t) = 1.

Example 1.4. [15] Let (X, ‖ ◦ ‖) be any normed space. For every t > 0 and all x ∈ X, take ϕ(x, t) = t
t+‖x‖ , ϑ(x, t) =

‖x‖
t+‖x‖ . Then, triplet (X, ϕ, ϑ) is an IFNS which satisfies the above mentioned conditions.

Definition 1.5. [15] Let (X, ϕ, ϑ) be an IFNS with intuitionistic fuzzy norm (ϕ, ϑ). A sequence x = {xk} in X is
called convergent to ξ ∈ X with respect to the norm (ϕ, ϑ) if there exists k0 ∈ N for every ε > 0 and λ ∈ (0, 1) such

that ϕ(xk − ξ, ε) > 1 − λ and ϑ(xk − ξ, ε) < λ for all k ≥ k0. It is denoted by (ϕ, ϑ) − lim
k→∞

xk = ξ or xk
(ϕ,ϑ)
−−−→ ξ.

Remark 1.6. Let (X, ‖ ◦ ‖) be any normed space. For every t > 0 and all x ∈ X, take ϕ(x, t) = t
t+‖x‖ , ϑ(x, t) = ‖x‖

t+‖x‖ .
Then, (X, ϕ, ϑ) is an IFNS.

Also, xk
(ϑ,ϑ)
−−−→ x if and only if xk

‖.‖
−→ x.

Karakus[12] introduced statistical convergence of sequences in intuitionistic fuzzy normed space. Now,
using the technique of Lael and Nourouzi[15], we present the statistical convergence in the intuitionistic
fuzzy normed space as below.

Definition 1.7. Let (X, ϕ, ϑ) be an IFNS with intuitionistic fuzzy norm (ϕ, ϑ). A sequence x = {xk} in X is called
statistically convergent to ξ ∈ X with respect to the norm (ϕ, ϑ) if for every ε > 0 and λ ∈ (0, 1),

δ({k ∈N : ϕ(xk − ξ, ε) ≤ 1 − λ or ϑ(xk − ξ, ε) ≥ λ}) = 0.

It is denoted by St(ϕ,ϑ) − lim
k→∞

xk = ξ or xk
St(ϕ,ϑ)
−−−−→ ξ .
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2. Main Results

In this section, we first define the rough convergence and rough statistical convergence in intuitionistic
fuzzy normed spaces as follows:

Definition 2.1. Let (X, ϕ, ϑ) be an IFNS with intuitionistic fuzzy norm (ϕ, ϑ). A sequence x = {xk} in X is said to
be rough convergent to ξ ∈ X with respect to the norm (ϕ, ϑ) for some non-negative number r if there exists k0 ∈ N
for every ε > 0 and λ ∈ (0, 1) such that

ϕ(xk − ξ; r + ε) > 1 − λ and ϑ(xk − ξ, r + ε) < λ for all k ≥ k0.

It is denoted by r(ϕ,ϑ) − lim
k→∞

xk = ξ or xk
r(ϕ,ϑ)
−−−→ ξ.

Definition 2.2. Let (X, ϕ, ϑ) be an IFNS with intuitionistic fuzzy norm (ϕ, ϑ). A sequence x = {xk} in X is said to
be rough statistically convergent to ξ ∈ X with respect to the norm (ϕ, ϑ) for some non-negative number r if for every
ε > 0 and λ ∈ (0, 1),

δ({k ∈N : ϕ(xk − ξ; r + ε) ≤ 1 − λ or ϑ(xk − ξ, r + ε) ≥ λ}) = 0.

It is denoted by r-St(ϕ,ϑ)- lim
k→∞

xk = ξ or xk
r-St(ϕ,ϑ)
−−−−−→ ξ.

Remark 2.3. For the case r = 0, the notion rough statistical convergence with respect to the norm (ϕ, ϑ) agrees with
the statistical convergence with respect to the norm (ϕ, ϑ) in an IFNS (X, ϕ, ϑ).

The r-St(ϕ,ϑ)-limit of a sequence may be not unique. Therefore, we consider r-St(ϕ,ϑ)-limit set of the sequence

x = {xk} as St(ϕ,ϑ)-LIMr
x = {ξ : xk

r-St(ϕ,ϑ)
−−−−−→ ξ}. Moreover, sequence x = {xk} is r(ϕ,ϑ)-convergent if LIMr(ϕ,ϑ)

x , φ

where LIMr(ϕ,ϑ)
x = {ξ∗ ∈ X : xk

r(ϕ,ϑ)
−−−→ ξ∗}. For unbounded sequence LIMr(ϕ,ϑ)

x is always empty.
But in case of rough statistical convergence in (X, ϕ, ϑ) which is an IFNS, we have St(ϕ,ϑ)-LIMr

x , φ even
though sequence may be unbounded. For this we have given the next example.

Example 2.4. Consider any real normed space (X, ‖.‖), take ϕ(x, t) = t
t+‖x‖ , ϑ(x, t) = ‖x‖

t+‖x‖ for every t > 0 and all
x ∈ X. Then, triplet (X, ϕ, ϑ) is an IFNS.
Now, define a sequence

xk =

{
(−1)k k , n2

k otherwise

Then

St(ϕ,ϑ)-LIMr
x =

{
φ r < 1
[1 − r, r − 1] otherwise

and St(ϕ,ϑ)-LIMr
x = φ for all r ≥ 0. Thus, this sequence is divergent in ordinary sense as it is unbounded. Also, the

sequence is not rough convergent in an IFNS (X, ϕ, ϑ) for any r.

Now, we are giving definition of rough statistically bounded sequence in an IFNS as follows:

Definition 2.5. Let (X, ϕ, ϑ) be an IFNS with intuitionistic fuzzy norm (ϕ, ϑ). A sequence x = {xk} in X is said to
be rough statistically bounded with respect to the norm (ϕ, ϑ) for some non-negative number r if for every ε > 0 and
λ ∈ (0, 1) there exists a real number M > 0 such that

δ({k ∈N : ϕ(xk; M) ≤ 1 − λ or ϑ(xk,M) ≥ λ}) = 0.

In view of the above definitions, we obtained the following interesting results on rough statistical conver-
gence in an IFNS.
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Theorem 2.6. Let (X, ϕ, ϑ) be an IFNS with intuitionistic fuzzy norm (ϕ, ϑ). A sequence x = {xk} inX is statistically
bounded if and only if St(ϕ,ϑ)-LIMr

x , φ for some r > 0.

Proof. Necessary part:
Consider the sequence x = {xk} which is statistically bounded in an IFNS (X, ϕ, ϑ). Then, for every
ε > 0, λ ∈ (0, 1) and some r > 0 there exists a real number M > 0 such that

δ({k ∈N : ϕ(xk; M) ≤ 1 − λ or ϑ(xk,M) ≥ λ}) = 0.

Let K = {k ∈N : ϕ(xk; M) ≤ 1 − λ or ϑ(xk,M) ≥ λ}.
For k ∈ Kc we have ϕ(xk; M) > 1 − λ and ϑ(xk,M) < λ .
Also

ϕ(xk; r + M) ≥ min{ϕ(0; r), ϕ(xk; M)}
= min{1, ϕ(xk; M)}
> 1 − λ,

and

ϑ(xk; r + M) ≤ max{ϑ(0; r), ϑ(xk; M)}
= max{0, ϑ(xk; M)}
< λ.

Hence, 0 ∈ St(ϕ,ϑ)-LIMr
x. Therefore, St(ϕ,ϑ)-LIMr

x , φ.
Sufficient Part:

Let St(ϕ,ϑ)-LIMr
x , φ for some r > 0. Then there exists ξ ∈ X such that ξ ∈ St(ϕ,ϑ)-LIMr

x. For every ε > 0 and
λ ∈ (0, 1) we have

δ({k ∈N : ϕ(xk − ξ; r + ε) ≤ 1 − λ or ϑ(xk − ξ, r + ε) ≥ λ}) = 0.

Therefore, almost all xk’s are contained in some ball with center ξ which implies that sequence x = {xk} is
statistically bounded in an IFNS (X, ϕ, ϑ).

Next, we discuss the algebraic characterization of rough statistically convergent sequences in an IFNS.

Theorem 2.7. Let x = {xk} and y = {yk} be two sequences in an IFNS (X, ϕ, ϑ). Then for some non-negative number
r the following holds

1. If xk
r-St(ϕ,ϑ)
−−−−−→ x0 and α ∈N then αxk

r-St(ϕ,ϑ)
−−−−−→ αx0,

2. If xk
r-St(ϕ,ϑ)
−−−−−→ x0 and yk

r-St(ϕ,ϑ)
−−−−−→ y0 then (xk + yk)

r-St(ϕ,ϑ)
−−−−−→ (x0 + y0).

Proof. Proof of above results are obvious so we are omitting them.

If x′ = {xki } be a subsequence of x = {xk} in an IFNS (X, ϕ, ϑ) then LIMr(ϕ,ϑ)
xk
⊂ LIMr(ϕ,ϑ)

xki
. But this fact does not

hold in case of statistical convergence. This can be justified by the next example.

Example 2.8. For real normed space (X, ‖.‖), we define ϕ(x, t) = t
t+‖x‖ , ϑ(x, t) = ‖x‖

t+‖x‖ for every t > 0 and all x ∈ X.
Then, (X, ϕ, ϑ) is an IFNS. Also the sequence

xk =

{
k k , n2

0 otherwise

have St(ϕ,ϑ)-LIMr
x = [−r, r]. And its subsequence x′ = {1, 4, 9, .......} have St(ϕ,ϑ)-LIMr

x′ = φ.

But this fact is true for nonthin subsequences of the rough statistical convergent sequence in an IFNS which
is explained by the next result.
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Theorem 2.9. If x′ = {xki } be a nonthin subsequence of x = {xk} in an IFNS (X, ϕ, ϑ) then St(ϕ,ϑ)-LIMr
x ⊂

St(ϕ,ϑ)-LIMr
x′ .

Proof. Proof of above result is obvious so we are omitting it.

Theorem 2.10. The set St(ϕ,ϑ)-LIMr
x of a sequence x = {xk} in an IFNS (X, ϕ, ϑ) is a closed set.

Proof. We have nothing to prove as St(ϕ,ϑ)-LIMr
x = φ.

Let St(ϕ,ϑ)-LIMr
x , φ for some r > 0 and consider y = {yk} be a convergent sequence in St(ϕ,ϑ)-LIMr

x with
respect to the norm (ϕ, ϑ) to y0 ∈ X.
Then for every ε > 0 and λ ∈ (0, 1) there exists a k1 ∈N such that

ϕ
(
yk − y0;

ε
2

)
> 1 − λ and ϑ

(
yk − y0;

ε
2

)
< λ for all k ≥ k1.

Let us choose ym ∈ St(ϕ,ϑ)-LIMr
x with m > k1 such that

δ
(
{k ∈N : ϕ

(
xk − ym; r +

ε
2

)
≤ 1 − λ or ϑ

(
xk − ym; r +

ε
2

)
≥ λ}

)
= 0. (1)

For j ∈ {k ∈ N : ϕ
(
xk − ym; r + ε

2

)
> 1 − λ and ϑ

(
xk − ym; r + ε

2

)
< λ} we have ϕ

(
x j − ym; r + ε

2

)
> 1 −

λ and ϑ
(
x j − ym; r + ε

2

)
< λ. Then, we have

ϕ(x j − y0; r + ε) ≥ min
{
ϕ

(
x j − ym; r +

ε
2

)
, ϕ

(
ym − y0;

ε
2

)}
> 1 − λ,

and

ϑ(x j − y0; r + ε) ≤ max
{
ϑ
(
x j − ym; r +

ε
2

)
, ϑ

(
ym − y0;

ε
2

)}
< λ.

Hence, j ∈ {k ∈N : ϕ(xk − y0; r + ε) > 1− λ and ϑ
(
xk − y0; r + ε

)
< λ}. Now we have the following inclusion

{k ∈N : ϕ
(
xk − ym; r +

ε
2

)
> 1 − λ and ϑ

(
xk − ym; r +

ε
2

)
< λ}

⊆ {k ∈N : ϕ(xk − y0; r + ε) > 1 − λ and ϑ
(
xk − y0; r + ε

)
< λ}

Therefore,

δ({k ∈N : ϕ(xk − y0; r + ε) ≤ 1 − λ or ϑ
(
xk − y0; r + ε

)
≥ λ})

≤ δ
(
{k ∈N : ϕ

(
xk − ym; r +

ε
2

)
≤ 1 − λ or ϑ

(
xk − ym; r +

ε
2

)
≥ λ}

)
Using (1) we get

δ({k ∈N : ϕ(xk − y0; r + ε) ≤ 1 − λ or ϑ
(
xk − y0; r + ε

)
≥ λ}) = 0

Therefore, y0 ∈ St(ϕ,ϑ)-LIMr
x.

In next result, we are proving the convexity of the set St(ϕ,ϑ)-LIMr
x.

Theorem 2.11. Let x = {xk} be a sequence in an IFNS (X, ϕ, ϑ). Then, rough statistical limit set St(ϕ,ϑ)-LIMr
x with

respect to the norm (ϕ, ϑ) is convex for some non-negative number r.
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Proof. Letξ1, ξ2 ∈ St(ϕ,ϑ)-LIMr
x. For the convexity of the set St(ϕ,ϑ)-LIMr

x, we have to show that [(1−β)ξ1+βξ2] ∈
St(ϕ,ϑ)-LIMr

x for some β ∈ (0, 1).
Now for every ε > 0 and λ ∈ (0, 1), we define

M1 = {k ∈N : ϕ
(
xk − ξ1;

r + ε
2(1 − β)

)
≤ 1 − λ or ϑ

(
xk − ξ1;

r + ε
2(1 − β)

)
≥ λ},

M2 = {k ∈N : ϕ
(
xk − ξ2;

r + ε
2β

)
≤ 1 − λ or ϑ

(
xk − ξ2;

r + ε
2β

)
≥ λ}.

As ξ1, ξ2 ∈ St(ϕ,ϑ)-LIMr
x, we have δ(M1) = δ(M2) = 0. For k ∈Mc

1 ∩Mc
2 we have

ϕ(xk − [(1 − β)ξ1 + βξ2]; r + ε) = ϕ((1 − β)(xk − ξ1) + β(xk − ξ2); r + ε)

≥ min
{
ϕ

(
(1 − β)(xk − ξ1);

r + ε
2

)
, ϕ

(
β(xk − ξ2);

r + ε
2

)}
= min

{
ϕ

(
xk − ξ1;

r + ε
2(1 − β)

)
, ϕ

(
xk − ξ2;

r + ε
2β

)}
> 1 − λ,

and

ϑ(xk − [(1 − β)ξ1 + βξ2]; r + ε) = ϑ((1 − β)(xk − ξ1) + β(xk − ξ2); r + ε)

≤ max
{
ϑ
(
(1 − β)(xk − ξ1);

r + ε
2

)
, ϑ

(
β(xk − ξ2);

r + ε
2

)}
= max

{
ϑ

(
xk − ξ1;

r + ε
2(1 − β)

)
, ϑ

(
xk − ξ2;

r + ε
2β

)}
< λ.

Thus,

δ({k ∈N : ϕ(xk − [(1 − β)ξ1 + βξ2]; r + ε) ≤ 1 − λ or ϑ(xk − [(1 − β)ξ1 + βξ2]; r + ε) ≥ 1 − λ}) = 0.

Hence, [(1 − β)ξ1 + βξ2] ∈ St(ϕ,ϑ)-LIMr
x i.e. St(ϕ,ϑ)-LIMr

x is a convex set.

Theorem 2.12. A sequence x = {xk} in an IFNS (X, ϕ, ϑ) is rough statistically convergent to ξ ∈ X with respect
to the norm (ϕ, ϑ) for some non-negative number r if there exists a sequence y = {yk} in X, which is statistically
convergent to ξ ∈ X with respect to the norm (ϕ, ϑ) and for every λ ∈ (0, 1) have ϕ(xk − yk; r) > 1 − λ and
ϑ(xk − yk; r) < λ for all k ∈N.

Proof. Let ε > 0 and λ ∈ (0, 1). Consider yk
St(ϕ,ϑ)
−−−−→ ξ and ϕ(xk − yk; r) > 1−λ and ϑ(xk − yk; r) < λ for all k ∈N.

For given λ ∈ (0, 1) define

A = {k ∈N : ϕ(yk − ξ; ε) ≤ 1 − λ or ϑ(yk − ξ; ε) ≥ λ}

B = {k ∈N : ϕ(xk − yk; r) ≤ 1 − λ or ϑ(xk − yk; r) ≥ λ}

Clearly, δ(A) = 0 and δ(B) = 0. For k ∈ Ac
∩ Bc we have

ϕ(xk − ξ; r + ε) ≥ min
{
ϕ(xk − yk; r), ϕ(yk − ξ; ε)

}
> 1 − λ,

and

ϑ(xk − ξ; r + ε) ≤ max
{
ϑ(xk − yk; r), ϑ(yk − ξ; ε)

}
< λ.



R. Antal et al. / Filomat 35:13 (2021), 4405–4416 4411

Then ϕ(xk − ξ; r + ε) > 1 − λ and ϑ(xk − ξ; r + ε) < λ for all k ∈ Ac
∩ Bc.

This implies that {k ∈N : ϕ(xk − ξ; r + ε) ≤ 1 − λ or ϑ(xk − ξ; r + ε) ≥ λ} ⊆ A ∪ B.
Then, δ({k ∈N : ϕ(xk − ξ; r + ε) ≤ 1 − λ or ϑ(xk − ξ; r + ε) ≥ λ}) ≤ δ(A) + δ(B).
Hence, we get δ({k ∈N : ϕ(xk − ξ; r + ε) ≤ 1 − λ or ϑ(xk − ξ; r + ε) ≥ λ}) = 0.

Therefore, xk
r-St(ϕ,ϑ)
−−−−−→ ξ.

Theorem 2.13. Let x = {xk} be a sequence in an IFNS (X, ϕ, ϑ) then there does not exist elements y, z ∈ St(ϕ,ϑ)-LIMr
x

for some r > 0 and every λ ∈ (0, 1) such that ϕ(y − z; mr) ≤ 1 − λ or ϑ(y − z; mr) ≥ λ for m > 2.

Proof. We prove this result by contradiction. Assume there exists elements y, z ∈ St(ϕ,ϑ)-LIMr
x such that

ϕ(y − z; mr) ≤ 1 − λ or ϑ(y − z; mr) ≥ λ for m > 2 (2)

As y, z ∈ St(ϕ,ϑ)-LIMr
x. For given λ ∈ (0, 1) and every ε > 0, we have δ(K1) = δ(K2) = 0 where K1 = {k ∈ N :

ϕ
(
xk − y; r + ε

2

)
≤ 1−λ or ϑ

(
xk − y; r + ε

2

)
≥ λ} and K2 = {k ∈N : ϕ

(
xk − z; r + ε

2

)
≤ 1−λ or ϑ

(
xk − z; r + ε

2

)
≥

λ}. For k ∈ Kc
1 ∩ Kc

2 we have

ϕ(y − z; 2r + ε) ≥ min
{
ϕ

(
xk − z; r +

ε
2

)
, ϕ

(
xk − y; r +

ε
2

)}
> 1 − λ,

and

ϑ(y − z; 2r + ε) ≤ max
{
ϑ
(
xk − z; r +

ε
2

)
, ϑ

(
xk − y; r +

ε
2

)}
< λ.

Hence,

ϕ(y − z; 2r + ε) > 1 − λ and ϑ(y − z; 2r + ε) < λ. (3)

Then, from (3) we have

ϕ(y − z; mr) > 1 − λ and ϑ(y − z; mr) < λ for m > 2.

which is a contradiction to (2). Therefore, there does not exists elements y, z ∈ St(ϕ,ϑ)-LIMr
x such that

ϕ(y − z; mr) ≤ 1 − λ or ϑ(y − z; mr) ≥ λ for m > 2.

Next, we define statistical cluster point of a sequence in IFNS and establish some results related to it.

Definition 2.14. Let (X, ϕ, ϑ) be an IFNS. Then γ ∈ X is called rough statistical cluster point of the sequence
x = {xk} in X with respect to the norm (ϕ, ϑ) for some non-negative number r if for every ε > 0 and λ ∈ (0, 1),

δ({k ∈N : ϕ(xk − γ; r + ε) > 1 − λ and ϑ(xk − γ; r + ε) < λ}) > 0,

i.e.
δ({k ∈N : ϕ(xk − γ; r + ε) > 1 − λ and ϑ(xk − γ; r + ε) < λ}) , 0.

In this case, γ is known as r-St(ϕ,ϑ)-cluster point of a sequence x = {xk}.

Let Γr
(ϕ,ϑ)(x) denotes the set of all r-St(ϕ,ϑ)-cluster points with respect to the norm (ϕ, ϑ) of a sequence x = {xk}

in an IFNS (X, ϕ, ϑ). If r = 0 then we get ordinary statistical cluster point with respect to the norm (ϕ, ϑ) in
an IFNS (X, ϕ, ϑ) i.e. Γr

(ϕ,ϑ)(x) = Γ(ϕ,ϑ)(x).

Theorem 2.15. Let (X, ϕ, ϑ) be an IFNS. Then, Γr
(ϕ,ϑ)(x) which is the set of of all r-St(ϕ,ϑ)-cluster points with respect

to the norm (ϕ, ϑ) of any sequence x = {xk} is closed for some non-negative real number r.
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Proof. (i) If Γr
(ϕ,ϑ)(x) = φ, then we have to prove nothing.

(ii) If Γr
(ϕ,ϑ)(x) , φ. Then, take a sequence y = {yk} ⊆ Γr

(ϕ,ϑ)(x) such that yk
(ϕ,ϑ)
−−−→ y∗. It is sufficient to show

that y∗ ∈ Γr
(ϕ,ϑ)(x).

As yk
(ϕ,ϑ)
−−−→ y∗, then for every ε > 0 and λ ∈ (0, 1) there exists kε ∈ N such that ϕ

(
yk − y∗; ε2

)
> 1 − λ and

ϑ
(
yk − y∗; ε2

)
< λ for k ≥ kε.

Now choose k0 ∈N such that k0 ≥ kε. Then, we have ϕ
(
yk0 − y∗; ε2

)
> 1 − λ and ϑ

(
yk0 − y∗; ε2

)
< λ. Again as

y = {yk} ⊆ Γr
(ϕ,ϑ)(x), we have yk0 ∈ Γ

r
(ϕ,ϑ)(x).

⇒ δ
({

k ∈N : ϕ
(
xk − yk0 ; r +

ε
2

)
> 1 − λ and ϑ

(
xk − yk0 ; r +

ε
2

)
< λ

})
> 0. (4)

Choose j ∈
{
k ∈N : ϕ

(
xk − yk0 ; r + ε

2

)
> 1 − λ and ϑ

(
xk − yk0 ; r + ε

2

)
< λ

}
, then we have ϕ

(
x j − yk0 ; r + ε

2

)
>

1 − λ and ϑ
(
x j − yk0 ; r + ε

2

)
< λ.

ϕ(x j − y∗; r + ε) ≥ min
{
ϕ

(
x j − yk0 ; r +

ε
2

)
, ϕ

(
yk0 − y∗;

ε
2

)}
> 1 − λ,

and

ϑ(x j − y∗; r + ε) ≤ max
{
ϑ
(
x j − yk0 ; r +

ε
2

)
, ϑ

(
yk0 − y�;

ε
2

)}
< λ.

Thus, j ∈
{
k ∈N : ϕ(xk − y∗; r + ε) > 1 − λ and ϑ(xk − y∗; r + ε) < λ

}
.

Hence

{k ∈N : ϕ
(
xk − yk0 ; r +

ε
2

)
> 1 − λ and ϑ

(
xk − yk0 ; r +

ε
2

)
< λ}

⊆ {k ∈N : ϕ(xk − y∗; r + ε) > 1 − λ and ϑ(xk − y∗; r + ε) < λ}.

Now,

δ({k ∈N : ϕ
(
xk − yk0 ; r +

ε
2

)
> 1 − λ and ϑ

(
xk − yk0 ; r +

ε
2

)
< λ})

≤ δ({k ∈N : ϕ(xk − y∗; r + ε) > 1 − λ and ϑ(xk − y∗; r + ε) < λ}).
(5)

Using equation (4), we obtained that the set on left side of (5) has natural density more than 0.

⇒ δ({k ∈N : ϕ(xk − y∗; r + ε) > 1 − λ and ϑ(xk − y∗; r + ε) < λ}) > 0.

Therefore, y∗ ∈ Γr
(ϕ,ϑ)(x).

Theorem 2.16. Let Γ(ϕ,ϑ)(x) be the set of all statistical cluster points with respect to the norm (ϕ, ϑ) of a sequence
x = {xk} in an IFNS (X, ϕ, ϑ) and r be some non-negative real number. Then, for an arbitrary γ ∈ Γ(ϕ,ϑ)(x) and
λ ∈ (0, 1) we have ϕ(ξ − γ; r) > 1 − λ and ϑ(ξ − γ; r) < λ for all ξ ∈ Γr

(ϕ,ϑ)(x).

Proof. Let γ ∈ Γ(ϕ,ϑ)(x). Then, for every ε > 0 and λ ∈ (0, 1) we have

δ({k ∈N : ϕ(xk − γ; ε) > 1 − λ and ϑ(xk − γ; ε) < λ}) > 0. (6)
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Now we will show that if ξ ∈ X have ϕ(ξ − γ; r) > 1 − λ and ϑ(ξ − γ; r) < λ then ξ ∈ Γr
(ϕ,ϑ)(x).

Let j ∈ {k ∈N : ϕ(xk − γ; ε) > 1 − λ and ϑ(xk − γ; ε) < λ}, then ϕ(x j − γ; ε) > 1 − λ and ϑ(x j − γ; ε) < λ. Now,

ϕ(x j − ξ; r + ε) ≥ min
{
ϕ(x j − γ; ε), ϕ(ξ − γ; r)

}
> 1 − λ,

and

ϑ(x j − ξ; r + ε) ≤ max
{
ϑ(x j − γ; ε), ϑ(ξ − γ; r)

}
< λ.

We haveϕ(x j−ξ; r+ε) > 1−λ andϑ(x j−ξ; r+ε) < λ. Thus j ∈ {k ∈N : ϕ(xk−ξ; r+ε) > 1−λ and ϑ(xk−ξ; ε) < λ}.
Now the next inclusion holds.

{k ∈N : ϕ(xk − γ; ε) > 1 − λ and ϑ(xk − γ; ε) < λ}
⊆ {k ∈N : ϕ(xk − ξ; r + ε) > 1 − λ and ϑ(xk − ξ; r + ε) < λ}.

Then

δ({k ∈N : ϕ(xk − γ; ε) > 1 − λ and ϑ(xk − γ; ε) < λ})
≤ δ({k ∈N : ϕ(xk − ξ; r + ε) > 1 − λ and ϑ(xk − ξ; r + ε) < λ}).

Using equation (6) we get δ({k ∈ N : ϕ(xk − ξ; r + ε) > 1 − λ and ϑ(xk − ξ; r + ε) < λ}) > 0. Therefore,
ξ ∈ Γr

(ϕ,ϑ)(x).

Theorem 2.17. If B(c, λ, r) = {x ∈ X : ϕ(x − c; r) ≥ 1 − λ, ϑ(x − c; r) ≤ λ} represents the closure of open ball
B(c, λ, r) = {x ∈ X : ϕ(x − c; r) > 1 − λ, ϑ(x − c; r) < λ} for some r > 0, λ ∈ (0, 1) and fixed c ∈ X then
Γr

(ϕ,ϑ)(x) =
⋃

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r).

Proof. Let γ ∈
⋃

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) then there exists c ∈ Γ(ϕ,ϑ)(x) for some r > 0 and given λ ∈ (0, 1) such that

ϕ(c − γ; r) > 1 − λ and ϑ(c − γ; r) < λ.
Fix ε > 0. Since c ∈ Γ(ϕ,ϑ)(x) then there exists a set K = {k ∈ X : ϕ(xk − c; ε) > 1 − λ and ϑ(xk − c; ε) < λ} with
δ(K) > 0. Now, for k ∈ K,

ϕ(xk − γ; r + ε) ≥ min
{
ϕ(xk − c; ε), ϕ(c − γ; r)

}
> 1 − λ,

and

ϑ(xk − γ; r + ε) ≤ max
{
ϑ(xk − c; ε), ϑ(c − γ; r)

}
< λ.

This implies that δ({k ∈N : ϕ(xk − γ; r + ε) > 1 − λ and ϑ(xk − γ; r + ε) < λ}) > 0. Hence, γ ∈ Γr
(ϕ,ϑ)(x).

Therefore,
⋃

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) ⊆ Γr
(ϕ,ϑ)(x).

Conversely,
Let γ ∈ Γr

(ϕ,ϑ)(x). Then we have to show that γ ∈
⋃

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r).

Let if possible, γ <
⋃

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) i.e. γ < B(c, λ, r) for all c ∈ Γ(ϕ,ϑ)(x).
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Then ϕ(γ− c; r) ≤ 1−λ or ϑ(γ− c; r) ≥ λ for every c ∈ Γ(ϕ,ϑ)(x). By Theorem 2.16 for arbitrary c ∈ Γ(ϕ,ϑ)(x) we
have ϕ(γ − c; r) > 1 − λ and ϑ(γ − c; r) < λ for every c ∈ Γr

(ϕ,ϑ)(x) which is a contradiction to the assumption.

Therefore, γ ∈
⋃

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r). Hence, Γr
(ϕ,ϑ)(x) ⊆

⋃
c∈Γ(ϕ,ϑ)(x)

B(c, λ, r).

Theorem 2.18. Let x = {xk} be a sequence in an IFNS (X, ϕ, ϑ) then for any λ ∈ (0, 1),

(i) If c ∈ Γ(ϕ,ϑ)(x) then St(ϕ,ϑ)-LIMr
x ⊆ B(c, λ, r).

(ii) St(ϕ,ϑ)-LIMr
x =

⋂
c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) = {ξ ∈ X : Γ(ϕ,ϑ)(x) ⊆ B(ξ, λ, r)}.

Proof. (i) Consider ξ ∈ St(ϕ,ϑ)-LIMr
x and c ∈ Γ(ϕ,ϑ)(x).

For every ε > 0 and λ ∈ (0, 1) define sets

A = {k ∈N : ϕ(xk − ξ : r + ε) > 1 − λ and ϑ(xk − ξ : r + ε) < λ}with δ(Ac) = 0,

and
B = {k ∈N : ϕ(xk − c; ε) > 1 − λ and ϑ(xk − c; ε) < λ}with δ(B) , 0.

Now for k ∈ A ∩ B we have

ϕ(ξ − c; r) ≥ min
{
ϕ(xk − c; ε), ϕ(xk − ξ; r + ε)

}
> 1 − λ.

and

ϑ(ξ − c; r) ≤ max {ϑ(xk − c; ε), ϑ(xk − ξ; r + ε)}
< λ.

Therefore, ξ ∈ B(c, λ, r). Hence, St(ϕ,ϑ)-LIMr
x ⊆ B(c, λ, r).

(ii) By previous part we have St(ϕ,ϑ)-LIMr
x ⊆

⋂
c∈Γ℘(x)

B(c, λ, r).

Assume y ∈
⋂

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) then ϕ(y − c; r) ≥ 1 − λ and ϑ(y − c; r) ≤ λ for all c ∈ Γ(ϕ,ϑ)(x). This implies

that Γ(ϕ,ϑ)(x) ⊆ B(y, λ, r), i.e.
⋂

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) ⊆ {ξ ∈ X : Γ(ϕ,ϑ)(x) ⊆ B(ξ, λ, r)}.

Further, let y < St(ϕ,ϑ)-LIMr
x then for ε > 0 we have δ({k ∈ N : ϕ(xk − y; r + ε) ≤ 1 − λ or ϑ(xk −

y; r + ε) ≥ λ}) , 0, which implies that a statistical cluster point c exists for the sequence x = {xk} with
ϕ(y−c; r+ε) ≤ 1−λ or ϑ(y−c; r+ε) ≥ λ. Thus, Γ(ϕ,ϑ)(x) * B(y, λ, r) and y < {ξ ∈ X : Γ(ϕ,ϑ)(x) ⊆ B(ξ, λ, r)}.
This implies that {ξ ∈ X : Γ(ϕ,ϑ)(x) ⊆ B(ξ, λ, r)} ⊆ St(ϕ,ϑ)-LIMr

x and we get
⋂

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) ⊆ St(ϕ,ϑ)-LIMr
x.

Therefore, St(ϕ,ϑ)-LIMr
x =

⋂
c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) = {ξ ∈ X : Γ(ϕ,ϑ)(x) ⊆ B(ξ, λ, r)}.

Theorem 2.19. Let x = {xk} be a sequence in an IFNS (X, ϕ, ϑ) which is statistically convergent to ξ ∈ X with
respect to the norm (ϕ, ϑ) then there exists λ ∈ (0, 1) such that St(ϕ,ϑ)-LIMr

x = B(ξ, λ, r) for some r > 0.

Proof. Let ε > 0. Since xk
St(ϕ,ϑ)
−−−−→ ξ then there is a set A = {k ∈ N : ϕ(xk − ξ : ε) ≤ 1 − λ or ϑ(xk − ξ : ε) ≥ λ}

with δ(A) = 0. Consider y ∈ B(ξ, λ, r) = {y ∈ X : ϕ(y − ξ; r) ≥ 1 − λ, ϑ(y − ξ; r) ≤ λ}.
For k ∈ Ac

ϕ(xk − y; r + ε) ≥ min
{
ϕ(xk − ξ; ε), ϕ(y − ξ; r)

}
> 1 − λ,
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and

ϑ(xk − y; r + ε) ≤ max
{
ϑ(xk − ξ; ε), ϑ(y − ξ; r)

}
< λ.

This implies that y ∈ St(ϕ,ϑ)-LIMr
x, i.e. B(ξ, λ, r) ⊆ St(ϕ,ϑ)-LIMr

x. Also St(ϕ,ϑ)-LIMr
x ⊆ B(ξ, λ, r). Hence,

St(ϕ,ϑ)-LIMr
x = B(ξ, λ, r).

Theorem 2.20. Let x = {xk} be a sequence in an IFNS (X, ϕ, ϑ) which converges statistically with respect to the
norm (ϕ, ϑ) then Γr

(ϕ,ϑ)(x) = St(ϕ,ϑ)-LIMr
x for some r > 0.

Proof. Necessary part:

Suppose xk
St(ϕ,ϑ)
−−−−→ ξ. Then Γ(ϕ,ϑ)(x) = {ξ}. By Theorem 2.17 for some r > 0 and λ ∈ (0, 1) we have

Γr
(ϕ,ϑ)(x) = B(ξ, λ, r). Also by Theorem 2.19 we get B(ξ, λ, r) = St(ϕ,ϑ)-LIMr

x. Hence, Γr
(ϕ,ϑ)(x) = St(ϕ,ϑ)-LIMr

x.

Sufficient part:
Let Γr

(ϕ,ϑ)(x) = St(ϕ,ϑ)-LIMr
x. By Theorem 2.17 and Theorem 2.18(ii) we have⋃

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) =
⋂

c∈Γ(ϕ,ϑ)(x)

B(c, λ, r).

This implies that either Γ(ϕ,ϑ)(x) = φ or Γ(ϕ,ϑ)(x) is a singleton set. Then St(ϕ,ϑ)-LIMr
x =

⋂
c∈Γ(ϕ,ϑ)(x)

B(c, λ, r) =

B(ξ, λ, r) for some ξ ∈ Γ(ϕ,ϑ)(x), further by Theorem 2.19 we get St(ϕ,ϑ)-LIMr
x = {ξ}.
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